1
|
Kim BS, Choi RY, Kweon H, Lee JH, Kim IW, Seo M. Oxya chinensis sinuosa (OC) Extracts Protects ARPE-19 Cells against Oxidative Stress via Activation of the Mitogen-Activated Protein Kinases (MAPKs)/ Nuclear Factor-κB (NF-κB) Pathway. Food Sci Anim Resour 2024; 44:699-709. [PMID: 38765280 PMCID: PMC11097018 DOI: 10.5851/kosfa.2024.e15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 05/21/2024] Open
Abstract
Oxya chinensis sinuosa (OC) is a well-known edible insect. Several researches on the health benefits of OC consumption have been performed to date; however, their effect on eye health remains largely unknown. This study aimed to assess the protective effects of OC extracts on the oxidative stress on the retinal pigment epithelium (RPE) cells. Oxidative damage has been identified as one of the key regulatory factors in age-related macular degeneration. H2O2-induced reactive oxygen species (ROS) production, a well-known oxidative stress factor, can cause cell death in retinal pigment epithelia cells. In this study, we found that three OC extracts effectively prevented H2O2-induced ROS production and subsequent death of ARPE-19 cells in a dose-dependent manner. In addition, the OC extracts inhibited the phosphorylation of mitogen-activated protein kinases including p38, JNK, and ERK. The OC extracts restored IκBα degradation induced by H2O2, indicating that OC extracts suppressed the activation of nuclear factor-κB. Furthermore, the three OC extracts were shown to have antioxidant effects by up-regulating the intracellular expression of key antioxidant proteins such as SOD, NQO, and HO-1. Here we demonstrated the antioxidant and anti-apoptotic effects of the OC extracts on ARPE-19, indicating their potential role in improving eye health. These results suggest that three OC extracts plays a critical role in oxidative stress-induced cell death protects in ARPE-19 cells.
Collapse
Affiliation(s)
- Bong Sun Kim
- Department of Agricultural Biology,
National Institute of Agricultural Sciences, Rural Development
Administration, Wanju 55365, Korea
- Division of Applied Food System, Major in
Food Science & Technology, Seoul Women’s
University, Seoul 01797, Korea
| | - Ra-Yeong Choi
- Department of Agricultural Biology,
National Institute of Agricultural Sciences, Rural Development
Administration, Wanju 55365, Korea
| | - Haeyong Kweon
- Department of Agricultural Biology,
National Institute of Agricultural Sciences, Rural Development
Administration, Wanju 55365, Korea
| | - Joon Ha Lee
- Department of Agricultural Biology,
National Institute of Agricultural Sciences, Rural Development
Administration, Wanju 55365, Korea
| | - In-Woo Kim
- Department of Agricultural Biology,
National Institute of Agricultural Sciences, Rural Development
Administration, Wanju 55365, Korea
| | - Minchul Seo
- Department of Agricultural Biology,
National Institute of Agricultural Sciences, Rural Development
Administration, Wanju 55365, Korea
| |
Collapse
|
2
|
Zhang J, Shu Y, Qu Y, Zhang L, Chu T, Zheng Y, Zhao H. C-myb Plays an Essential Role in the Protective Function of IGF-1 on Cytotoxicity Induced by Aβ 25-35 via the PI3K/Akt Pathway. J Mol Neurosci 2017; 63:412-418. [PMID: 29110181 DOI: 10.1007/s12031-017-0991-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/11/2017] [Indexed: 01/23/2023]
Abstract
There have been numerous reports about neurodegenerative diseases, including Alzheimer's disease. Nevertheless, the molecules responsible for the neurodegeneration in Alzheimer's disease are basically unknown. Recent findings indicate that the cellular myeloblastosis (c-myb) regulates neural progenitor cell proliferation. In the current study, the function of insulin-like growth factor-1 (IGF-1) against cell toxicity in SH-SY5Y cells induced by β-amyloid 25-35 (Aβ25-35) and its molecular mechanism were investigated. It was found that p25 protein production was raised by Aβ25-35 (25 μM), similar to the increased expression of μ-calpain. The results also showed that Aβ25-35 reduced c-myb, elevated tau hyper-phosphorylation, and induced death of SH-SY5Y cells. Loss of cell viability and apoptosis of SH-SY5Y cells induced by Aβ25-35 were attenuated by IGF-1 pretreatment in a dose-dependent manner. In addition, IGF-1 blocked μ-calpain expression, which was induced by Aβ25-35 and reduced p25 formation and tau hyper-phosphorylation. Moreover, the expression of c-myb in SH-SY5Y cells was increased by combining IGF-1 with Aβ25-35 or IGF-1 alone. The neuroprotective function of IGF-1 was attenuated in the SH-SY5Y cells, which were transfected with a c-myb small interfering RNA. Furthermore, LY294002, a specific PI3K inhibitor, reduced c-myb expression and abolished IGF-1's protective function in SH-SY5Y cell apoptosis induced by Aβ25-35. The facts above indicate that c-myb has a role in IGF-1-mediated protection from Aβ25-35-induced cytotoxicity via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Jingyu Zhang
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin, Heilongjiang Province, 150001, China
| | - Yongwei Shu
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin, Heilongjiang Province, 150001, China
| | - Yang Qu
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin, Heilongjiang Province, 150001, China
| | - Lina Zhang
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin, Heilongjiang Province, 150001, China
| | - Tingting Chu
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin, Heilongjiang Province, 150001, China
| | - Yonghui Zheng
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin, Heilongjiang Province, 150001, China
| | - Hong Zhao
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin, Heilongjiang Province, 150001, China.
| |
Collapse
|
3
|
IGF-1 protects against Aβ25-35-induced neuronal cell death via inhibition of PUMA expression and Bax activation. Neurosci Lett 2017; 637:188-194. [DOI: 10.1016/j.neulet.2016.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/30/2016] [Accepted: 11/04/2016] [Indexed: 01/25/2023]
|
4
|
Insulin-like growth factor-1 protects SH-SY5Y cells against β-amyloid-induced apoptosis via the PI3K/Akt-Nrf2 pathway. Exp Gerontol 2016; 87:23-32. [PMID: 27887985 DOI: 10.1016/j.exger.2016.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 12/15/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) shows protective effect against Aβ-induced cytotoxicity and apoptosis, but the underlying mechanisms are poorly characterized. The present study was conducted to explore the mechanisms involved in the beneficial effect of IGF-1 against Aβ-induced apoptosis in SH-SY5Y cells. We found that pretreatment with IGF-1 attenuated Aβ25-35-induced loss of cell viability and apoptosis in SH-SY5Y cells in a dose-dependent manner. In addition, IGF-1 inhibited the generation of reactive oxygen species (ROS) and increased the antioxidant activity in Aβ25-35-treated cells. Further, IGF-1 significantly promoted the nuclear translocation of Nrf2, and upregulated the expression of its downstream gene heme oxygenase-1 (HO-1). Moreover, LY294002, a specific PI3K inhibitor, was found to completely abolish the protective effect of IGF-1 on Aβ25-35-induced apoptosis and ROS generation. Together, our findings suggest that IGF-1 protects SH-SY5Y cells against Aβ25-35-induced cell injury by scavenging ROS via the PI3K/Akt-Nrf2 signaling pathway.
Collapse
|
5
|
Jimenez-Del-Rio M, Velez-Pardo C. Alzheimer’s Disease, Drosophila melanogaster and Polyphenols. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 863:21-53. [DOI: 10.1007/978-3-319-18365-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Liu J, He J, Huang L, Dou L, Wu S, Yuan Q. Neuroprotective effects of ginsenoside Rb1 on hippocampal neuronal injury and neurite outgrowth. Neural Regen Res 2014; 9:943-50. [PMID: 25206916 PMCID: PMC4146219 DOI: 10.4103/1673-5374.133137] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 01/17/2023] Open
Abstract
Ginsenoside Rb1 has been reported to exert anti-aging and anti-neurodegenerative effects. In the present study, we investigate whether ginsenoside Rb1 is involved in neurite outgrowth and neuroprotection against damage induced by amyloid beta (25-35) in cultured hippocampal neurons, and explore the underlying mechanisms. Ginsenoside Rb1 significantly increased neurite outgrowth in hippocampal neurons, and increased the expression of phosphorylated-Akt and phosphorylated extracellular signal-regulated kinase 1/2. These effects were abrogated by API-2 and PD98059, inhibitors of the signaling proteins Akt and MEK. Additionally, cultured hippocampal neurons were exposed to amyloid beta (25-35) for 30 minutes; ginsenoside Rb1 prevented apoptosis induced by amyloid beta (25-35), and this effect was blocked by API-2 and PD98059. Furthermore, ginsenoside Rb1 significantly reversed the reduction in phosphorylated-Akt and phosphorylated extracellular signal-regulated kinase 1/2 levels induced by amyloid beta (25-35), and API-2 neutralized the effect of ginsenoside Rb1. The present results indicate that ginsenoside Rb1 enhances neurite outgrowth and protects against neurotoxicity induced by amyloid beta (25-35) via a mechanism involving Akt and extracellular signal-regulated kinase 1/2 signaling.
Collapse
Affiliation(s)
- Juan Liu
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Jing He
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Liang Huang
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Ling Dou
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Shuang Wu
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Qionglan Yuan
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Mu X, He K, Sun H, Zhou X, Chang L, Li X, Chu W, Qiao G, Lu Y. Hydrogen peroxide induces overexpression of angiotensin-converting enzyme in human umbilical vein endothelial cells. Free Radic Res 2012; 47:116-22. [PMID: 23153326 DOI: 10.3109/10715762.2012.749987] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oxidative stress has been linked to endothelial dysfunction in atherosclerosis and hypertension. The present study was designed to investigate the effect of hydrogen peroxide (H2O2) on angiotensin-converting enzyme (ACE), a key regulator of the renin-angiotensin system, and the mechanisms underlying ACE regulation in human umbilical vein endothelial cells (HUVECs). We used Tetrazolium bromide (MTT) assay for cell viability, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay for cell apoptosis, enzyme-linked immunosorbent assay (ELISA) for cAMP measurement, real-time PCR for mRNA detection, and Western blot for protein analysis in the study. Our results demonstrated that H2O2 (50-1000 μM) decreased HUVECs viability by inducing apoptosis. Notably, H2O2 upregulated ACE expression in a concentration-dependent manner. H2O2 100 μM significantly enhanced cyclic adenosine monophosphate (cAMP) expression by 1.48-fold (P<0.05). Additionally, forskolin 10 μM, a cAMP agonist, was also found to enhance ACE expression by 1.78-fold (P<0.05); in contrast, H-89 10 μM, a protein kinase A (PKA) inhibitor, abolished H2O2-induced ACE expression and prevented the enhancing effect of forskolin-induced ACE expression. Similar effects on ACE mRNA were also observed. cAMP-response element-specific decoy oligodeoxynucleotides (CRE-dODN) containing binding sites for cAMP-response element-binding protein (CREB) inhibited ACE expression at both the mRNA and protein levels. Negative control CRE-dODN had no effect on ACE expression. We conclude that H2O2 upregulates the expression of ACE through the activation of cAMP/PKA/CREB signal pathway in HUVECs, indicating a role of oxidative stress in the pathophysiology of hypertension.
Collapse
Affiliation(s)
- Xiaoqin Mu
- Department of Pharmacology, Harbin Medical University, Harbin, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
An antitumor peptide from Musca domestica pupae (MATP) induces apoptosis in HepG2 cells through a JNK-mediated and Akt-mediated NF-κB pathway. Anticancer Drugs 2012; 23:827-35. [DOI: 10.1097/cad.0b013e32835455f1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
The bad, the good, and the ugly about oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:163913. [PMID: 22619696 PMCID: PMC3350994 DOI: 10.1155/2012/163913] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 01/16/2012] [Accepted: 02/07/2012] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), and cancer (e.g., leukemia) are the most devastating disorders affecting millions of people worldwide. Except for some kind of cancers, no effective and/or definitive therapeutic treatment aimed to reduce or to retard the clinic and pathologic symptoms induced by AD and PD is presently available. Therefore, it is urgently needed to understand the molecular basis of these disorders. Since oxidative stress (OS) is an important etiologic factor of the pathologic process of AD, PD, and cancer, understanding how intracellular signaling pathways respond to OS will have a significant implication in the therapy of these diseases. Here, we propose a model of minimal completeness of cell death signaling induced by OS as a mechanistic explanation of neuronal and cancer cell demise. This mechanism might provide the basis for therapeutic design strategies. Finally, we will attempt to associate PD, cancer, and OS. This paper critically analyzes the evidence that support the “oxidative stress model” in neurodegeneration and cancer.
Collapse
|
10
|
|
11
|
Abstract
IGF-1 (insulin-like growth factor-1) plays a unique role in the cell protection of multiple systems, where its fine-tuned signal transduction helps to preserve tissues from hypoxia, ischaemia and oxidative stress, thus mediating functional homoeostatic adjustments. In contrast, its deprivation results in apoptosis and dysfunction. Many prospective epidemiological surveys have associated low IGF-1 levels with late mortality, MI (myocardial infarction), HF (heart failure) and diabetes. Interventional studies suggest that IGF-1 has anti-atherogenic actions, owing to its multifaceted impact on cardiovascular risk factors and diseases. The metabolic ability of IGF-1 in coupling vasodilation with improved function plays a key role in these actions. The endothelial-protective, anti-platelet and anti-thrombotic activities of IGF-1 exert critical effects in preventing both vascular damage and mechanisms that lead to unstable coronary plaques and syndromes. The pro-survival and anti-inflammatory short-term properties of IGF-1 appear to reduce infarct size and improve LV (left ventricular) remodelling after MI. An immune-modulatory ability, which is able to suppress 'friendly fire' and autoreactivity, is a proposed important additional mechanism explaining the anti-thrombotic and anti-remodelling activities of IGF-1. The concern of cancer risk raised by long-term therapy with IGF-1, however, deserves further study. In the present review, we discuss the large body of published evidence and review data on rhIGF-1 (recombinant human IGF-1) administration in cardiovascular disease and diabetes, with a focus on dosage and safety issues. Perhaps the time has come for the regenerative properties of IGF-1 to be assessed as a new pharmacological tool in cardiovascular medicine.
Collapse
|
12
|
Lunn JS, Pacut C, Backus C, Hong Y, Johe K, Hefferan M, Marsala M, Feldman EL. The pleotrophic effects of insulin-like growth factor-I on human spinal cord neural progenitor cells. Stem Cells Dev 2010; 19:1983-93. [PMID: 20406098 DOI: 10.1089/scd.2010.0003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Most stem cell therapies involve direct, intraparachymal placement of neural progenitor cells. These cells provide physical support to the endogenous neuronal population and may be engineered to provide in situ growth factor support. Insulin-like growth factor-I (IGF-I) has potent neurotrophic and neuroprotective properties and is expressed by human neural stem cells (hNSCs). IGF-I is implicated in multiple aspects of cell behavior, including proliferation, differentiation, and survival. Enhancing hNSC function through IGF-I overexpression may increase the benefits of stem cell therapy. As a first step to that goal, we examined the direct effects of IGF-I on hNSC behavior in vitro. We demonstrate that IGF-I treatment enhances both the number and length of hNSC neurites. This is correlated with a decrease in proliferation, suggesting that IGF-I promotes neurite outgrowth but not proliferation. While IGF-I activates both AKT and MAPK signaling in hNSCs, we demonstrate that IGF-I-mediated neurite outgrowth is dependent only on AKT signaling. Finally, we demonstrate that IGF-I is neuroprotective after glutamate exposure in a model of excitotoxic cell death.
Collapse
Affiliation(s)
- J Simon Lunn
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Cho HH, Shin KK, Kim YJ, Song JS, Kim JM, Bae YC, Kim CD, Jung JS. NF-kappaB activation stimulates osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue by increasing TAZ expression. J Cell Physiol 2010; 223:168-77. [PMID: 20049872 DOI: 10.1002/jcp.22024] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is a skeletal catabolic agent that stimulates osteoclastogenesis and inhibits osteoblast function. Although TNF-alpha inhibits the mineralization of osteoblasts, the effect of TNF-alpha on mesenchymal stem cells (MSC) is not clear. In this study, we determined the effect of TNF-alpha on osteogenic differentiation of stromal cells derived from human adipose tissue (hADSC) and the role of NF-kappaB activation on TNF-alpha activity. TNF-alpha treatment dose-dependently increased osteogenic differentiation over the first 3 days of treatment. TNF-alpha activated ERK and increased NF-kappaB promoter activity. PDTC, an NF-kappaB inhibitor, blocked the osteogenic differentiation induced by TNF-alpha and TLR-ligands, but U102, an ERK inhibitor, did not. Overexpression of miR-146a induced the inhibition of IRAK1 expression and inhibited basal and TNF-alpha- and TLR ligand-induced osteogenic differentiation. TNF-alpha and TLR ligands increased the expression of transcriptional coactivator with PDZ-binding motif (TAZ), which was inhibited by the addition of PDTC. A ChIP assay showed that p65 was bound to the TAZ promoter. TNF-alpha also increased osteogenic differentiation of human gastroepiploic artery smooth muscle cells. Our data indicate that TNF-alpha enhances osteogenic differentiation of hADSC via the activation of NF-kappaB and a subsequent increase of TAZ expression.
Collapse
Affiliation(s)
- Hyun Hwa Cho
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Avila-Gomez IC, Velez-Pardo C, Jimenez-Del-Rio M. Effects of insulin-like growth factor-1 on rotenone-induced apoptosis in human lymphocyte cells. Basic Clin Pharmacol Toxicol 2009; 106:53-61. [PMID: 19874289 DOI: 10.1111/j.1742-7843.2009.00472.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human peripheral blood lymphocytes have been useful as a putative model of oxidative stress-induced apoptosis for Parkinson's disease. The present work shows that rotenone, a mitochondrial complex I inhibitor, induced time- and concentration-dependent apoptosis in lymphocytes which was mediated by anion superoxide radicals (O(2)*(-))/hydrogen peroxide, depolarization of mitochondria, caspase-3 activation, concomitantly with the nuclear translocation of transcription factors such as NF-kappaB, p53, c-Jun and nuclei fragmentation. Since insulin-like growth factor-1 (IGF-1) interferes with a cell's apoptotic machinery when subjected to several stressful conditions, it is demonstrated here for the first time that IGF-1 effectively protects lymphocytes against rotenone through PI-3K/Akt activation, down-regulation of p53 and maintenance of mitochondrial membrane potential independently of ROS generation. These data might contribute to understanding the role played by IGF-1 against oxidative stress stimuli.
Collapse
Affiliation(s)
- Isabel Cristina Avila-Gomez
- School of Medicine, Medical Research Institute, Neuroscience Research Program, University of Antioquia, Medellin, Colombia
| | | | | |
Collapse
|
15
|
Zhao WQ, Lacor PN, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL. Insulin receptor dysfunction impairs cellular clearance of neurotoxic oligomeric a{beta}. J Biol Chem 2009; 284:18742-53. [PMID: 19406747 PMCID: PMC2707198 DOI: 10.1074/jbc.m109.011015] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 04/20/2009] [Indexed: 12/16/2022] Open
Abstract
Accumulation of amyloid beta (Abeta) oligomers in the brain is toxic to synapses and may play an important role in memory loss in Alzheimer disease. However, how these toxins are built up in the brain is not understood. In this study we investigate whether impairments of insulin and insulin-like growth factor-1 (IGF-1) receptors play a role in aggregation of Abeta. Using primary neuronal culture and immortal cell line models, we show that expression of normal insulin or IGF-1 receptors confers cells with abilities to reduce exogenously applied Abeta oligomers (also known as ADDLs) to monomers. In contrast, transfection of malfunctioning human insulin receptor mutants, identified originally from patient with insulin resistance syndrome, or inhibition of insulin and IGF-1 receptors via pharmacological reagents increases ADDL levels by exacerbating their aggregation. In healthy cells, activation of insulin and IGF-1 receptor reduces the extracellular ADDLs applied to cells via seemingly the insulin-degrading enzyme activity. Although insulin triggers ADDL internalization, IGF-1 appears to keep ADDLs on the cell surface. Nevertheless, both insulin and IGF-1 reduce ADDL binding, protect synapses from ADDL synaptotoxic effects, and prevent the ADDL-induced surface insulin receptor loss. Our results suggest that dysfunctions of brain insulin and IGF-1 receptors contribute to Abeta aggregation and subsequent synaptic loss.
Collapse
Affiliation(s)
- Wei-Qin Zhao
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Ren M, Zhong X, Ma CY, Sun Y, Guan QB, Cui B, Guo J, Wang H, Gao L, Zhao JJ. Insulin-like growth factor-1 promotes cell cycle progression via upregulation of cyclin D1 expression through the phosphatidylinositol 3-kinase/nuclear factor-kappaB signaling pathway in FRTL thyroid cells. Acta Pharmacol Sin 2009; 30:113-9. [PMID: 19060913 DOI: 10.1038/aps.2008.8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM Insulin-like growth factor-1 (IGF-1) is an important hypertrophic and cell cycle progression factor for a number of cell types. It has been proven that IGF-1 is involved in the regulation of thyroid proliferation and cell cycle progression; however, the exact mechanism of this regulation has not been fully elucidated. In the present study, we investigated the effect of IGF-1 on the expression of cyclin D1, an important cell cycle regulatory protein, and a signaling pathway involved in IGF-1's effect on cyclinD1 expression in FRTL thyroid cells. METHODS FRTL thyroid cells were treated with IGF-1 or vector control for 24 h. As appropriate to individual experiments, a phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, and/or a nuclear factor-kappaB (NF-kappaB) inhibitor, BAY11-7082, were added 1 h prior to IGF-1 treatment. Western blotting was used to detect cyclin D1 protein expression. Immunofluorescence was performed to analyze the expression of IkappaBalpha, an NF-kappaB inhibitory protein. Cell cycle analysis was performed by fluorescence activated cell sorting (FACS). RESULTS IGF-1 increased the cyclin D1 expression in thyroid cells. This increase was blocked by pretreatment with LY294002 or BAY11-7082. Further studies showed that IGF-1 specifically induced NF-kappaB activity. Treatment with IGF-1 could accelerate cell cycle progression from G(0)/G(1) to S phase, whereas this progression was inhibited by the presence of LY294002 or BAY11-7082. CONCLUSION In summary, the results of the present study show that in FRTL cells, IGF-1 promotes cell cycle progression via an upregulation of cyclin D1 expression, at least partially through the PI3K/NF-kappaB signaling pathway.
Collapse
|
17
|
Wu S, Fadoju D, Rezvani G, De Luca F. Stimulatory effects of insulin-like growth factor-I on growth plate chondrogenesis are mediated by nuclear factor-kappaB p65. J Biol Chem 2008; 283:34037-44. [PMID: 18922796 DOI: 10.1074/jbc.m803754200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Insulin-like growth factor-I (IGF-I) is an important regulator of endochondral ossification. However, little is known about the signaling pathways activated by IGF-I in growth plate chondrocytes. We have previously shown that NF-kappaB-p65 facilitates growth plate chondrogenesis. In this study, we first cultured rat metatarsal bones with IGF-I and/or pyrrolidine dithiocarbamate (PDTC), a known NF-kappaB inhibitor. The IGF-I-mediated stimulation of metatarsal growth and growth plate chondrogenesis was neutralized by PDTC. In rat growth plate chondrocytes, IGF-I induced NF-kappaB-p65 nuclear translocation. The inhibition of NF-kappaB-p65 expression and activity (by p65 short interfering RNA and PDTC, respectively) in chondrocytes reversed the IGF-I-mediated induction of cell proliferation and differentiation and the IGF-I-mediated prevention of cell apoptosis. Moreover, the inhibition of the phosphatidylinositol 3-kinase and Akt abolished the effects of IGF-I on NF-kappaB activation. In conclusion, our findings indicate that IGF-I stimulates growth plate chondrogenesis by activating NF-kappaB-p65 in chondrocytes.
Collapse
Affiliation(s)
- Shufang Wu
- Section of Endocrinology and Diabetes, St. Christopher's Hospital for Children, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania 19134, USA
| | | | | | | |
Collapse
|
18
|
Rio MJD, Velez-Pardo C. Paraquat induces apoptosis in human lymphocytes: protective and rescue effects of glucose, cannabinoids and insulin-like growth factor-1. Growth Factors 2008; 26:49-60. [PMID: 18365879 DOI: 10.1080/08977190801984205] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In order to establish causal or protective treatments for Parkinson's disease (PD), it is necessary to identify the cascade of deleterious events that lead to the dysfunction and death of dopaminergic neurons. Paraquat (PQ) is a pesticide used as xenobiotic compound to model PD. However, the mechanism(s) of PQ-induced cell death and the mechanism(s) of cytoprotection in a single cell model are still unknown. In this study, lymphocytes were treated with (0.1-1 mM) PQ. Apoptotic morphology was assessed with acridine orange/ethidium bromide staining. Further evaluation included (i) superoxide radicals, reflected by nitroblue tetrazolium reduction to formazan, (ii) the production of hydrogen peroxide, reflected by rhodamine-positive fluorescent cells, (iii) the generation of hydroxyl radicals, reflected by dimethylsulfoxide and melatonin ( radical)OH scavengers, (iv) activation and/or translocation of NF-kappaB, p53 and c-Jun transcription factors showed by immunocytochemical staining, and by ammonium pyrrolidinedithiocarbamate, pifithrin-alpha and SP600125 inhibition and (V) caspase-3 activation, reflected by caspase Ac-DEVD-cho inhibition. To elucidate the mechanism of cytoprotection, lymphocytes were treated with PQ in the presence of cannabinoids, insulin-like growth factor-1 and glucose. We provide evidence that PQ induces apoptosis in lymphocytes in a concentration- and time-dependent fashion by an oxidative stress mechanism involving O(2)( radical - ), H(2)O(2)/(( radical)OH) generation, simultaneous activation of NF-kappaB/p53/c-Jun transcription factors, mitochondrial depolarization and caspase-3 activation leading to morphological apoptosis. Moreover, dying lymphocytes are protected and rescued from PQ noxious stimuli by direct antioxidant effect by cannabinoids, receptor mediated signaling by IGF-1, and/or energetic protection by glucose. It is concluded that PQ-induced apoptosis in lymphocytes by a mechanism involving reactive oxygen species generation, mitochondrial dysfunction, transcriptional factors and caspase-3 activation. However, this cell death routine can be reversed by the action of cannabinoids, IGF-1 and glucose. These data may provide innovating therapeutic strategies to intervene environmentally or genetically susceptible PD population to oxidative stress.
Collapse
Affiliation(s)
- Marlene Jimenez Del Rio
- Department of Internal Medicine, Neuroscience Research Program, School of Medicine, University of Antioquia (UdeA), Medellin, Colombia.
| | | |
Collapse
|
19
|
Hughes PJ, Lee JS, Reiner NE, Brown G. The vitamin D receptor-mediated activation of phosphatidylinositol 3-kinase (PI3Kα) plays a role in the 1α,25-dihydroxyvitamin D3-stimulated increase in steroid sulphatase activity in myeloid leukaemic cell lines. J Cell Biochem 2008; 103:1551-72. [PMID: 17879954 DOI: 10.1002/jcb.21545] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this article we show that 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) stimulates the activity of the class IA phosphatidylinositol 3-kinase PI3Kalpha and its downstream target Akt in HL60, U937 and THP-1 myeloid leukaemic cell lines. Furthermore, we show that the classical nuclear vitamin D receptor (VDR(nuc)) is involved in this activation of the PI3K/Akt signalling in these cell lines. We have previously shown that the activity of steroid sulphatase is stimulated in HL60, U937 and THP-1 myeloid leukaemic cell lines by 1alpha,25(OH)(2)D(3) (Hughes et al., [2001] Biochem J 355:361-371; Hughes et al., [2005] J Cell Biochem 94:1175-1189; Hughes and Brown [2006] J Cell Biochem 98:590-617). In this article we show that the 1alpha,25(OH)(2)D(3)-stimulated increase in signalling via the PI3K/Akt pathway plays a role in the increase in steroid sulphatase activity in the HL60 U937 and THP-1 cell lines. We used a variety of pharmacological and biochemical approaches to show that activation of PI3Kalpha mediates the 1alpha,25(OH)(2)D(3)-stimulated increase in steroid sulphatase activity in myeloid leukaemic cells. We also show that the PI3K/Akt dependent activation of NF-kappaB plays a role in the 1alpha,25(OH)(2)D(3)-stimulated increase in steroid sulphatase activity in myeloid leukaemic cells.
Collapse
Affiliation(s)
- Philip J Hughes
- Division of Immunity and Infection, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | |
Collapse
|
20
|
Clioquinol inhibits peroxide-mediated toxicity through up-regulation of phosphoinositol-3-kinase and inhibition of p53 activity. Int J Biochem Cell Biol 2008; 40:1030-42. [DOI: 10.1016/j.biocel.2007.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 11/06/2007] [Accepted: 11/09/2007] [Indexed: 01/22/2023]
|
21
|
Abstract
Apoptosis mediates the precise and programmed natural death of neurons and is a physiologically important process in neurogenesis during maturation of the central nervous system. However, premature apoptosis and/or an aberration in apoptosis regulation is implicated in the pathogenesis of neurodegeneration, a multifaceted process that leads to various chronic disease states, such as Alzheimer's (AD), Parkinson's (PD), Huntington's (HD) diseases, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), and diabetic encephalopathy. The current review focuses on two major areas (a) the fundamentals of apoptosis, which includes elements of the apoptotic machinery, apoptosis inducers, and emerging concepts in apoptosis research, and (b) apoptotic involvement in neurodegenerative disorders, neuroprotective treatment strategies/modalities, and the mechanisms of, and signaling in, neuronal apoptosis. Current and new experimental models for apoptosis research in neurodegenerative diseases are also discussed.
Collapse
Affiliation(s)
- Masahiro Okouchi
- Department of Internal Medicine and Bioregulation, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | |
Collapse
|