1
|
Godbole NM, Chowdhury AA, Chataut N, Awasthi S. Tight Junctions, the Epithelial Barrier, and Toll-like Receptor-4 During Lung Injury. Inflammation 2022; 45:2142-2162. [PMID: 35779195 PMCID: PMC9649847 DOI: 10.1007/s10753-022-01708-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Lung epithelium is constantly exposed to the environment and is critically important for the orchestration of initial responses to infectious organisms, toxins, and allergic stimuli, and maintenance of normal gaseous exchange and pulmonary function. The integrity of lung epithelium, fluid balance, and transport of molecules is dictated by the tight junctions (TJs). The TJs are formed between adjacent cells. We have focused on the topic of the TJ structure and function in lung epithelial cells. This review includes a summary of the last twenty years of literature reports published on the disrupted TJs and epithelial barrier in various lung conditions and expression and regulation of specific TJ proteins against pathogenic stimuli. We discuss the molecular signaling and crosstalk among signaling pathways that control the TJ structure and function. The Toll-like receptor-4 (TLR4) recognizes the pathogen- and damage-associated molecular patterns released during lung injury and inflammation and coordinates cellular responses. The molecular aspects of TLR4 signaling in the context of TJs or the epithelial barrier are not fully known. We describe the current knowledge and possible networking of the TLR4-signaling with cellular and molecular mechanisms of TJs, lung epithelial barrier function, and resistance to treatment strategies.
Collapse
Affiliation(s)
- Nachiket M Godbole
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Asif Alam Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Neha Chataut
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
2
|
Kobos L, Shannahan J. Particulate matter inhalation and the exacerbation of cardiopulmonary toxicity due to metabolic disease. Exp Biol Med (Maywood) 2021; 246:822-834. [PMID: 33467887 DOI: 10.1177/1535370220983275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Particulate matter is a significant public health issue in the United States and globally. Inhalation of particulate matter is associated with a number of systemic and organ-specific adverse health outcomes, with the pulmonary and cardiovascular systems being particularly vulnerable. Certain subpopulations are well-recognized as being more susceptible to inhalation exposures, such as the elderly and those with pre-existing respiratory disease. Metabolic syndrome is becoming increasingly prevalent in our society and has known adverse effects on the heart, lungs, and vascular systems. The limited evaluations of individuals with metabolic syndromehave demonstrated that theymay compose a sensitive subpopulation to particulate exposures. However, the toxicological mechanisms responsible for this increased vulnerability are not fully understood. This review evaluates the currently available literature regarding how the response of an individual's pulmonary and cardiovascular systems is influenced by metabolic syndrome and metabolic syndrome-associated conditions such as hypertension, dyslipidemia, and diabetes. Further, we will discuss potential therapeutic agents and targets for the alleviation and treatment of particulate-matter induced metabolic illness. The information reviewed here may contribute to the understanding of metabolic illness as a risk factor for particulate matter exposure and further the development of therapeutic approaches to treat vulnerable subpopulations, such as those with metabolic diseases.
Collapse
Affiliation(s)
- Lisa Kobos
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jonathan Shannahan
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Kodavanti UP. Susceptibility Variations in Air Pollution Health Effects: Incorporating Neuroendocrine Activation. Toxicol Pathol 2019; 47:962-975. [PMID: 31594484 PMCID: PMC9353182 DOI: 10.1177/0192623319878402] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Diverse host factors/phenotypes may exacerbate or diminish biological responses induced by air pollutant exposure. We lack an understanding of biological indicators of environmental exposures that culminate in a physiological response versus those that lead to adversity. Variations in response phenotype might arise centrally and/or at the local tissue level. In addition to genetic differences, the current evidence supports the roles of preexisting cardiopulmonary diseases, diabetes, diet, adverse prenatal environments, neurobehavioral disorders, childhood infections, microbiome, sex, and psychosocial stressors in modifying the susceptibility to air pollutant exposures. Animal models of human diseases, obesity, nutritional inadequacies, and neurobehavioral conditions have been compared with healthy controls to understand the causes of variations in susceptibility. Although psychosocial stressors have been associated with increased susceptibility to air pollutant effects, the contribution of neuroendocrine stress pathways in mediating these effects is just emerging. The new findings of neuroendocrine activation leading to systemic metabolic and immunological effects of air pollutants, and the potential contribution to allostatic load, emphasize the consideration of these mechanisms into susceptibility. Variations in susceptibility to air pollution health effects are likely to underlie host genetic and physiological conditions in concert with disrupted neuroendocrine circuitry that alters physiological stability under the influence of stressors.
Collapse
Affiliation(s)
- Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
4
|
Zolotareva O, Saik OV, Königs C, Bragina EY, Goncharova IA, Freidin MB, Dosenko VE, Ivanisenko VA, Hofestädt R. Comorbidity of asthma and hypertension may be mediated by shared genetic dysregulation and drug side effects. Sci Rep 2019; 9:16302. [PMID: 31705029 PMCID: PMC6841742 DOI: 10.1038/s41598-019-52762-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Asthma and hypertension are complex diseases coinciding more frequently than expected by chance. Unraveling the mechanisms of comorbidity of asthma and hypertension is necessary for choosing the most appropriate treatment plan for patients with this comorbidity. Since both diseases have a strong genetic component in this article we aimed to find and study genes simultaneously associated with asthma and hypertension. We identified 330 shared genes and found that they form six modules on the interaction network. A strong overlap between genes associated with asthma and hypertension was found on the level of eQTL regulated genes and between targets of drugs relevant for asthma and hypertension. This suggests that the phenomenon of comorbidity of asthma and hypertension may be explained by altered genetic regulation or result from drug side effects. In this work we also demonstrate that not only drug indications but also contraindications provide an important source of molecular evidence helpful to uncover disease mechanisms. These findings give a clue to the possible mechanisms of comorbidity and highlight the direction for future research.
Collapse
Affiliation(s)
- Olga Zolotareva
- Bielefeld University, International Research Training Group "Computational Methods for the Analysis of the Diversity and Dynamics of Genomes" and Genome Informatics, Faculty of Technology and Center for Biotechnology, Bielefeld, Germany.
| | - Olga V Saik
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Cassandra Königs
- Bielefeld University, Bioinformatics and Medical Informatics Department, Bielefeld, Germany
| | - Elena Yu Bragina
- Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | | | - Maxim B Freidin
- Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | | | - Vladimir A Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Ralf Hofestädt
- Bielefeld University, Bioinformatics and Medical Informatics Department, Bielefeld, Germany
| |
Collapse
|
5
|
In Vivo Comparative Study on Acute and Sub-acute Biological Effects Induced by Ultrafine Particles of Different Anthropogenic Sources in BALB/c Mice. Int J Mol Sci 2019; 20:ijms20112805. [PMID: 31181746 PMCID: PMC6600162 DOI: 10.3390/ijms20112805] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 02/02/2023] Open
Abstract
Exposure to ultrafine particles (UFPs) leads to adverse effects on health caused by an unbalanced ratio between UFPs deposition and clearance efficacy. Since air pollution toxicity is first direct to cardiorespiratory system, we compared the acute and sub-acute effects of diesel exhaust particles (DEP) and biomass burning-derived particles (BB) on bronchoalveolar Lavage Fluid (BALf), lung and heart parenchyma. Markers of cytotoxicity, oxidative stress and inflammation were analysed in male BALB/c mice submitted to single and repeated intra-tracheal instillations of 50 μg UFPs. This in-vivo study showed the activation of inflammatory response (COX-2 and MPO) after exposure to UFPs, both in respiratory and cardiovascular systems. Exposure to DEP results also in pro- and anti-oxidant (HO-1, iNOS, Cyp1b1, Hsp70) protein levels increase, although, stress persist only in cardiac tissue under repeated instillations. Statistical correlations suggest that stress marker variation was probably due to soluble components and/or mediators translocation of from first deposition site. This mechanism, appears more important after repeated instillations, since inflammation and oxidative stress endure only in heart. In summary, chemical composition of UFPs influenced the activation of different responses mediated by their components or pro-inflammatory and pro-oxidative molecules, indicating DEP as the most damaging pollutant in the comparison.
Collapse
|
6
|
Wang Z, Zhao J, Wang T, Du X, Xie J. Fine-particulate matter aggravates cigarette smoke extract-induced airway inflammation via Wnt5a-ERK pathway in COPD. Int J Chron Obstruct Pulmon Dis 2019; 14:979-994. [PMID: 31190784 PMCID: PMC6512785 DOI: 10.2147/copd.s195794] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Exposure to environmental particulate matter (PM) ≤2.5 μm in diameter (PM2.5) and smoking are common contributors to COPD, and pertinent research implicates both factors in pulmonary inflammation. Using in vivo mouse and in vitro human cellular models, we investigated the joint impact of PM2.5 pollution, and cigarette smoke (CS) in mice or cigarette-smoke extract (CSE) in cells on COPD inflammation, and explored potential mechanisms. Methods Tissue changes in lungs of C57BL/6 mice exposed to PM2.5 and CS were studied by light microscopy, H&E, immunochemistry, and immunofluorescence-stained sections. Levels of inflammatory factors induced by PM2.5/CS in mice and PM2.5/CSE in 16HBE cells were also monitored by quantitative reverse-transcription (qRT)-PCR and ELISA. Expression of genes related to the Wnt5a-signaling pathway was assessed at transcriptional and protein levels using immunofluorescence, qRT-PCR, and Western blotting. Results Inflammatory response to combined exposure of PM2.5 and CS or CSE in mouse and 16HBE cells surpassed responses incited separately. Although separate PM2.5 and CS/CSE exposure upregulated the expression of Wnt5a (a member of the Wnt-secreted glycoprotein family), combined PM2.5 and CS/CSE exposure produced a steeper rise in Wnt5a levels. Use of a Wnt5a antagonist (BOX5) successfully blocked related inflammatory effects. ERK phosphorylation appeared to mediate the effects of Wnt5a in the COPD model, promoting PM2.5 aggravation of CS/CSE-induced airway inflammation. Conclusion Our findings suggest that combined PM2.5 and CS/CSE exposure induce airway inflammation and Wnt5a expression in vivo in mice and in vitro in 16HBE cells. Furthermore, PM2.5 seems to aggravate CS/CSE-induced inflammation via the Wnt5a–ERK pathway in the context of COPD.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China,
| | - Junling Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China,
| | - Ting Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China,
| | - Xiaohui Du
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China,
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China,
| |
Collapse
|
7
|
Drevytska T, Morhachov R, Tumanovska L, Portnichenko G, Nagibin V, Boldyriev O, Lapikova-Bryhinska T, Gurianova V, Dons'koi B, Freidin M, Ivanisenko V, Bragina EY, Hofestädt R, Dosenko V. shRNA-Induced Knockdown of a Bioinformatically Predicted Target IL10 Influences Functional Parameters in Spontaneously Hypertensive Rats with Asthma. J Integr Bioinform 2018; 15:/j/jib.ahead-of-print/jib-2018-0053/jib-2018-0053.xml. [PMID: 30530891 PMCID: PMC6348748 DOI: 10.1515/jib-2018-0053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
One of the most common comorbid pathology is asthma and arterial hypertension. For experimental modeling of comorbidity we have used spontaneously hypertensive rats with ovalbumin (OVA)-induced asthma. Rats were randomly divided into three groups: control group, OVA-induced asthma group; OVA-induced asthma + IL10 shRNA interference group. Target gene (IL10) was predicted by ANDSystem. We have demonstrated that RNA-interference of IL10 affected cardiovascular (tested using Millar microcatheter system) as well as respiratory functions (tested using force-oscillation technique, Flexivent) in rats. We have shown that during RNA-interference of IL10 gene in vivo there were changes in both cardiac and lung function parameters. These changes in the cardiovascular parameters can be described as positive. But the more intensive heart workload can lead to exhaust and decompensation of the heart functions. Knockdown of IL10 gene in asthma modeling induces some positive changes in respiratory functions of asthmatic animals such as decreased elastance and increased compliance of the lungs, as well as less pronounced pathomorphological changes in the lung tissue. Thus, we provide the data about experimentally confirmed functionality changes of the target which was in silico predicted to be associated with both asthma and hypertension – in our new experimental model of comorbid pathology.
Collapse
Affiliation(s)
- Tatiana Drevytska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01024, Ukraine
| | - Roman Morhachov
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01024, Ukraine
| | - Lesya Tumanovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01024, Ukraine
| | - Georgiy Portnichenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01024, Ukraine
| | - Vasyl Nagibin
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01024, Ukraine
| | - Oleksiy Boldyriev
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01024, Ukraine
| | - Tatiana Lapikova-Bryhinska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01024, Ukraine
| | - Veronika Gurianova
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01024, Ukraine
| | - Borys Dons'koi
- National Academy of Medical Sciences, State Institution "Institute of Pediatrics, Obstetrics and Gynecology", Kyiv, Ukraine
| | - Maxim Freidin
- Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | - Vladimir Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena Yu Bragina
- Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | - Ralf Hofestädt
- Bielefeld University, International Research Training Group "Computational Methods for the Analysis of the Diversity and Dynamics of Genomes", Bielefeld, Germany.,Bielefeld University, Technical Faculty, AG Bioinformatics and Medical Informatics, Bielefeld, Germany
| | - Victor Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz str, Kyiv 01024, Ukraine
| |
Collapse
|
8
|
Donovan KM, Leidinger MR, McQuillen LP, Goeken JA, Hogan CM, Harwani SC, Flaherty HA, Meyerholz DK. Allograft Inflammatory Factor 1 as an Immunohistochemical Marker for Macrophages in Multiple Tissues and Laboratory Animal Species. Comp Med 2018; 68:341-348. [PMID: 30227902 DOI: 10.30802/aalas-cm-18-000017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Allograft inflammatory factor 1 (AIF1) is a commonly used marker for microglia in the brains of humans and some animal models but has had limited applications elsewhere. We sought to determine whether AIF1 can be used as a macrophage marker across common laboratory animal species and tissues. We studied tissues (that is, spleen, liver, and lung) with defined macrophage populations by using an AIF1 immunostaining technique previously validated in human tissue. Tissues were collected from various mouse strains (n = 20), rat strains (n = 15), pigs (n = 4), ferrets (n = 4), and humans (n = 4, lung only). All samples of liver had scattered immunostaining in interstitial cells, consistent with resident tissue macrophages (Kupffer cells). Spleen samples had cellular immunostaining of macrophages in both the red and white pulp compartments, but the red pulp had more immunostained cellular aggregates and, in some species, increased immunostaining intensity compared with white pulp. In lung, alveolar macrophages had weak to moderate staining, whereas interstitial and perivascular macrophages demonstrated moderate to robust staining. Incidental lesions and tissue changes were detected in some sections, including a tumor, inducible bronchus-associated lymphoid tissue, and inflammatory lesions that demonstrated AIF1 immunostaining of macrophages. Finally, we compared AIF1 immunostaining of alveolar macrophages between a hypertensive rat model (SHR strain) and a normotensive model (WKY strain). SHR lungs had altered intensity and distribution of immunostaining in activated macrophages compared with macrophages of WKY lungs. Overall, AIF1 immunostaining demonstrated reproducible macrophage staining across multiple species and tissue types. Given the increasing breadth of model species used to study human disease, the use of cross-species markers and techniques can reduce some of the inherent variability within translational research.
Collapse
Affiliation(s)
| | | | | | - J Adam Goeken
- Departments of Pathology, University of Iowa, Iowa City, Iowa, USA
| | | | - Sailesh C Harwani
- Departments of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Heather A Flaherty
- Department of Veterinary Pathology, Iowa State University, Ames, Iowa, USA
| | | |
Collapse
|
9
|
Kim HJ, Choi MG, Park MK, Seo YR. Predictive and Prognostic Biomarkers of Respiratory Diseases due to Particulate Matter Exposure. J Cancer Prev 2017; 22:6-15. [PMID: 28382281 PMCID: PMC5380184 DOI: 10.15430/jcp.2017.22.1.6] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/11/2022] Open
Abstract
Air pollution is getting severe and concerns about its toxicity effects on airway and lung disease are also increasing. Particulate matter (PM) is major component of air pollutant. It causes respiratory diseases, such as asthma, chronic obstructive pulmonary disease, lung cancer, and so on. PM particles enter the airway and lung by inhalation, causing damages to them. Especially, PM2.5 can penetrate into the alveolus and pass to the systemic circulation. It can affect the cardiopulmonary system and cause cardiopulmonary disorders. In this review, we focused on PM-inducing toxicity mechanisms in the framework of oxidative stress, inflammation, and epigenetic changes. We also reviewed its correlation with respiratory diseases. In addition, we reviewed biomarkers related to PM-induced respiratory diseases. These biomarkers might be used for disease prediction and early diagnosis. With recent trend of using genomic analysis tools in the field of toxicogenomics, respiratory disease biomarkers associated with PM will be continuously investigated. Effective biomarkers derived from earlier studies and further studies might be utilized to reduce respiratory diseases.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Dongguk Bio-Med Campus, Dongguk University, Goyang, Korea
| | - Min Gi Choi
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Dongguk Bio-Med Campus, Dongguk University, Goyang, Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Young Rok Seo
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Dongguk Bio-Med Campus, Dongguk University, Goyang, Korea
| |
Collapse
|
10
|
Hypertension and Asthma: A Comorbid Relationship. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2015; 4:76-81. [PMID: 26342745 DOI: 10.1016/j.jaip.2015.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/14/2015] [Accepted: 07/22/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND An increased prevalence of hypertension has been described in adult asthmatic patients. However, there is no information regarding the interaction of hypertension as a comorbidity with asthma severity. OBJECTIVE The objective of this study was to investigate whether a concomitant diagnosis of hypertension had any impact on markers of asthma severity in adult asthmatic patients. METHODS A total of 117,922 asthmatic subjects 18 years or older were identified in the Kaiser Permanente database. Case-control studies were conducted with cases defined by short-acting β-agonist canister dispensing greater than 6 (SABA > 6), history of emergency department visits or hospitalizations (EDHO), and corticosteroid dispensings (CCS), respectively. Controls were matched by age and sex. Univariate and multivariate conditional logistic regression was applied to estimate the odds ratios (OR) and 95% confidence intervals (CI) for SABA > 6, EDHO, and CCS associated with the diagnosis of hypertension. RESULTS Hypertension was associated with an increased odds of SABA > 6 (OR 1.19, CI 1.13-1.26, n = 15,855 cases and 76,060 controls), EDHO (OR 1.11, CI 1.03-1.19, n = 9,307 cases and 46,535 controls), and CCS (OR 1.15, CI 1.10-1.19, n = 53,690 cases and 53,690 controls) after adjusting for potential confounders. CONCLUSIONS Asthmatic subjects with comorbid hypertension display evidence of enhanced of asthma morbidity.
Collapse
|
11
|
Luo B, Shi H, Wang L, Shi Y, Wang C, Yang J, Wan Y, Niu J. Rat lung response to PM2.5 exposure under different cold stresses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:12915-26. [PMID: 25514147 PMCID: PMC4276653 DOI: 10.3390/ijerph111212915] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 01/12/2023]
Abstract
Ambient particulate matters and temperature were reported to have additive effects over the respiratory disease hospital admissions and deaths. The purpose of this study is to discuss the interactive pulmonary toxicities of cold stress and fine particulate matter (PM2.5) exposure by estimating inflammation and oxidative stress responses. 48 Wistar male rats, matched by weight and age, were randomly assigned to six groups, which were treated with cold stress alone (0 °C, 10 °C, and 20 °C (Normal control)) and cold stresses plus PM2.5 exposures respectively. Cold stress alone groups were intratracheal instillation of 0.25 mL normal saline, while cold stress plus PM2.5 exposure groups were intratracheal instillation of 8 mg/0.25 mL PM2.5. These procedures were carried out for three times with an interval of 48 hours for each treatment. All rats were sacrificed after 48 hours of the third treatment. The bronchoalveolar lavage fluid (BALF) was collected for analyzing inflammatory cells and cytokines, and lung homogenate MDA was determined for oxidative stress estimation. Results showed higher level of total cell and neutrophil in the BALF of PM2.5 exposed groups (p < 0.05). Negative relationships between cold stress intensity and the level of tumor necrosis factor alpha (TNF-a), C-reactive protein (CRP) interleukin-6 (IL-6) and interleukin-8 (IL-8) in BALF were indicated in PM2.5 exposure groups. Exposure to cold stress alone caused significant increase of inflammatory cytokines and methane dicarboxylic aldehyde (MDA) and decline of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity only in 0 °C exposure group (p < 0.05). The two-way ANOVA found significant interactive effects between PM2.5 exposure and cold stress in the level of neutrophil, IL-6 and IL-8 and SOD activity (p < 0.05). These data demonstrated that inflammation and oxidative stress involved in the additive effect of PM2.5 exposure and cold stress on pulmonary toxicity, providing explanation for epidemiological studies on the health effect of ambient PM2.5 and cold stress.
Collapse
Affiliation(s)
- Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Hongxia Shi
- Lanzhou university Second Hospital, Lanzhou 730030, China.
| | - Lina Wang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Yanrong Shi
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Cheng Wang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Jingli Yang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Yaxiong Wan
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Jingping Niu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
12
|
Biokinetically-based in vitro cardiotoxicity of residual oil fly ash: hazard identification and mechanisms of injury. Cardiovasc Toxicol 2014; 13:426-37. [PMID: 24048980 DOI: 10.1007/s12012-013-9225-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Epidemiological studies have associated air pollution particulate matter (PM) exposure with adverse cardiovascular effects. Identification of causal PM sources is critically needed to support regulatory decisions to protect public health. This research examines the in vitro cardiotoxicity of bioavailable constituents of residual oil fly ash (ROFA) employing in vivo, biokinetically-based, concentrations determined from their pulmonary deposition. Pulmonary deposition of ROFA led to a rapid increase in plasma vanadium (V) levels that were prolonged in hypertensive animals without systemic inflammation. ROFA cardiotoxicity was evaluated using neonatal rat cardiomyocyte (RCM) cultures exposed to particle-free leachates of ROFA (ROFA-L) at levels present in exposed rat plasma. Cardiotoxicity was observed at low levels (3.13 μg/mL) of ROFA-L 24 h post-exposure. Dimethylthiourea (28 mM) inhibited ROFA-L-induced cytotoxicity at high (25-12.5 μg/mL) doses, suggesting that oxidative stress is responsible at high ROFA-L doses. Cardiotoxicity could not be reproduced using a V + Ni + Fe mixture or a ROFA-L depleted of these metals, suggesting that ROFA-L cardiotoxicity requires the full complement of bioavailable constituents. Susceptibility of RCMs to ROFA-L-induced cytotoxicity was increased following tyrosine phosphorylation inhibition, suggesting that phosphotyrosine signaling pathways play a critical role in regulating ROFA-L-induced cardiotoxicity. These data demonstrate that bioavailable constituents of ROFA are capable of direct adverse cardiac effects.
Collapse
|
13
|
Miousse IR, Chalbot MCG, Aykin-Burns N, Wang X, Basnakian A, Kavouras IG, Koturbash I. Epigenetic alterations induced by ambient particulate matter in mouse macrophages. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:428-35. [PMID: 24535919 PMCID: PMC4162398 DOI: 10.1002/em.21855] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/22/2014] [Indexed: 05/25/2023]
Abstract
Respiratory mortality and morbidity has been associated with exposure to particulate matter (PM). Experimental evidence suggests involvement of cytotoxicity, oxidative stress, and inflammation in the development of PM-associated pathological states; however, the exact mechanisms remain unclear. In the current study, we analyzed short-term epigenetic response to PM10 (particles with aerodynamic diameter less than 10 μm) exposure in mouse ascitic RAW264.7 macrophages (BALB/C Abelson murine leukemia virus-induced tumor). Ambient PM10 was collected using a high volume sampler in Little Rock, AR. Analysis revealed that PM10 was composed mainly of Al and Fe, and the water soluble organic fraction was dominated by aliphatic and carbohydrate fragments and minor quantities of aromatic components. Exposure to PM10 compromised the cellular epigenome at concentrations 10-200 µg/ml. Specifically, epigenetic alterations were evident as changes in the methylation and expression of repetitive element-associated DNA and associated DNA methylation machinery. These results suggest that epigenetic alterations, in concert with cytotoxicity, oxidative stress, and inflammation, might contribute to the pathogenesis of PM-associated respiratory diseases.
Collapse
Affiliation(s)
- Isabelle R. Miousse
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Marie-Cécile G. Chalbot
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nükhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Xiaoying Wang
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Alexei Basnakian
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ilias G. Kavouras
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Igor Koturbash
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
14
|
RISTOVSKI ZORAND, MILJEVIC BRANKA, SURAWSKI NICHOLASC, MORAWSKA LIDIA, FONG KWUNM, GOH FELICIA, YANG IANA. Respiratory health effects of diesel particulate matter. Respirology 2012; 17:201-12. [DOI: 10.1111/j.1440-1843.2011.02109.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
|
16
|
Carll AP, Haykal-Coates N, Winsett DW, Rowan WH, Hazari MS, Ledbetter AD, Nyska A, Cascio WE, Watkinson WP, Costa DL, Farraj AK. Particulate matter inhalation exacerbates cardiopulmonary injury in a rat model of isoproterenol-induced cardiomyopathy. Inhal Toxicol 2010; 22:355-68. [PMID: 20121584 DOI: 10.3109/08958370903365692] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ambient particulate matter (PM) exposure is linked to cardiovascular events and death, especially among individuals with heart disease. A model of toxic cardiomyopathy was developed in Spontaneously Hypertensive Heart Failure (SHHF) rats to explore potential mechanisms. Rats were infused with isoproterenol (ISO; 2.5 mg/kg/day subcutaneous [sc]), a beta-adrenergic agonist, for 28 days and subsequently exposed to PM by inhalation. ISO induced tachycardia and hypotension throughout treatment followed by postinfusion decrements in heart rate, contractility, and blood pressures (systolic, diastolic, pulse), and fibrotic cardiomyopathy. Changes in heart rate and heart rate variability (HRV) 17 days after ISO cessation indicated parasympathetic dominance with concomitantly altered ventilation. Rats were subsequently exposed to filtered air or Harvard Particle 12 (HP12) (12 mg/m(3))--a metal-rich oil combustion-derived PM--at 18 and 19 days (4 h/day) after ISO infusion via nose-only inhalation to determine if cardio-impaired rats were more responsive to the effects of PM exposure. Inhalation of PM among ISO-pretreated rats significantly increased pulmonary lactate dehydrogenase, serum high-density lipoprotein (HDL) cholesterol, and heart-to-body mass ratio. PM exposure increased the number of ISO-pretreated rats that experienced bradyarrhythmic events, which occurred concomitantly with acute alterations of HRV. PM, however, did not significantly affect mean HRV in the ISO- or saline-pretreated groups. In summary, subchronic ISO treatment elicited some pathophysiologic and histopathological features of heart failure, including cardiomyopathy. The enhanced sensitivity to PM exposure in SHHF rats with ISO-accelerated cardiomyopathy suggests that this model may be useful for elucidating the mechanisms by which PM exposure exacerbates heart disease.
Collapse
Affiliation(s)
- Alex P Carll
- Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhao J, Xie Y, Qian X, Jiang R, Song W. Acute effects of fine particles on cardiovascular system: Differences between the spontaneously hypertensive rats and wistar kyoto rats. Toxicol Lett 2010; 193:50-60. [DOI: 10.1016/j.toxlet.2009.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 12/01/2009] [Accepted: 12/06/2009] [Indexed: 11/25/2022]
|
18
|
Saxena RK, Gilmour MI, Schladweiler MC, McClure M, Hays M, Kodavanti UP. Differential pulmonary retention of diesel exhaust particles in Wistar Kyoto and spontaneously hypertensive rats. Toxicol Sci 2009; 111:392-401. [PMID: 19635756 DOI: 10.1093/toxsci/kfp164] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Spontaneously hypertensive (SH) and normotensive Wistar Kyoto (WKY) rats have been used for understanding the mechanisms of variations in susceptibility to airborne pollutants. We examined the lung burden of diesel exhaust particles (DEP) following inhalation of diesel engine exhaust (DEE) in both strains. The kinetics of clearance was also examined after single intratracheal (IT) instillation of DEP. Lungs were analyzed for DEP elemental carbon (EC) after exposure to DEE (0, 500, or 2000 microg/m(3) 4 h/day, 5 days/week x 4 weeks). SH rats had 16% less DEP-EC at 500 and 32% less at 2000 microg/m(3) in the lungs, despite having 50% higher than the average minute volume. No strain-related differences were noted in number of alveolar macrophages or their average DEP load as evident from examining cells in bronchoalveolar lavage fluid (BALF). The kinetics of DEP clearance from lungs of male WKY and SH rats was studied following a single instillation at 0.0 or 8.33 mg/kg of DEP standard reference material (SRM 2975) from the National Institute of Standards Technology. SH rats cleared 60% DEP over 112 days while minimal clearance occurred from the lungs of WKY. The pattern of DEP-induced inflammatory response assessed by BALF analysis was similar in both strains, although the overall protein leak was slightly greater in SH rats. A time-dependent accumulation of DEP occurred in tracheal lymph nodes of both strains (SH > WKY). Thus, SH rats may clear DEP more efficiently from their lungs than normotensive WKY rats, with a small contribution of more effective lymphatic drainage.
Collapse
Affiliation(s)
- Rajiv K Saxena
- School Of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
19
|
Sama P, Long TC, Hester S, Tajuba J, Parker J, Chen LC, Veronesi B. The Cellular and Genomic Response of an Immortalized Microglia Cell Line (BV2) to Concentrated Ambient Particulate Matter. Inhal Toxicol 2008; 19:1079-87. [DOI: 10.1080/08958370701628721] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Yu B, Kodavanti UP, Takeuchi M, Witschi H, Pinkerton KE. Acute tobacco smoke-induced airways inflammation in spontaneously hypertensive rats. Inhal Toxicol 2008; 20:623-33. [PMID: 18464051 DOI: 10.1080/08958370701861538] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Common laboratory rats and mice fail to develop persistent, progressive pulmonary inflammation found in chronic obstructive pulmonary disease as a result of tobacco smoke exposure. We hypothesized that spontaneously hypertensive rats would be more susceptible than normal Wistar Kyoto rats to acute tobacco smoke-induced pulmonary inflammation due to impaired apoptosis. Spontaneously hypertensive rats display systemic oxidative stress, inflammation, hypercoagulation, and immunosupression, similar to humans with chronic obstructive pulmonary disease. Male spontaneously hypertensive rats and Wistar Kyoto rats were exposed whole-body to tobacco smoke (total particulate concentration 75-85 mg/m(3)) or filtered air for 6 h/day for 2 or 15 days (3 days/wk). Tobacco smoke caused an increase in bronchoalveolar lavage fluid neutrophils at both time points in each strain. Significantly more neutrophils were noted in spontaneously hypertensive rats at 15 days compared to Wistar Kyoto rats. There was a trend of increase for macrophages in spontaneously hypertensive rats at both time points (significant at 2 days). TUNEL assay detected apoptotic cells in bronchoalveolar lavage fluid and lung tissue sections. The number of apoptotic neutrophils in airway walls and bronchoalveolar lavage fluid increased at 2 days in both strains, but at 15 days the effect was much lower in spontaneously hypertensive rats than in Wistar Kyoto rats. Tobacco smoke induces a greater inflammatory response associated with lower apoptotic neutrophils in the lungs of spontaneously hypertensive rats compared to Wistar Kyoto rats. The spontaneously hypertensive rat may be a more relevant animal model of acute tobacco smoke-induced airway inflammation than other laboratory rats.
Collapse
Affiliation(s)
- Bei Yu
- Center for Health and the Environment, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
21
|
Wegesser TC, Last JA. Lung response to coarse PM: bioassay in mice. Toxicol Appl Pharmacol 2008; 230:159-66. [PMID: 18384828 DOI: 10.1016/j.taap.2008.02.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/24/2008] [Accepted: 02/17/2008] [Indexed: 11/17/2022]
Abstract
Particulate matter (PM) elicits inflammatory and toxic responses in the lung specific to its constituents, which can vary by region, time, and particle size. To identify the mechanism of toxicity in PM collected in a rural area in the San Joaquin Valley of Central California, we studied coarse particles of 2.5-10 mum diameter (PM(2.5)-PM(10)). Potential pro-inflammatory and toxic effects of PM(2.5)-PM(10) in the lung were investigated using intratracheally instilled mice. We determined total and differential cell profiles and inflammatory chemokines in lung lavage fluid, and biomarkers of toxicity resulting from coarse PM exposure. Responses of the mice were readily observed with total doses of 25-50 mug of PM per mouse. Changes in pro-inflammatory cellular profiles and chemokines showed both dose and time responses; peak responses were observed 24 h after PM instillation, with recovery as early as 48 h. Furthermore, macrophage inflammatory protein (MIP-2) profiles following PM exposures were correlated to levels of measured macrophages and neutrophils recovered from lung lavage fluid of PM-treated animals. Our data suggest that pro-inflammatory effects observed from coarse PM collected during the summer months from California's hot and dry Central Valley are driven largely by the insoluble components of the PM mixture, and are not caused by endotoxin.
Collapse
Affiliation(s)
- Teresa C Wegesser
- Pulmonary and Critical Care Medicine Division, School of Medicine, University of California, 6519 Genome and Biomedical Sciences Facility, 451 Health Sciences Drive, Davis, CA 95616, USA
| | | |
Collapse
|
22
|
Wallenborn JG, Schladweiler MC, Nyska A, Johnson JA, Thomas R, Jaskot RH, Richards JH, Ledbetter AD, Kodavanti UP. Cardiopulmonary responses of Wistar Kyoto, spontaneously hypertensive, and stroke-prone spontaneously hypertensive rats to particulate matter (PM) exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1912-1922. [PMID: 17966062 DOI: 10.1080/15287390701551233] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Humans with underlying cardiovascular disease, including stroke, are more susceptible to ambient particulate matter (PM)-induced morbidity and mortality. We hypothesized that stroke-prone spontaneously hypertensive rats (SHRSP) would be more susceptible than healthy Wistar Kyoto (WKY) rats to PM-induced cardiac oxidative stress and pulmonary injury. We further postulated that PM-induced injury would be greater in SHRSP than in spontaneously hypertensive rats (SHR) based on the greater disease severity in SHRSP than SHR. First, male WKY and SHRSP were intratracheally (IT) instilled with saline or 1.11, 3.33, or 8.33 mg/kg of oil combustion PM and responses were analyzed 4 or 24 h later. Second, SHR and SHRSP were IT instilled with saline or 3.33 or 8.33 mg/kg of the same PM and responses were analyzed 24 h later. Pulmonary injury and inflammation were assessed in bronchoalveolar lavage fluid (BALF) and cardiac markers in cytosolic and mitochondrial fractions. BALF neutrophilic inflammatory response was induced similarly in all strains following PM exposure. BALF protein leakage, gamma-glutamyl transferase, and N-acetylglucosaminidase activities, but not lactate dehydrogenase activity, were exacerbated in SHRSP compared to WKY or SHR. Pulmonary cytosolic and cardiac mitochondrial ferritin levels decreased, and cardiac cytosolic superoxide dismutase (SOD) activity increased in SHRSP only. Pulmonary SOD activity decreased in WKY and SHRSP. Cardiac mitochondrial isocitrate dehydrogenase (ICDH) activity decreased in PM-exposed WKY and SHR; control levels were lower in SHRSP than SHR or WKY. In summary, strain-related differences exist in pulmonary protein leakage and oxidative stress markers. PM-induced changes in cardiac oxidative stress sensitive enzymes are small, and appear only slightly exacerbated in SHRSP compared to WKY or SHR. Multiple biological markers may be differentially affected by PM in genetic models of cardiovascular diseases. Preexisting cardiovascular disease may influence susceptibility to PM pulmonary and cardiac health effects in a disease-specific manner.
Collapse
Affiliation(s)
- J Grace Wallenborn
- Department of Environmental Sciences and Engineering, University of North Carolina School of Public Health, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wichers LB, Ledbetter AD, McGee JK, Kellogg RB, Rowan WH, Nolan JP, Costa DL, Watkinson WP. A method for exposing rodents to resuspended particles using whole-body plethysmography. Part Fibre Toxicol 2006; 3:12. [PMID: 16911796 PMCID: PMC1570473 DOI: 10.1186/1743-8977-3-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 08/15/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epidemiological studies have reported increased risks of cardiopulmonary-related hospitalization and death in association with exposure to elevated levels of particulate matter (PM) across a wide range of urban areas. In response to these findings, researchers have conducted animal inhalation exposures aimed at reproducing the observed toxicologic effects. However, it is technically difficult to quantitate the actual amount of PM delivered to the lung in such studies, and dose is frequently estimated using default respiration parameters. Consequently, the interpretation of PM-induced effects in rodents exposed via whole-body inhalation is often compromised by the inability to determine deposited dose. To address this problem, we have developed an exposure system that merges the generation of dry, aerosolized particles with whole-body plethysmography (WBP), thus permitting inhalation exposures in the unrestrained rat while simultaneously obtaining data on pulmonary function. RESULTS This system was validated using an oil combustion-derived particle (HP12) at three nominal concentrations (3, 12, and 13 mg/m3) for four consecutive exposure days (6 hr/day); a single 6-hour exposure to 13 mg/m3 of HP12 was also conducted. These results demonstrated that the system was both reliable and consistent over these exposure protocols, achieving average concentrations that were within 10% of the targeted concentration. In-line filters located on the exhaust outlets of individual WBP chambers showed relative agreement in HP12 mass for each day and were not statistically different when compared to one another (p = 0.16). Temperatures and relative humidities were also similar between chambers during PM and air exposures. Finally, detailed composition analyses of both HP12 filter and bulk samples showed that grinding and aerosolization did not change particle chemistry. CONCLUSION The results of this study demonstrate that it is possible to expose rodents to resuspended, dry PM via whole-body inhalation while these animals are maintained in WBP chambers. This new methodology should significantly improve the ability to assess dosimetry under minimally stressful exposure conditions.
Collapse
Affiliation(s)
- Lindsay B Wichers
- Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Environmental Media Assessment Group, National Center for Environmental Assessment, Office of Research and Development, Research Triangle Park, North Carolina 27711, USA
| | - Allen D Ledbetter
- Pulmonary Toxicology Branch, Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - John K McGee
- Pulmonary Toxicology Branch, Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Robert B Kellogg
- Alion Science and Technology Corporation, Research Triangle Park, North Carolina 27711, USA
| | - William H Rowan
- Pulmonary Toxicology Branch, Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Julianne P Nolan
- Pulmonary Toxicology Branch, Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Daniel L Costa
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - William P Watkinson
- Pulmonary Toxicology Branch, Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| |
Collapse
|
24
|
Saber AT, Jacobsen NR, Bornholdt J, Kjær SL, Dybdahl M, Risom L, Loft S, Vogel U, Wallin H. Cytokine expression in mice exposed to diesel exhaust particles by inhalation. Role of tumor necrosis factor. Part Fibre Toxicol 2006; 3:4. [PMID: 16504008 PMCID: PMC1402318 DOI: 10.1186/1743-8977-3-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 02/20/2006] [Indexed: 11/24/2022] Open
Abstract
Background Particulate air pollution has been associated with lung and cardiovascular disease, for which lung inflammation may be a driving mechanism. The pro-inflammatory cytokine, tumor necrosis factor (TNF) has been suggested to have a key-role in particle-induced inflammation. We studied the time course of gene expression of inflammatory markers in the lungs of wild type mice and Tnf-/- mice after exposure to diesel exhaust particles (DEPs). Mice were exposed to either a single or multiple doses of DEP by inhalation. We measured the mRNA level of the cytokines Tnf and interleukin-6 (Il-6) and the chemokines, monocyte chemoattractant protein (Mcp-1), macrophage inflammatory protein-2 (Mip-2) and keratinocyte derived chemokine (Kc) in the lung tissue at different time points after exposure. Results Tnf mRNA expression levels increased late after DEP-inhalation, whereas the expression levels of Il-6, Mcp-1 and Kc increased early. The expression of Mip-2 was independent of TNF if the dose was above a certain level. The expression levels of the cytokines Kc, Mcp-1 and Il-6, were increased in the absence of TNF. Conclusion Our data demonstrate that Tnf is not important in early DEP induced inflammation and rather exerts negative influence on Mcp-1 and Kc mRNA levels. This suggests that other signalling pathways are important, a candidate being one involving Mcp-1.
Collapse
Affiliation(s)
- Anne T Saber
- National Institute of Occupational Health, Lersø Parkallé 105, 2100 Copenhagen, Denmark
| | - Nicklas R Jacobsen
- National Institute of Occupational Health, Lersø Parkallé 105, 2100 Copenhagen, Denmark
| | - Jette Bornholdt
- National Institute of Occupational Health, Lersø Parkallé 105, 2100 Copenhagen, Denmark
| | - Sanna L Kjær
- National Institute of Occupational Health, Lersø Parkallé 105, 2100 Copenhagen, Denmark
| | - Marianne Dybdahl
- National Institute of Occupational Health, Lersø Parkallé 105, 2100 Copenhagen, Denmark
| | - Lotte Risom
- Institute of Public Health, Copenhagen University, Øster Farimagsgade 5, opg. B, 2.sal; postbox 2099, 1014 Copenhagen K, Denmark
| | - Steffen Loft
- Institute of Public Health, Copenhagen University, Øster Farimagsgade 5, opg. B, 2.sal; postbox 2099, 1014 Copenhagen K, Denmark
| | - Ulla Vogel
- National Institute of Occupational Health, Lersø Parkallé 105, 2100 Copenhagen, Denmark
| | - Håkan Wallin
- National Institute of Occupational Health, Lersø Parkallé 105, 2100 Copenhagen, Denmark
| |
Collapse
|
25
|
Kodavanti UP, Schladweiler MC, Ledbetter AD, McGee JK, Walsh L, Gilmour PS, Highfill JW, Davies D, Pinkerton KE, Richards JH, Crissman K, Andrews D, Costa DL. Consistent pulmonary and systemic responses from inhalation of fine concentrated ambient particles: roles of rat strains used and physicochemical properties. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:1561-8. [PMID: 16263512 PMCID: PMC1310919 DOI: 10.1289/ehp.7868] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Several studies have reported health effects of concentrated ambient particles (CAP) in rodents and humans; however, toxicity end points in rodents have provided inconsistent results. In 2000 we conducted six 1-day exposure studies where spontaneously hypertensive (SH) rats were exposed to filtered air or CAPs (< or = 2.5 microm, 1,138-1,765 microg/m3) for 4 hr (analyzed 1-3 hr afterward). In seven 2-day exposure studies in 2001, SH and Wistar Kyoto (WKY) rats were exposed to filtered air or CAP (< or = 2.5 microm, 144-2,758 microg/m3) for 4 hr/day times 2 days (analyzed 1 day afterward). Despite consistent and high CAP concentrations in the 1-day exposure studies, no biologic effects were noted. The exposure concentrations varied among the seven 2-day exposure studies. Except in the first study when CAP concentration was highest, lavageable total cells and macrophages decreased and neutrophils increased in WKY rats. SH rats demonstrated a consistent increase of lavage fluid gamma-glutamyltransferase activity and plasma fibrinogen. Inspiratory and expiratory times increased in SH but not in WKY rats. Significant correlations were found between CAP mass (microgram per cubic meter) and sulfate, organic carbon, or zinc. No biologic effects correlated with CAP mass. Despite low chamber mass in the last six of seven 2-day exposure studies, the levels of zinc, copper, and aluminum were enriched severalfold, and organic carbon was increased to some extent when expressed per milligram of CAP. Biologic effects were evident in those six studies. These studies demonstrate a pattern of rat strain-specific pulmonary and systemic effects that are not linked to high mass but appear to be dependent on CAP chemical composition.
Collapse
Affiliation(s)
- Urmila P Kodavanti
- Pulmonary Toxicology Branch, Experimental Toxicology Division, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|