1
|
Smith LC, Abramova E, Vayas K, Rodriguez J, Gelfand-Titiyevksiy B, Roepke TA, Laskin JD, Gow AJ, Laskin DL. Transcriptional profiling of lung macrophages following ozone exposure in mice identifies signaling pathways regulating immunometabolic activation. Toxicol Sci 2024; 201:103-117. [PMID: 38897669 PMCID: PMC11347782 DOI: 10.1093/toxsci/kfae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Macrophages play a key role in ozone-induced lung injury by regulating both the initiation and resolution of inflammation. These distinct activities are mediated by pro-inflammatory and anti-inflammatory/proresolution macrophages which sequentially accumulate in injured tissues. Macrophage activation is dependent, in part, on intracellular metabolism. Herein, we used RNA-sequencing (seq) to identify signaling pathways regulating macrophage immunometabolic activity following exposure of mice to ozone (0.8 ppm, 3 h) or air control. Analysis of lung macrophages using an Agilent Seahorse showed that inhalation of ozone increased macrophage glycolytic activity and oxidative phosphorylation at 24 and 72 h post-exposure. An increase in the percentage of macrophages in S phase of the cell cycle was observed 24 h post ozone. RNA-seq revealed significant enrichment of pathways involved in innate immune signaling and cytokine production among differentially expressed genes at both 24 and 72 h after ozone, whereas pathways involved in cell cycle regulation were upregulated at 24 h and intracellular metabolism at 72 h. An interaction network analysis identified tumor suppressor 53 (TP53), E2F family of transcription factors (E2Fs), cyclin-dependent kinase inhibitor 1A (CDKN1a/p21), and cyclin D1 (CCND1) as upstream regulators of cell cycle pathways at 24 h and TP53, nuclear receptor subfamily 4 group a member 1 (NR4A1/Nur77), and estrogen receptor alpha (ESR1/ERα) as central upstream regulators of mitochondrial respiration pathways at 72 h. To assess whether ERα regulates metabolic activity, we used ERα-/- mice. In both air and ozone-exposed mice, loss of ERα resulted in increases in glycolytic capacity and glycolytic reserve in lung macrophages with no effect on mitochondrial oxidative phosphorylation. Taken together, these results highlight the complex interaction between cell cycle, intracellular metabolism, and macrophage activation which may be important in the initiation and resolution of inflammation following ozone exposure.
Collapse
Affiliation(s)
- Ley Cody Smith
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT 06269, United States
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Elena Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Kinal Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Jessica Rodriguez
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Benjamin Gelfand-Titiyevksiy
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ 08854, United States
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| |
Collapse
|
2
|
Wagner JR, Madugundu GS, Cadet J. Ozone-Induced DNA Damage: A Pandora's Box of Oxidatively Modified DNA Bases. Chem Res Toxicol 2021; 34:80-90. [PMID: 33417438 DOI: 10.1021/acs.chemrestox.0c00342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ozone is a major component of air pollution and carries potentially mutagenic and harmful affects to health. The oxidation of isolated calf thymus DNA (CT-DNA) led to the nearly quantitative loss of normal DNA 2'-deoxyribonucleosides in the following order: T > G > C ≫ A. The major modification of pyrimidines (T, C, and 5-methylcytosine (5mC)) was the corresponding 5-hydroxyhydantoin derivative after complete digestion of DNA to its component 2'-deoxyribonucleosides. The oxidation of 5mC was 2.5-fold more susceptible than C considering the relative mole fraction of 5mC to C in CT-DNA. Other common oxidation products of pyrimidines (e.g., 5,6-dihydroxy-5,6-dihydropyrimidines, the so-called pyrimidine 5,6-glycols) were formed with a lower yield than 5-hydroxyhydantoin derivatives. In addition, several common oxidation products of G were observed (e.g., 8-oxo-7,8-dihydroguanine (8oxoG)) albeit with relatively minor yields. The sum of individual products was notably less than the loss of 2'-deoxyribonucleosides from which they were derived. In a search for additional products, we discovered the formation of pyrimidine ring fragments, predominantly N-formamide and N-urea, which were measured as a dinucleotide next to a nonmodified nucleotide upon partial digestion of oxidized DNA. Interestingly, the latter fragments were also observed in dinucleotides containing 8oxoG, indicating the formation of tandem lesions during ozonolysis of DNA. The oxidation of DNA upon exposure to ozone can be explained by reactions of an intermediate ozonide. These studies underline the complexity of ozone-induced DNA damage and provide valuable information to assess the formation of this damage in cellular DNA.
Collapse
Affiliation(s)
- J Richard Wagner
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, 3001 12e avenue Nord, Sherbrooke, Québec, Canada J1H 5N4
| | - Guru S Madugundu
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, 3001 12e avenue Nord, Sherbrooke, Québec, Canada J1H 5N4
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, 3001 12e avenue Nord, Sherbrooke, Québec, Canada J1H 5N4
| |
Collapse
|