1
|
Yong F, Yuan L, Chen Z, Dajing Q, Chao W, PeiYan W. Nano-CaCO 3 enhances PVA fiber-matrix interfacial properties: an experimental and molecular dynamics study. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2094373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Feng Yong
- College of Civil Engineering, Henan University of Technology, Zhengzhou, People’s Republic of China
| | - Li Yuan
- College of Civil Engineering, Henan University of Technology, Zhengzhou, People’s Republic of China
| | - Zhao Chen
- Department of Hydraulic Engineering, Henan Vocational College of Water Conservancy and Environment, Zhengzhou, People’s Republic of China
| | - Qin Dajing
- College of Civil Engineering, Henan University of Technology, Zhengzhou, People’s Republic of China
| | - Wang Chao
- College of Civil Engineering, Henan University of Technology, Zhengzhou, People’s Republic of China
| | - Wang PeiYan
- College of Civil Engineering, Henan University of Technology, Zhengzhou, People’s Republic of China
| |
Collapse
|
2
|
Koch M, Saphiannikova M, Guskova O. Cyclic Photoisomerization of Azobenzene in Atomistic Simulations: Modeling the Effect of Light on Columnar Aggregates of Azo Stars. Molecules 2021; 26:7674. [PMID: 34946756 PMCID: PMC8709326 DOI: 10.3390/molecules26247674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/02/2022] Open
Abstract
This computational study investigates the influence of light on supramolecular aggregates of three-arm azobenzene stars. Every star contains three azobenzene (azo) moieties, each able to undergo reversible photoisomerization. In solution, the azo stars build column-shaped supramolecular aggregates. Previous experimental works report severe morphological changes of these aggregates under UV-Vis light. However, the underlying molecular mechanisms are still debated. Here we aim to elucidate how light affects the structure and stability of the columnar stacks on the molecular scale. The system is investigated using fully atomistic molecular dynamics (MD) simulations. To implement the effects of light, we first developed a stochastic model of the cyclic photoisomerization of azobenzene. This model reproduces the collective photoisomerization kinetics of the azo stars in good agreement with theory and previous experiments. We then apply light of various intensities and wavelengths on an equilibrated columnar stack of azo stars in water. The simulations indicate that the aggregate does not break into separate fragments upon light irradiation. Instead, the stack develops defects in the form of molecular shifts and reorientations and, as a result, it eventually loses its columnar shape. The mechanism and driving forces behind this order-disorder structural transition are clarified based on the simulations. In the end, we provide a new interpretation of the experimentally observed morphological changes.
Collapse
Affiliation(s)
- Markus Koch
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany;
| | - Marina Saphiannikova
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany;
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany
| | - Olga Guskova
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany;
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
3
|
Salerno KM, Lenhart JL, de Pablo JJ, Sirk TW. Vapor-Deposited Glasses Highlight the Role of Density in Photostability. J Phys Chem B 2020; 124:6112-6120. [PMID: 32609518 DOI: 10.1021/acs.jpcb.0c03579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photoresponsive molecules can be integrated into glassy materials to probe the local environment and invoke responsive changes in polymer behavior. For example, recent experiments and simulations have studied increased stability in vapor-deposited glasses by examining the photoisomerization rate of a probe molecule. At the theoretical level, past work relied on coarse-grained simulations to explain the role of photoisomerization on glass behavior. In order to effectively exploit these molecular probes, an ability to quantify how the local environment influences the photoisomerization rate is needed. In this work, we present all-atom molecular-dynamics (MD) simulations of molecular glasses of photoresponsive azobenzene (AB) molecules. The stability of these in-silico samples is probed using photoisomerization, where AB molecules can undergo trans → cis transition upon light exposure. Vapor-deposited and bulk-cooled glasses of AB are simulated using a classical dihedral-switching potential developed by Böckmann et al. (J. Phys. Chem. A 2010, 114, 745-754) to model the photoisomerization process. The MD simulations include thousands of molecules and run for tens of nanoseconds. These size and time scales allow us to explore the broad distribution of photoisomerization wait times, which yields two results. First, the wait-time distributions for both physical vapor deposition and bulk-cooled glasses depend strongly on sample and local density, showing that density or local packing is a primary factor in glass stability against photoisomerization and the experimentally measured photoresponse. Second, the distribution follows a power-law with exponent b ≈ 1.25-1.3 that extends to longer times with increasing density. The power-law distribution suggests a connection with previous experiments that related barriers to photoisomerization with an effective photoisomerization temperature.
Collapse
Affiliation(s)
- K Michael Salerno
- Polymers Branch, United States Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Joseph L Lenhart
- Polymers Branch, United States Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Timothy W Sirk
- Polymers Branch, United States Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| |
Collapse
|
4
|
Isac DL, Airinei A, Homocianu M, Fifere N, Cojocaru C, Hulubei C. Photochromic properties of some azomaleimide derivatives and DFT quantum chemical study of thermal cis-trans isomerization pathways. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Koch M, Saphiannikova M, Guskova O. Do Columns of Azobenzene Stars Disassemble under Light Illumination? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14659-14669. [PMID: 31627699 DOI: 10.1021/acs.langmuir.9b02960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The clustering properties of star-shaped molecules comprising three photochromic azobenzene-containing arms are investigated with specific focus on the influence of light on these structures. Previous experimental works report self-assembly of azobenzene stars in aqueous solution into long columnar clusters that are detectable using optical microscopy. These clusters appear to vanish under UV irradiation, which is known to induce trans-to-cis photoisomerization of the azobenzene groups. We have performed MD simulations, density functional theory, and density functional tight binding calculations to determine conformational properties and binding energies of these clusters. Our simulation data suggest that the binding strength of the clusters is large enough to prevent a breaking along their main axis. We conclude that very likely other mechanisms lead to the apparent disappearance of the clusters.
Collapse
Affiliation(s)
- Markus Koch
- Institute Theory of Polymers , Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , 01069 Dresden , Germany
| | - Marina Saphiannikova
- Institute Theory of Polymers , Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , 01069 Dresden , Germany
- Dresden Center for Computational Materials Science (DCMS) , Technische Universität Dresden , 01062 Dresden , Germany
| | - Olga Guskova
- Institute Theory of Polymers , Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , 01069 Dresden , Germany
- Dresden Center for Computational Materials Science (DCMS) , Technische Universität Dresden , 01062 Dresden , Germany
| |
Collapse
|
6
|
Zheng D, Gu Y, Li X, Zhang L, Zhao W, Ma J. Hydrogen Bonding Promoted Tautomerism between Azo and Hydrazone Forms in Calcon with Multistimuli Responsiveness and Biocompatibility. J Chem Inf Model 2019; 59:2110-2122. [PMID: 30769961 DOI: 10.1021/acs.jcim.8b00985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Realization of multistimuli responsiveness in one molecule remains a challenge due to the difficulty in understanding and control of comprehensive interplay between the external stimuli and the subtle conformation changes. The coexistence of dynamic bonding interactions, hydroxyl group, and the azo chromophore in calcon causes the multistimuli responsiveness to external stimuli including temperature, pH variation, and light irradiation. Density functional theory (DFT), time-dependent DFT (TDDFT), and various molecular dynamics (MD) simulations are employed to systematically investigate the azo-hydrazone tautomerism and E-to- Z isomerization. The inter/intramolecular hydrogen bonding interactions promote the azo-hydrazone tautomerism at different pH conditions. The strong n → π* absorption in the visible light region gives an advantage of calcon without the harm to living cells from UV light. The facial tautomerism renders the calcon temperature sensitivity, which could be triggered at body temperature (311 K) with distinct color change from red to blue. It is also found that in pH = 6.8 both azo and hydrazone isomers have no cytotoxicity on the human lung cells (A549 and H1299) and hepatic epithelial cell of rat (FL83B). The visible-light absorption, pH, and temperature sensitiveness and biocompatibility render calcon potential candidates for biomedical applications.
Collapse
Affiliation(s)
- Dong Zheng
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210023 , P. R. China.,Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 P. R. China
| | - Yuming Gu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210023 , P. R. China.,Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 P. R. China
| | - Xiang Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210023 , P. R. China.,Nanxin Pharm Co., Ltd. Nanjing 210023 , P. R. China
| | - Lizhu Zhang
- Nanxin Pharm Co., Ltd. Nanjing 210023 , P. R. China
| | - Wei Zhao
- Department of Clinical Laboratory , Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University , Nanjing , 210011 , P. R. China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210023 , P. R. China.,Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 P. R. China.,Nanxin Pharm Co., Ltd. Nanjing 210023 , P. R. China
| |
Collapse
|
7
|
|
8
|
Liu C, Zheng D, Hu W, Zhu Q, Tian Z, Zhao J, Zhu Y, Ma J. Tuning the collective switching behavior of azobenzene/Au hybrid materials: flexible versus rigid azobenzene backbones and Au(111) surfaces versus curved Au nanoparticles. NANOSCALE 2017; 9:16700-16710. [PMID: 29067386 DOI: 10.1039/c7nr03421k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The combination of photo-responsive azobenzene (AB) and biocompatible Au nanomaterials possesses potential applications in diverse fields such as biosensing and thermotherapy. To explore the influence of azobenzene moieties and Au substrates on the collective switching behavior, two different azobenzene derivatives (rigid biphenyl-controlled versus flexible alkoxyl chain-linked) and three different Au substrates (a planar Au(111) surface, curved Au102(SR)44 and Au25(SR)18 clusters) were chosen to form six Au@AB combinations. A reactive molecular dynamics (RMD) model considering both the torsion and inversion path was implemented to simulate the collective photo-induced cis-to-trans switching process of AB monolayers on Au substrates. The major driving force for isomerization is demonstrated to be the torsion of the C-N[double bond, length as m-dash]N-C dihedral angle, in addition to the minor contribution from an inversion pathway. The isomerization process can be divided into the preliminary conformation switching stage and the later relaxation stage, in which a gradual self-organization is observed for 40 ps. The Au substrate affects the packing structure of the AB monolayer, while the choice of different kinds of ABs tunes the intermolecular interaction in the monolayer. Flexible alkoxyl-linked F-AB may achieve much faster conversion on Au clusters than on the surface. For rigid biphenyl-based R-AB anchored on Au nanoparticles (AuNPs), a competitive torsion between the biphenyl and C-N[double bond, length as m-dash]N-C dihedral may delay the C-N[double bond, length as m-dash]N-C dihedral torsion and the following isomerization process. After the R-AB molecules were anchored on the Au(111) surface, the strong π-π stacking between biphenyl units accelerates the collective isomerization process. A curvature-dependent effect is observed for R-AB SAMs on different-sized substrates. The cooperation between functional AB monolayers and the Au substrate determines the collective switching behavior of Au@AB materials. These results are expected to guide rational designs of Au@AB hybrid materials for different uses.
Collapse
Affiliation(s)
- Chunyan Liu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry & Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing, 210093, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Koch M, Saphiannikova M, Santer S, Guskova O. Photoisomers of Azobenzene Star with a Flat Core: Theoretical Insights into Multiple States from DFT and MD Perspective. J Phys Chem B 2017; 121:8854-8867. [PMID: 28832166 DOI: 10.1021/acs.jpcb.7b07350] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study focuses on comparing physical properties of photoisomers of an azobenzene star with benzene-1,3,5-tricarboxamide core. Three azobenzene arms of the molecule undergo a reversible trans-cis isomerization upon UV-vis light illumination giving rise to multiple states from the planar all-trans one, via two mixed states to the kinked all-cis isomer. Employing density functional theory, we characterize the structural and photophysical properties of each state indicating a role the planar core plays in the coupling between azobenzene chromophores. To characterize the light-triggered switching of solvophilicity/solvophobicity of the star, the difference in solvation free energy is calculated for the transfer of an azobenzene star from its gas phase to implicit or explicit solvents. For the latter case, classical all-atom molecular dynamics simulations of aqueous solutions of azobenzene star are performed employing the polymer consistent force field to shed light on the thermodynamics of explicit hydration as a function of the isomerization state and on the structuring of water around the star. From the analysis of two contributions to the free energy of hydration, the nonpolar van der Waals and the electrostatic terms, it is concluded that isomerization specificity largely determines the polarity of the molecule and the solute-solvent electrostatic interactions. This convertible hydrophilicity/hydrophobicity together with readjustable occupied volume and the surface area accessible to water, affects the self-assembly/disassembly of the azobenzene star with a flat core triggered by light.
Collapse
Affiliation(s)
- Markus Koch
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden , Hohe Str. 6, 01069 Dresden, Germany.,Institute of Theoretical Physics, Technische Universität Dresden , Zellescher Weg 17, 01069 Dresden, Germany
| | - Marina Saphiannikova
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden , Hohe Str. 6, 01069 Dresden, Germany.,Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden , 01069 Dresden, Germany
| | - Svetlana Santer
- Institute of Physics and Astronomy, University of Potsdam , Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Olga Guskova
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden , Hohe Str. 6, 01069 Dresden, Germany.,Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden , 01069 Dresden, Germany
| |
Collapse
|
10
|
Cantini E, Wang X, Koelsch P, Preece JA, Ma J, Mendes PM. Electrically Responsive Surfaces: Experimental and Theoretical Investigations. Acc Chem Res 2016; 49:1223-31. [PMID: 27268783 PMCID: PMC4917918 DOI: 10.1021/acs.accounts.6b00132] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Stimuli-responsive surfaces have sparked considerable interest in recent years, especially in view of their biomimetic nature and widespread biomedical applications. Significant efforts are continuously being directed at developing functional surfaces exhibiting specific property changes triggered by variations in electrical potential, temperature, pH and concentration, irradiation with light, or exposure to a magnetic field. In this respect, electrical stimulus offers several attractive features, including a high level of spatial and temporal controllability, rapid and reverse inducement, and noninvasiveness. In this Account, we discuss how surfaces can be designed and methodologies developed to produce electrically switchable systems, based on research by our groups. We aim to provide fundamental mechanistic and structural features of these dynamic systems, while highlighting their capabilities and potential applications. We begin by briefly describing the current state-of-the-art in integrating electroactive species on surfaces to control the immobilization of diverse biological entities. This premise leads us to portray our electrically switchable surfaces, capable of controlling nonspecific and specific biological interactions by exploiting molecular motions of surface-bound electroswitchable molecules. We demonstrate that our self-assembled monolayer-based electrically switchable surfaces can modulate the interactions of surfaces with proteins, mammalian and bacterial cells. We emphasize how these systems are ubiquitous in both switching biomolecular interactions in highly complex biological conditions while still offering antifouling properties. We also introduce how novel characterization techniques, such as surface sensitive vibrational sum-frequency generation (SFG) spectroscopy, can be used for probing the electrically switchable molecular surfaces in situ. SFG spectroscopy is a technique that not only allowed determining the structural orientation of the surface-tethered molecules under electroinduced switching, but also provided an in-depth characterization of the system reversibility. Furthermore, the unique support from molecular dynamics (MD) simulations is highlighted. MD simulations with polarizable force fields (FFs), which could give proper description of the charge polarization caused by electrical stimulus, have helped not only back many of the experimental observations, but also to rationalize the mechanism of switching behavior. More importantly, this polarizable FF-based approach can efficiently be extended to light or pH stimulated surfaces when integrated with reactive FF methods. The interplay between experimental and theoretical studies has led to a higher level of understanding of the switchable surfaces, and to a more precise interpretation and rationalization of the observed data. The perspectives on the challenges and opportunities for future progress on stimuli-responsive surfaces are also presented.
Collapse
Affiliation(s)
| | - Xingyong Wang
- School
of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Patrick Koelsch
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195−1653, United States
| | | | - Jing Ma
- School
of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | | |
Collapse
|
11
|
Wen J, Li W, Chen S, Ma J. Simulations of molecular self-assembled monolayers on surfaces: packing structures, formation processes and functions tuned by intermolecular and interfacial interactions. Phys Chem Chem Phys 2016; 18:22757-71. [DOI: 10.1039/c6cp01049k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Simulations using QM and MM methods guide the rational design of functionalized SAMs on surfaces.
Collapse
Affiliation(s)
- Jin Wen
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Wei Li
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Shuang Chen
- Kuang Yaming Honors School
- Nanjing University
- Nanjing
- P. R. China
| | - Jing Ma
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| |
Collapse
|
12
|
Wei T, Sajib MSJ, Samieegohar M, Ma H, Shing K. Self-Assembled Monolayers of an Azobenzene Derivative on Silica and Their Interactions with Lysozyme. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13543-52. [PMID: 26597057 DOI: 10.1021/acs.langmuir.5b03603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The capability of the photoresponsive isomerization of azobenzene derivatives in self-assembled monolayer (SAM) surfaces to control protein adsorption behavior has very promising applications in antifouling materials and biotechnology. In this study, we performed an atomistic molecular dynamics (MD) simulation in combination with free-energy calculations to study the morphology of azobenzene-terminated SAMs (Azo-SAMs) grafted on a silica substrate and their interactions with lysozyme. Results show that the Azo-SAM surface morphology and the terminal benzene rings' packing are highly correlated with the surface density and the isomer state. Higher surface coverage and the trans-isomer state lead to a more ordered polycrystalline backbone as well as more ordered local packing of benzene rings. On the Azo-SAM surface, water retains a high interfacial diffusivity, whereas the adsorbed lysozyme is found to have extremely low mobility but a relative stable secondary structure. The moderate desorption free energy (∼60 kT) from the trans-Azo-SAM surface was estimated by using both the nonequilibrium-theorem-based Jarzynski's equality and equilibrium umbrella sampling.
Collapse
Affiliation(s)
- Tao Wei
- Dan F. Smith Department of Chemical Engineering, Lamar University , Beaumont, Texas 77710, United States
| | - Md Symon Jahan Sajib
- Dan F. Smith Department of Chemical Engineering, Lamar University , Beaumont, Texas 77710, United States
| | - Mohammadreza Samieegohar
- Dan F. Smith Department of Chemical Engineering, Lamar University , Beaumont, Texas 77710, United States
| | - Heng Ma
- Dan F. Smith Department of Chemical Engineering, Lamar University , Beaumont, Texas 77710, United States
| | - Katherine Shing
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|