1
|
Degli Esposti L, Squitieri D, Fusacchia C, Bassi G, Torelli R, Altamura D, Manicone E, Panseri S, Adamiano A, Giannini C, Montesi M, Bugli F, Iafisco M. Bioinspired oriented calcium phosphate nanocrystal arrays with bactericidal and osteogenic properties. Acta Biomater 2024; 186:470-488. [PMID: 39117114 DOI: 10.1016/j.actbio.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The global diffusion of antibiotic resistance poses a severe threat to public health. Addressing antibiotic-resistant infections requires innovative approaches, such as antibacterial nanostructured surfaces (ANSs). These surfaces, featuring ordered arrays of nanostructures, exhibit the ability to kill bacteria upon contact. However, most currently developed ANSs utilize bioinert materials, lacking bioactivity crucial for promoting tissue regeneration, particularly in the context of bone infections. This study introduces ANSs composed of bioactive calcium phosphate nanocrystals. Two distinct ANSs were created through a biomineralization-inspired growth of amorphous calcium phosphate (ACP) precursors. The ANSs demonstrated efficient antibacterial properties against both Gram-negative (P. aeruginosa) and Gram-positive (S. aureus) antibiotic resistant bacteria, with up to 75 % mortality in adhered bacteria after only 4 h of contact. Notably, the ANS featuring thinner and less oriented nano-needles exhibited superior efficacy attributed to simultaneous membrane rupturing and oxidative stress induction. Moreover, the ANSs facilitate the proliferation of mammalian cells, enhancing adhesion, spreading, and reducing oxidative stress. The ANSs displayed also significant bioactivity towards human mesenchymal stem cells, promoting colonization and inducing osteogenic differentiation. Specifically, the ANS with thicker and more ordered nano-needles demonstrated heightened effects. In conclusion, ANSs introduced in this work have the potential to serve as foundation for developing bone graft materials capable of eradicate site infections while concurrently stimulating bone regeneration. STATEMENT OF SIGNIFICANCE: Nanostructured surfaces with antibacterial properties through a mechano-bactericidal mechanism have shown significant potential in fighting antibiotic resistance. However, these surfaces have not been fabricated with bioactive materials necessary for developing devices that are both antibacterial and able to stimulate tissue regeneration. This study demonstrates the feasibility of creating nanostructured surfaces of ordered calcium phosphate nano-needles through a biomineralization-inspired growth. These surfaces exhibit dual functionality, serving as effective bactericidal agents against Gram-negative and Gram-positive antibiotic-resistant bacteria while also promoting the proliferation of mammalian cells and inducing osteogenic differentiation of human mesenchymal stem cells. Consequently, this approach holds promise in the context of bone infections, introducing innovative nanostructured surfaces that could be utilized in the development of antimicrobial and osteogenic grafts.
Collapse
Affiliation(s)
- Lorenzo Degli Esposti
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Damiano Squitieri
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Camilla Fusacchia
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy; Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Via delle Scienze 11/A, 43124, Parma (PR), Italy
| | - Giada Bassi
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy; Department of Neuroscience, Imaging and Clinical Science. University of G. d'Annunzio, Via dei Vestini 31, 66100, Chieti, Italy
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Davide Altamura
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Erika Manicone
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Via Amendola 122/O, 70126 Bari, Italy; Dipartimento di Chimica, Università degli studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Silvia Panseri
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Alessio Adamiano
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Cinzia Giannini
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Monica Montesi
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
| | - Michele Iafisco
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy.
| |
Collapse
|
2
|
Moll M, Scheurle A, Nawaz Q, Walker T, Kunisch E, Renkawitz T, Boccaccini AR, Westhauser F. Osteogenic and angiogenic potential of molybdenum-containing mesoporous bioactive glass nanoparticles: An ionic approach to bone tissue engineering. J Trace Elem Med Biol 2024; 86:127518. [PMID: 39236559 DOI: 10.1016/j.jtemb.2024.127518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Biomaterials intended for application in bone tissue engineering (BTE) ideally stimulate osteogenesis and angiogenesis simultaneously, as both mechanisms are of critical importance for successful bone regeneration. Mesoporous bioactive glass nanoparticles (MBGNs) can be tailored towards specific biological needs, for example by addition of ions like Molybdenum (Mo). While Mo has been shown to enhance osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (BMSCs) as well as their ability to form and mature a primitive osseous extracellular matrix (ECM), there are contradictory findings regarding its impact on angiogenesis. In this study, the effects of Mo-MBGNs (mol%: 70 SiO2, 25 CaO, 5 MoO3) on viability, proliferation, osteogenic differentiation, ECM formation and angiogenic response of BMSCs were compared to undoped MBGNs (in mol%: 70 SiO2, 30 CaO) and a control group of BMSCs. Furthermore, a human umbilical vein endothelial cells tube formation assay and a chorioallantoic membrane-assay using fertilized chicken eggs were used to analyze angiogenic properties. Mo-MBGNs were cytocompatible and promoted the proliferation of BMSCs. Furthermore, Mo-MBGNs showed promising osteogenic properties as they enhanced osteogenic differentiation, ECM formation and maturation as well as the gene expression and protein production of relevant osteogenic factors in BMSCs. However, despite the promising outcome on osteogenic properties, the addition of Mo to MBGNs resulted in anti-angiogenic effects. Due to the high relevance of vascularization in-vivo, the anti-angiogenic properties of Mo-MBGNs might hamper their osteogenic properties and therefore might restrict their performance in BTE applications. These limitations can be overcome by the addition of ions with distinct pro-angiogenic properties to the Mo-MBGNs-composition. Due to their promising osteogenic properties, Mo-MBGNs constitute a suitable basis for further research in the field of ionic (growth factor free) BTE.
Collapse
Affiliation(s)
- M Moll
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - A Scheurle
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Q Nawaz
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - T Walker
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - E Kunisch
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - T Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - A R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany.
| | - F Westhauser
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
3
|
Scheurle A, Kunisch E, Boccaccini AR, Walker T, Renkawitz T, Westhauser F. Boric acid and Molybdenum trioxide synergistically stimulate osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. J Trace Elem Med Biol 2024; 83:127405. [PMID: 38325181 DOI: 10.1016/j.jtemb.2024.127405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
INTRODUCTION Metals and their metal ions have been shown to exhibit certain biological functions that make them attractive for use in biomaterials, for example in bone tissue engineering (BTE) applications. Recent data shows that Molybdenum (Mo) is a potent inducer of osteogenic differentiation in human bone marrow-derived mesenchymal stromal cells (BMSCs). On the other hand, while boron (B) has been shown to enhance vascularization in BTE applications, its impact on osteogenic differentiation is volatile: while improved osteogenic differentiation has been described, other data show that B might slow down osteogenic differentiation or reduce the calcification of the extracellular matrix (ECM) when applied in higher doses. Still, the combination of pro-osteogenic Mo and pro-angiogenic B is certainly attractive in the context of biomaterials intended for the use in BTE. METHODS Therefore, the combined effect of molybdenum trioxide and boric acid at different ratios was investigated in this study to evaluate the effects on the viability, proliferation, osteogenic differentiation, ECM production and maturation of BMSCs. RESULTS Mo ions proved to be stronger osteoinductive compared to B, in fact, while some osteogenic differentiation markers were downregulated in the presence of B, the presence of Mo provided compensation. The combined application of B and Mo indicated a combination of individual effects, partially even enhancing the expected combined performance of the single stimulations. CONCLUSIONS The combination of B and Mo might be beneficial for BTE applications since the limited osteogenic properties of B can be compensated by Mo. Furthermore, since B is known to be pro-angiogenic, the combination of both substances may synergistically lead to improved vascularization and bone regeneration. Future studies should assess the angiogenic performance of this combination in greater detail.
Collapse
Affiliation(s)
- A Scheurle
- Department of Orthopedics, Heidelberg University Hospital, Heidelberg, Germany
| | - E Kunisch
- Department of Orthopedics, Heidelberg University Hospital, Heidelberg, Germany
| | - A R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - T Walker
- Department of Orthopedics, Heidelberg University Hospital, Heidelberg, Germany
| | - T Renkawitz
- Department of Orthopedics, Heidelberg University Hospital, Heidelberg, Germany
| | - F Westhauser
- Department of Orthopedics, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
4
|
Goker M, Derici US, Gokyer S, Parmaksiz MG, Kaya B, Can A, Yilgor P. Spatial Growth Factor Delivery for 3D Bioprinting of Vascularized Bone with Adipose-Derived Stem/Stromal Cells as a Single Cell Source. ACS Biomater Sci Eng 2024; 10:1607-1619. [PMID: 38416687 PMCID: PMC10934245 DOI: 10.1021/acsbiomaterials.3c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Encapsulating multiple growth factors within a scaffold enhances the regenerative capacity of engineered bone grafts through their localization and controls the spatiotemporal release profile. In this study, we bioprinted hybrid bone grafts with an inherent built-in controlled growth factor delivery system, which would contribute to vascularized bone formation using a single stem cell source, human adipose-derived stem/stromal cells (ASCs) in vitro. The strategy was to provide precise control over the ASC-derived osteogenesis and angiogenesis at certain regions of the graft through the activity of spatially positioned microencapsulated BMP-2 and VEGF within the osteogenic and angiogenic bioink during bioprinting. The 3D-bioprinted vascularized bone grafts were cultured in a perfusion bioreactor. Results proved localized expression of osteopontin and CD31 by the ASCs, which was made possible through the localized delivery activity of the built-in delivery system. In conclusion, this approach provided a methodology for generating off-the-shelf constructs for vascularized bone regeneration and has the potential to enable single-step, in situ bioprinting procedures for creating vascularized bone implants when applied to bone defects.
Collapse
Affiliation(s)
- Meric Goker
- Department
of Biomedical Engineering, Ankara University
Faculty of Engineering, Ankara 06830, Turkey
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Utku Serhat Derici
- Department
of Biomedical Engineering, Ankara University
Faculty of Engineering, Ankara 06830, Turkey
| | - Seyda Gokyer
- Department
of Biomedical Engineering, Ankara University
Faculty of Engineering, Ankara 06830, Turkey
| | - Mehmet Goktug Parmaksiz
- Department
of Biomedical Engineering, Ankara University
Faculty of Engineering, Ankara 06830, Turkey
| | - Burak Kaya
- Department
of Plastic, Reconstructive and Aesthetic Surgery, Ankara University Faculty of Medicine, Ankara 06620, Turkey
- Ankara
University Medical Design Research and Application Center, MEDITAM, Ankara 06520, Turkey
| | - Alp Can
- Department
of Histology and Embryology, Ankara University
Faculty of Medicine, Ankara 06230, Turkey
| | - Pinar Yilgor
- Department
of Biomedical Engineering, Ankara University
Faculty of Engineering, Ankara 06830, Turkey
- Ankara
University Medical Design Research and Application Center, MEDITAM, Ankara 06520, Turkey
| |
Collapse
|
5
|
Tatullo M, Piattelli A, Ruggiero R, Marano RM, Iaculli F, Rengo C, Papallo I, Palumbo G, Chiesa R, Paduano F, Spagnuolo G. Functionalized magnesium alloys obtained by superplastic forming process retain osteoinductive and antibacterial properties: An in-vitro study. Dent Mater 2024; 40:557-562. [PMID: 38326212 DOI: 10.1016/j.dental.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVES This study aimed to investigate the biocompatibility, osteogenic and antibacterial activity of biomedical devices based on Magnesium (Mg) Alloys manufactured by Superplastic Forming process (SPF) and subjected to Hydrothermal (HT) and Sol-Gel Treatment (Sol-Gel). METHODS Mg-SPF devices subjected to Hydrothermal (Mg-SPF+HT) and Sol-Gel Treatment (Mg-SPF+Sol-Gel) were investigated. The biocompatibility of Mg-SPF+Sol-Gel and Mg-SPF+HT devices was observed by indirect and direct cytotoxicity assays, whereas the colonization of sample surfaces was assessed by confocal microscopy. qRT-PCR analysis and microbial growth curve analyses were employed to evaluate the osteogenic and antibacterial activity of both SPF-Mg treated devices, respectively. RESULTS Mg-SPF+HT and Mg-SPF+Sol-Gel showed a high degree of biocompatibility. Analysis of mRNA expression of osteogenic genes in cells cultured on Mg-treated devices revealed a significant upregulation of the expression levels of BMP2 and Runx-2. Furthermore, the bacterial growth in strains developed in contact with both the Mg-SPF+HT and Mg-SPF+Sol-Gel devices was lower than that observed in the control. SIGNIFICANCE Hydrothermal and Sol-Gel Treatments of Mg alloys obtained through the SPF process demonstrated bioactive, osteogenic and antibacterial activity, offering a promising alternative to conventional Mg-based devices. The obtained Mg-based materials may have the potential to enhance the tunability of temporary devices in maxillary reconstruction, eliminating the need for second surgeries, and ensuring a good bone reconstruction and a reduced implant failure rate due to bacterial infections.
Collapse
Affiliation(s)
- Marco Tatullo
- Department of Translational Biomedicine and Neuroscience, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Roberta Ruggiero
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy
| | - Rosa Maria Marano
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy
| | - Flavia Iaculli
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Carlo Rengo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Ida Papallo
- CeSMA, University of Naples Federico II, Corso Nicolangelo Protopisani, 80146 Naples, Italy
| | - Gianfranco Palumbo
- Department of Mechanics, Polytechnic University of Bari, 70124 Bari, Italy
| | - Roberto Chiesa
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, 20135 Milan, Italy
| | - Francesco Paduano
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
6
|
Westhauser F, Arango-Ospina M, Hupa L, Renkawitz T, Boccaccini AR, Kunisch E. A comparative analysis of the cytocompatibility, protein adsorption, osteogenic and angiogenic properties of the 45S5- and S53P4-bioactive glass compositions. Biomed Mater 2024; 19:025027. [PMID: 38266275 DOI: 10.1088/1748-605x/ad2210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Despite their long history of application in orthopedics, the osteogenic and angiogenic properties as well as the cytocompatibility and protein adsorption of the 45S5- (in wt%: 45.0 SiO2, 24.5 Na2O, 24.5 CaO, 6.0 P2O5) and S53P4- (in wt%: 53.0 SiO2, 23.0 Na2O, 20.0 CaO, 4.0 P2O5) bioactive glass (BG) compositions have not yet been directly compared in one and the same experimental setting. In this study, the influence of morphologically equal granules of both BGs on proliferation, viability, osteogenic differentiation and angiogenic response of human bone-marrow-derived mesenchymal stromal cells (BMSCs) was assessed. Furthermore, their impact on vascular tube formation and adsorption of relevant proteins was evaluated. Both BGs showed excellent cytocompatibility and stimulated osteogenic differentiation of BMSCs. The 45S5-BG showed enhanced stimulation of bone morphogenic protein 2 (BMP2) gene expression and protein production compared to S53P4-BG. While gene expression and protein production of vascular endothelial growth factor (VEGF) were stimulated, both BGs had only limited influence on tubular network formation. 45S5-BG adsorbed a higher portion of proteins, namely BMP2 and VEGF, on its surface. In conclusion, both BGs show favorable properties with slight advantages for 45S5-BG. Since protein adsorption on BG surfaces is important for their biological performance, the composition of the proteome formed by osteogenic cells cultured on BGs should be analyzed in order to gain a deeper understanding of the mechanisms that are responsible for BG-mediated stimulation of osteogenic differentiation.
Collapse
Affiliation(s)
- Fabian Westhauser
- Department of Orthopedics, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| | - Tobias Renkawitz
- Department of Orthopedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Elke Kunisch
- Department of Orthopedics, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
7
|
Tsitlakidis S, Hohenbild F, Saur M, Moghaddam A, Kunisch E, Renkawitz T, Gonzalo de Juan I, Westhauser F. Reduced Sodium Portions Favor Osteogenic Properties and Cytocompatibility of 45S5-Based Bioactive Glass Particles. Biomimetics (Basel) 2023; 8:472. [PMID: 37887603 PMCID: PMC10604502 DOI: 10.3390/biomimetics8060472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Besides its favorable biological properties, the release of sodium (Na) from the well-known 45S5-bioactive glass (BG) composition (in mol%: 46.1, SiO2, 24.5 CaO, 24.5 Na2O, 6.0 P2O5) can hamper its cytocompatibility. In this study, particles of Na-reduced variants of 45S5-BG were produced in exchange for CaO and P2O5 via the sol-gel-route resulting in Na contents of 75%, 50%, 25% or 0% of the original composition. The release of ions from the BGs as well as their impact on the cell environment (pH values), viability and osteogenic differentiation (activity of alkaline phosphatase (ALP)), the expression of osteopontin and osteocalcin in human bone-marrow-derived mesenchymal stromal cells in correlation to the Na-content and ion release of the BGs was assessed. The release of Na-ions increased with increasing Na-content in the BGs. With decreasing Na content, the viability of cells incubated with the BGs increased. The Na-reduced BGs showed elevated ALP activity and a pro-osteogenic stimulation with accelerated osteopontin induction and a pronounced upregulation of osteocalcin. In conclusion, the reduction in Na-content enhances the cytocompatibility and improves the osteogenic properties of 45S5-BG, making the Na-reduced variants of 45S5-BG promising candidates for further experimental consideration.
Collapse
Affiliation(s)
- Stefanos Tsitlakidis
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.T.); (M.S.); (E.K.)
| | - Frederike Hohenbild
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.T.); (M.S.); (E.K.)
| | - Merve Saur
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.T.); (M.S.); (E.K.)
| | - Arash Moghaddam
- PrivatÄrztliches Zentrum Aschaffenburg, Frohsinnstraße 12, 63739 Aschaffenburg, Germany;
| | - Elke Kunisch
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.T.); (M.S.); (E.K.)
| | - Tobias Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.T.); (M.S.); (E.K.)
| | - Isabel Gonzalo de Juan
- Institut für Materialwissenschaft, Technische Universität Darmstadt, Otto-Berndt-Straße 3, 64287 Darmstadt, Germany
| | - Fabian Westhauser
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.T.); (M.S.); (E.K.)
| |
Collapse
|
8
|
Kunisch E, Fiehn LA, Saur M, Arango-Ospina M, Merle C, Hagmann S, Stiller A, Hupa L, Renkawitz T, Boccaccini AR, Westhauser F. A comparative in vitro and in vivo analysis of the biological properties of the 45S5-, 1393-, and 0106-B1-bioactive glass compositions using human bone marrow-derived stromal cells and a rodent critical size femoral defect model. BIOMATERIALS ADVANCES 2023; 153:213521. [PMID: 37356285 DOI: 10.1016/j.bioadv.2023.213521] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/27/2023]
Abstract
Since the introduction of the 45S5-bioactive glass (BG), numerous new BG compositions have been developed. Compared to the 45S5-BG, 1393-BG shows favorable processing properties due to its low crystallization tendency and the 1393-BG-based borosilicate 0106-B1-BG exhibits improved angiogenic properties due to its boron content. Despite their close (chemical) relationship, the biological properties of the mentioned BG composition have not yet been comparatively examined. In this study, the effects of the BGs on proliferation, viability, osteogenic differentiation, and angiogenic factor production of human bone marrow-derived mesenchymal stromal cells were assessed. Scaffolds made of the BGs were introduced in a critical-sized femur defect model in rats in order to analyze their impact on bone defect regeneration. In vitro, 1393-BG and 0106-B1-BG outperformed 45S5-BG with regard to cell proliferation and viability. 1393-BG enhanced osteogenic differentiation; 0106-B1-BG promoted angiogenic factor production. In vivo, 0106-B1-BG and 45S5-BG outperformed 1393-BG in terms of angiogenic and osteoclastic response resulting in improved bone regeneration. In conclusion, the biological properties of BGs can be significantly modified by tuning their composition. Demonstrating favorable processing properties and an equally strong in vivo bone regeneration potential as 45S5-BG, 0106-B1-BG qualifies as a basis to incorporate other bioactive ions to improve its biological properties.
Collapse
Affiliation(s)
- Elke Kunisch
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Linn Anna Fiehn
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Merve Saur
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Marcela Arango-Ospina
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Christian Merle
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; Joint Replacement Centre, Orthopaedic Surgery Paulinenhilfe, Diakonie-Klinikum Stuttgart, Rosenbergstraße 38, 70176 Stuttgart, Germany
| | - Sébastien Hagmann
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Adrian Stiller
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - Tobias Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Fabian Westhauser
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| |
Collapse
|
9
|
The Local Release of Teriparatide Incorporated in 45S5 Bioglass Promotes a Beneficial Effect on Osteogenic Cells and Bone Repair in Calvarial Defects in Ovariectomized Rats. J Funct Biomater 2023; 14:jfb14020093. [PMID: 36826892 PMCID: PMC9964758 DOI: 10.3390/jfb14020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
With the increase in the population's life expectancy, there has also been an increase in the rate of osteoporosis, which has expanded the search for strategies to regenerate bone tissue. The ultrasonic sonochemical technique was chosen for the functionalization of the 45S5 bioglass. The samples after the sonochemical process were divided into (a) functionalized bioglass (BG) and (b) functionalized bioglass with 10% teriparatide (BGT). Isolated mesenchymal cells (hMSC) from femurs of ovariectomized rats were differentiated into osteoblasts and submitted to in vitro tests. Bilateral ovariectomy (OVX) and sham ovariectomy (Sham) surgeries were performed in fifty-five female Wistar rats. After a period of 60 days, critical bone defects of 5.0 mm were created in the calvaria of these animals. For biomechanical evaluation, critical bone defects of 3.0 mm were performed in the tibias of some of these rats. The groups were divided into the clot (control) group, the BG group, and the BGT group. After the sonochemical process, the samples showed modified chemical topographic and morphological characteristics, indicating that the surface was chemically altered by the functionalization of the particles. The cell environment was conducive to cell adhesion and differentiation, and the BG and BGT groups did not show cytotoxicity. In addition, the experimental groups exhibited characteristics of new bone formation with the presence of bone tissue in both periods, with the BGT group and the OVX group statistically differing from the other groups (p < 0.05) in both periods. Local treatment with the drug teriparatide in ovariectomized animals promoted positive effects on bone tissue, and longitudinal studies should be carried out to provide additional information on the biological performance of the mutual action between the bioglass and the release of the drug teriparatide.
Collapse
|
10
|
Saul D, Khosla S. Fracture Healing in the Setting of Endocrine Diseases, Aging, and Cellular Senescence. Endocr Rev 2022; 43:984-1002. [PMID: 35182420 PMCID: PMC9695115 DOI: 10.1210/endrev/bnac008] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/19/2022]
Abstract
More than 2.1 million age-related fractures occur in the United States annually, resulting in an immense socioeconomic burden. Importantly, the age-related deterioration of bone structure is associated with impaired bone healing. Fracture healing is a dynamic process which can be divided into four stages. While the initial hematoma generates an inflammatory environment in which mesenchymal stem cells and macrophages orchestrate the framework for repair, angiogenesis and cartilage formation mark the second healing period. In the central region, endochondral ossification favors soft callus development while next to the fractured bony ends, intramembranous ossification directly forms woven bone. The third stage is characterized by removal and calcification of the endochondral cartilage. Finally, the chronic remodeling phase concludes the healing process. Impaired fracture healing due to aging is related to detrimental changes at the cellular level. Macrophages, osteocytes, and chondrocytes express markers of senescence, leading to reduced self-renewal and proliferative capacity. A prolonged phase of "inflammaging" results in an extended remodeling phase, characterized by a senescent microenvironment and deteriorating healing capacity. Although there is evidence that in the setting of injury, at least in some tissues, senescent cells may play a beneficial role in facilitating tissue repair, recent data demonstrate that clearing senescent cells enhances fracture repair. In this review, we summarize the physiological as well as pathological processes during fracture healing in endocrine disease and aging in order to establish a broad understanding of the biomechanical as well as molecular mechanisms involved in bone repair.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37073 Goettingen, Germany
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
11
|
Zhao Y, Richardson K, Yang R, Bousraou Z, Lee YK, Fasciano S, Wang S. Notch signaling and fluid shear stress in regulating osteogenic differentiation. Front Bioeng Biotechnol 2022; 10:1007430. [PMID: 36277376 PMCID: PMC9581166 DOI: 10.3389/fbioe.2022.1007430] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoporosis is a common bone and metabolic disease that is characterized by bone density loss and microstructural degeneration. Human bone marrow-derived mesenchymal stem cells (hMSCs) are multipotent progenitor cells with the potential to differentiate into various cell types, including osteoblasts, chondrocytes, and adipocytes, which have been utilized extensively in the field of bone tissue engineering and cell-based therapy. Although fluid shear stress plays an important role in bone osteogenic differentiation, the cellular and molecular mechanisms underlying this effect remain poorly understood. Here, a locked nucleic acid (LNA)/DNA nanobiosensor was exploited to monitor mRNA gene expression of hMSCs that were exposed to physiologically relevant fluid shear stress to examine the regulatory role of Notch signaling during osteogenic differentiation. First, the effects of fluid shear stress on cell viability, proliferation, morphology, and osteogenic differentiation were investigated and compared. Our results showed shear stress modulates hMSCs morphology and osteogenic differentiation depending on the applied shear and duration. By incorporating this LNA/DNA nanobiosensor and alkaline phosphatase (ALP) staining, we further investigated the role of Notch signaling in regulating osteogenic differentiation. Pharmacological treatment is applied to disrupt Notch signaling to investigate the mechanisms that govern shear stress induced osteogenic differentiation. Our experimental results provide convincing evidence supporting that physiologically relevant shear stress regulates osteogenic differentiation through Notch signaling. Inhibition of Notch signaling mediates the effects of shear stress on osteogenic differentiation, with reduced ALP enzyme activity and decreased Dll4 mRNA expression. In conclusion, our results will add new information concerning osteogenic differentiation of hMSCs under shear stress and the regulatory role of Notch signaling. Further studies may elucidate the mechanisms underlying the mechanosensitive role of Notch signaling in stem cell differentiation.
Collapse
Affiliation(s)
- Yuwen Zhao
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
- Department of Bioengineering, Lehigh University, Bethlehem, PA, United States
| | - Kiarra Richardson
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Rui Yang
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Zoe Bousraou
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
| | - Yoo Kyoung Lee
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
| | - Samantha Fasciano
- Department of Cellular and Molecular Biology, University of New Haven, West Haven, CT, United States
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
- *Correspondence: Shue Wang,
| |
Collapse
|
12
|
Liu J, Tan Z, Jia Y, Shi X, Hou R, Liu J, Luo D, Fu X, Yang T, Wang X. Co‐delivery of tauroursodeoxycholic acid and dexamethasone using electrospun ultrafine fibers to induce early coupled angiogenesis and osteogenic differentiation. J Appl Polym Sci 2022. [DOI: 10.1002/app.53173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Junyu Liu
- School and Hospital of Stomatology Shanxi Medical University Taiyuan China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Shanxi Medical University Taiyuan China
| | - Ziwei Tan
- School and Hospital of Stomatology Shanxi Medical University Taiyuan China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Shanxi Medical University Taiyuan China
| | - Yongliang Jia
- School and Hospital of Stomatology Shanxi Medical University Taiyuan China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Shanxi Medical University Taiyuan China
| | - Xiaotong Shi
- School and Hospital of Stomatology Shanxi Medical University Taiyuan China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Shanxi Medical University Taiyuan China
| | - Ruxia Hou
- School and Hospital of Stomatology Shanxi Medical University Taiyuan China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Shanxi Medical University Taiyuan China
| | - Jiajia Liu
- School and Hospital of Stomatology Shanxi Medical University Taiyuan China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Shanxi Medical University Taiyuan China
| | - Dongmei Luo
- School and Hospital of Stomatology Shanxi Medical University Taiyuan China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Shanxi Medical University Taiyuan China
| | - Xinyu Fu
- School and Hospital of Stomatology Shanxi Medical University Taiyuan China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Shanxi Medical University Taiyuan China
| | - Tingting Yang
- School and Hospital of Stomatology Shanxi Medical University Taiyuan China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Shanxi Medical University Taiyuan China
| | - Xiangyu Wang
- School and Hospital of Stomatology Shanxi Medical University Taiyuan China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Shanxi Medical University Taiyuan China
| |
Collapse
|
13
|
Bone Mineralization in Electrospun-Based Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14102123. [PMID: 35632005 PMCID: PMC9146582 DOI: 10.3390/polym14102123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Increasing the demand for bone substitutes in the management of bone fractures, including osteoporotic fractures, makes bone tissue engineering (BTE) an ideal strategy for solving the constant shortage of bone grafts. Electrospun-based scaffolds have gained popularity in BTE because of their unique features, such as high porosity, a large surface-area-to-volume ratio, and their structural similarity to the native bone extracellular matrix (ECM). To imitate native bone mineralization through which bone minerals are deposited onto the bone matrix, a simple but robust post-treatment using a simulated body fluid (SBF) has been employed, thereby improving the osteogenic potential of these synthetic bone grafts. This study highlights recent electrospinning technologies that are helpful in creating more bone-like scaffolds, and addresses the progress of SBF development. Biomineralized electrospun bone scaffolds are also reviewed, based on the importance of bone mineralization in bone regeneration. This review summarizes the potential of SBF treatments for conferring the biphasic features of native bone ECM architectures onto electrospun-based bone scaffolds.
Collapse
|
14
|
Decker S, Arango-Ospina M, Rehder F, Moghaddam A, Simon R, Merle C, Renkawitz T, Boccaccini AR, Westhauser F. In vitro and in ovo impact of the ionic dissolution products of boron-doped bioactive silicate glasses on cell viability, osteogenesis and angiogenesis. Sci Rep 2022; 12:8510. [PMID: 35595847 PMCID: PMC9122978 DOI: 10.1038/s41598-022-12430-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
Due to the pivotal role of angiogenesis in bone regeneration, the angiogenic properties of biomaterials are of high importance since they directly correlate with the biomaterials’ osteogenic potential via ‘angiogenic-osteogenic coupling’ mechanisms. The impact of bioactive glasses (BGs) on vascularization can be tailored by incorporation of biologically active ions such as boron (B). Based on the ICIE16-BG composition (in mol%: 49.5 SiO2, 36.3 CaO, 6.6 Na2O, 1.1 P2O5, 6.6 K2O), three B-doped BGs have been developed (compositions in mol%: 46.5/45.5/41.5 SiO2, 36.3 CaO, 6.6 Na2O, 1.1 P2O5, 6.6 K2O, 3/4/8 B2O3). The influence of B-doping on the viability, cellular osteogenic differentiation and expression of osteogenic and angiogenic marker genes of bone marrow-derived mesenchymal stromal cells (BMSCs) was analyzed by cultivating BMSCs in presence of the BGs’ ionic dissolution products (IDPs). Furthermore, the influence of the IDPs on angiogenesis was evaluated in ovo using a chorioallantoic membrane (CAM) assay. The influence of B-doped BGs on BMSC viability was dose-dependent, with higher B concentrations showing limited negative effects. B-doping led to a slight stimulation of osteogenesis and angiogenesis in vitro. In contrast to that, B-doping significantly enhanced vascularization in ovo, especially in higher concentrations. Differences between the results of the in vitro and in ovo part of this study might be explained via the different importance of vascularization in both settings. The implementation of new experimental models that cover the ‘angiogenic-osteogenic coupling’ mechanisms is highly relevant, for instance via extending the application of the CAM assay from solely angiogenic to angiogenic and osteogenic purposes.
Collapse
Affiliation(s)
- Simon Decker
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - Marcela Arango-Ospina
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058, Erlangen, Germany
| | - Felix Rehder
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - Arash Moghaddam
- Orthopedic and Trauma Surgery, Frohsinnstraße 12, 63739, Aschaffenburg, Germany
| | - Rolf Simon
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - Christian Merle
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - Tobias Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058, Erlangen, Germany
| | - Fabian Westhauser
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany.
| |
Collapse
|
15
|
The Effect of Diabetes Mellitus on IGF Axis and Stem Cell Mediated Regeneration of the Periodontium. Bioengineering (Basel) 2021; 8:bioengineering8120202. [PMID: 34940355 PMCID: PMC8698546 DOI: 10.3390/bioengineering8120202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Periodontitis and diabetes mellitus (DM) are two of the most common and challenging health problems worldwide and they affect each other mutually and adversely. Current periodontal therapies have unpredictable outcome in diabetic patients. Periodontal tissue engineering is a challenging but promising approach that aims at restoring periodontal tissues using one or all of the following: stem cells, signalling molecules and scaffolds. Mesenchymal stem cells (MSCs) and insulin-like growth factor (IGF) represent ideal examples of stem cells and signalling molecules. This review outlines the most recent updates in characterizing MSCs isolated from diabetics to fully understand why diabetics are more prone to periodontitis that theoretically reflect the impaired regenerative capabilities of their native stem cells. This characterisation is of utmost importance to enhance autologous stem cells based tissue regeneration in diabetic patients using both MSCs and members of IGF axis.
Collapse
|
16
|
Ran G, Fang W, Zhang L, Peng Y, Wu A, Li J, Ding X, Zeng S, He Y. Polypeptides IGF-1C and P24 synergistically promote osteogenic differentiation of bone marrow mesenchymal stem cells in vitro through the p38 and JNK signaling pathways. Int J Biochem Cell Biol 2021; 141:106091. [PMID: 34624508 DOI: 10.1016/j.biocel.2021.106091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Insulin-like growth factor-1 (IGF-1) and bone morphogenetic protein 2 (BMP-2) both promote osteogenesis of bone marrow mesenchymal stem cells (BMSCs). IGF-1C, the C domain peptide of IGF-1, and P24, a BMP-2-derived peptide, both have similar biological activities as their parent growth factors. This study aimed to investigate the effects and mechanisms of polypeptides IGF-1C and P24 on the osteogenic differentiation of BMSCs. METHODS The optimum concentrations of IGF-IC and P24 were explored. The effects of the two polypeptides on BMSC proliferation and osteogenic differentiation were examined using a CCK-8 assay, flow cytometry, alkaline phosphatase (ALP) staining, ALP activity assay, alizarin red S staining, qPCR, and Western blotting. In addition, specific pathway inhibitors were utilized to explore whether the p38 and JNK pathways were involved in this process. RESULTS The optimal concentration of both polypeptides was 50 μg/ml. IGF-1C and P24 synergistically promoted BMSC proliferation, increased ALP activity and calcified nodule formation, upregulated the mRNA and protein levels of Osx, Runx2, Ocn, Opn, and Col1a1, and improved the phosphorylation levels of p38 and JNK proteins. Inhibition of the pathways significantly reduced p38 and JNK activation and blocked Runx2 expression while inhibiting ALP activity and calcified nodule formation. CONCLUSIONS These findings suggest that IGF-1C and P24 synergistically promote the osteogenesis of BMSCs through activation of the p38 and JNK signaling pathways.
Collapse
Affiliation(s)
- Gaoying Ran
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wei Fang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lifang Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuting Peng
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Anbiao Wu
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiatong Li
- Department of Oral Pathology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xianglong Ding
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shuguang Zeng
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Yan He
- Skeletal Biology Research Center, Department of Oral Maxillofacial Surgery, Harvard School of Dental Medicine, Boston, 02114 MA, USA
| |
Collapse
|
17
|
Decker S, Kunisch E, Moghaddam A, Renkawitz T, Westhauser F. Molybdenum trioxide enhances viability, osteogenic differentiation and extracellular matrix formation of human bone marrow-derived mesenchymal stromal cells. J Trace Elem Med Biol 2021; 68:126827. [PMID: 34371328 DOI: 10.1016/j.jtemb.2021.126827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Metals and their ions allow specific modifications of the biological properties of bioactive materials that are intended for application in bone tissue engineering. While there is some evidence about the impact of particles derived from orthopedic Cobalt-Chromium-Molybdenum (Co-Cr-Mo) alloys on cells, there is only limited data regarding the influence of the essential trace element Mo and its ions on the viability, osteogenic differentiation as well as on the formation and maturation of the primitive extracellular matrix (ECM) of primary human bone marrow-derived stromal cells (BMSCs) available so far. METHODS In this study, the influence of a wide range of molybdenum (VI) trioxide (MoO3), concentrations on BMSC viability was evaluated via measurement of fluorescein diacetate metabolization. Thereafter, the impact of three non-cytotoxic concentrations of MoO3 on the cellular osteogenic differentiation as well as on ECM formation and maturation of BMSCs was assessed. RESULTS MoO3 had no negative influence on BMSC viability in most tested concentrations, as viability was in fact even enhanced. Only the highest concentration (10 mM) of MoO3 showed cytotoxic effects. Cellular osteogenic differentiation, measured via the marker enzyme alkaline phosphatase was enhanced by the presence of MoO3 in a concentration-dependent manner. Furthermore, MoO3 showed a positive influence on the expression of relevant marker genes for osteogenic differentiation (osteopontin, osteocalcin and type I collagen alpha 1) and on the formation and maturation of the primitive ECM, as measured by collagen deposition and ECM calcification. CONCLUSION MoO3 is considered as an attractive candidate for supplementation in biomaterials and qualifies for further research.
Collapse
Affiliation(s)
- S Decker
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - E Kunisch
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - A Moghaddam
- Orthopedic and Trauma Surgery, Frohsinnstraße 12, 63739, Aschaffenburg, Germany
| | - T Renkawitz
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - F Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany.
| |
Collapse
|
18
|
Hohenbild F, Arango Ospina M, Schmitz SI, Moghaddam A, Boccaccini AR, Westhauser F. An In Vitro Evaluation of the Biological and Osteogenic Properties of Magnesium-Doped Bioactive Glasses for Application in Bone Tissue Engineering. Int J Mol Sci 2021; 22:12703. [PMID: 34884519 PMCID: PMC8657676 DOI: 10.3390/ijms222312703] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 01/16/2023] Open
Abstract
Magnesium (Mg2+) is known to play a crucial role in mineral and matrix metabolism of bone tissue and is thus increasingly considered in the field of bone tissue engineering. Bioactive glasses (BGs) offer the promising possibility of the incorporation and local delivery of therapeutically active ions as Mg2+. In this study, two Mg2+-doped derivatives of the ICIE16-BG composition (49.46 SiO2, 36.27 CaO, 6.6 Na2O, 1.07 P2O5, 6.6 K2O (mol%)), namely 6Mg-BG (49.46 SiO2, 30.27 CaO, 6.6 Na2O, 1.07 P2O5, 6.6 K2O, 6.0 MgO (mol%) and 3Mg-BG (49.46 SiO2, 33.27 CaO, 6.6 Na2O, 1.07 P2O5, 6.6 K2O, 3.0 MgO (mol%)) were examined. Their influence on viability, proliferation and osteogenic differentiation of human mesenchymal stromal cells (MSCs) was explored in comparison to the original ICIE16-BG. All BGs showed good biocompatibility. The Mg2+-doped BGs had a positive influence on MSC viability alongside with inhibiting effects on MSC proliferation. A strong induction of osteogenic differentiation markers was observed, with the Mg2+-doped BGs significantly outperforming the ICIE16-BG regarding the expression of genes encoding for protein members of the osseous extracellular matrix (ECM) at certain observation time points. However, an overall Mg2+-induced enhancement of the expression of genes encoding for ECM proteins could not be observed, possibly due to a too moderate Mg2+ release. By adaption of the Mg2+ release from BGs, an even stronger impact on the expression of genes encoding for ECM proteins might be achieved. Furthermore, other BG-types such as mesoporous BGs might provide a higher local presence of the therapeutically active ions and should therefore be considered for upcoming studies.
Collapse
Affiliation(s)
- Frederike Hohenbild
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (F.H.); (S.I.S.)
| | - Marcela Arango Ospina
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany; (M.A.O.); (A.R.B.)
| | - Sarah I. Schmitz
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (F.H.); (S.I.S.)
| | - Arash Moghaddam
- Orthopedic and Trauma Surgery, Frohsinnstraße 12, 63739 Aschaffenburg, Germany;
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany; (M.A.O.); (A.R.B.)
| | - Fabian Westhauser
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (F.H.); (S.I.S.)
| |
Collapse
|
19
|
Liu H, Han X, Yang H, Cao Y, Zhang C, Du J, Diao S, Fan Z. GREM1 inhibits osteogenic differentiation, senescence and BMP transcription of adipose-derived stem cells. Connect Tissue Res 2021; 62:325-336. [PMID: 32151168 DOI: 10.1080/03008207.2020.1736054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Adipose-derived stem cells (ADSCs) are ideal for cell-based therapies to support bone regeneration. It is vital to understand the critical genes and molecular mechanisms involved in the functional regulation of ADSCs for enhancing bone regeneration. In the present study, we investigated the Gremlin 1 (GREM1) effect on ADSCs osteogenic differentiation and senescence.Materials and methods: The in vitro ADSCs osteogenic differentiation potential was evaluated by determining alkaline phosphatase (ALP) activity, mineralization ability, and the expression of osteogenic markers. Cell senescence is determined by SA-β-gal staining, telomerase assay, and the expression of aging markers.Results: GREM1 overexpression in ADSCs reduced ALP activity and mineralization, inhibited the expression of osteogenic related genes OCN, OPN, DSPP, DMP1, and BSP, and key transcription factors, RUNX2 and OSX. GREM1 knockdown in ADSCs enhanced ALP activity and mineralization, promoted the expression of OCN, OPN, DSPP, DMP1, BSP, RUNX2, and OSX. GREM1 overexpression in ADSCs reduced the percent SA-β-Gal positive cells, P16 and P53 expressions, and increased telomerase activity. GREM1 knockdown in ADSCs increased the percentage of SA-β-Gal positive cells, P16 and P53 expressions, and reduced telomerase activity. Furthermore, GREM1 reduced the mRNA expression levels of BMP2, BMP6, and BMP7.Conclusions: In summary, our findings suggested that GREM1 inhibited ADSCs senescence and osteogenic differentiation and antagonized BMP transcription.
Collapse
Affiliation(s)
- Huina Liu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiao Han
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Haoqing Yang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yangyang Cao
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Chen Zhang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Shu Diao
- Department of Pediatric Dentistry, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Westhauser F, Decker S, Nawaz Q, Rehder F, Wilkesmann S, Moghaddam A, Kunisch E, Boccaccini AR. Impact of Zinc- or Copper-Doped Mesoporous Bioactive Glass Nanoparticles on the Osteogenic Differentiation and Matrix Formation of Mesenchymal Stromal Cells. MATERIALS 2021; 14:ma14081864. [PMID: 33918612 PMCID: PMC8069963 DOI: 10.3390/ma14081864] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022]
Abstract
Mesoporous bioactive glass nanoparticles (MBGNs) have gained relevance in bone tissue engineering, especially since they can be used as vectors for therapeutically active ions like zinc (Zn) or copper (Cu). In this study, the osteogenic properties of the ionic dissolution products (IDPs) of undoped MBGNs (composition in mol%: 70 SiO2, 30 CaO) and MBGNs doped with 5 mol% of either Zn (5Zn-MBGNs) or Cu (5Cu-MBGNs; compositions in mol%: 70 SiO2, 25 CaO, 5 ZnO/CuO) on human bone marrow-derived mesenchymal stromal cells were evaluated. Extracellular matrix (ECM) formation and calcification were assessed, as well as the IDPs’ influence on viability, cellular osteogenic differentiation and the expression of genes encoding for relevant members of the ECM. The IDPs of undoped MBGNs and 5Zn-MBGNs had a comparable influence on cell viability, while it was enhanced by IDPs of 5Cu-MBGNs compared to the other MBGNs. IDPs of 5Cu-MBGNs had slightly positive effects on ECM formation and calcification. 5Zn-MBGNs provided the most favorable pro-osteogenic properties since they increased not only cellular osteogenic differentiation and ECM-related gene expression but also ECM formation and calcification significantly. Future studies should analyze other relevant properties of MBGNs, such as their impact on angiogenesis.
Collapse
Affiliation(s)
- Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.D.); (F.R.); (S.W.); (E.K.)
- Correspondence: (F.W.); (A.R.B.)
| | - Simon Decker
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.D.); (F.R.); (S.W.); (E.K.)
| | - Qaisar Nawaz
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany;
| | - Felix Rehder
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.D.); (F.R.); (S.W.); (E.K.)
| | - Sebastian Wilkesmann
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.D.); (F.R.); (S.W.); (E.K.)
| | - Arash Moghaddam
- Center for Trauma Surgery, Orthopedics and Sports Medicine, ATORG—Aschaffenburg Trauma and Orthopedic Research Group, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany;
| | - Elke Kunisch
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.D.); (F.R.); (S.W.); (E.K.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany;
- Correspondence: (F.W.); (A.R.B.)
| |
Collapse
|
21
|
The Effect of Selenium Nanoparticles on the Osteogenic Differentiation of MC3T3-E1 Cells. NANOMATERIALS 2021; 11:nano11020557. [PMID: 33672352 PMCID: PMC7926403 DOI: 10.3390/nano11020557] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) regulate various functions of cells, including cell death, viability, and differentiation, and nanoparticles influence ROS depending on their size and shape. Selenium is known to regulate various physiological functions, such as cell differentiations and anti-inflammatory functions, and plays an important role in the regulation of ROS as an antioxidant. This study aims to investigate the effect of selenium nanoparticles (SeNPs) on the differentiation of osteogenic MC3T3-E1 cells. After fabrication of SeNPs with a size of 25.3 ± 2.6 nm, and confirmation of its oxidase-like activity, SeNPs were added to MC3T3-E1 cells with or without H2O2: 5~20 μg/mL SeNPs recovered cells damaged by 200 μM H2O2 via the intracellular ROS downregulating role of SeNPs, revealed by the ROS staining assay. The increase in osteogenic maturation with SeNPs was gradually investigated by expression of osteogenic genes at 3 and 7 days, Alkaline phosphatase activity staining at 14 days, and Alizarin red S staining at 28 days. Therefore, the role of SeNPs in regulating ROS and their therapeutic effects on the differentiation of MC3T3-E1 cells were determined, leading to possible applications for bone treatment.
Collapse
|
22
|
Westhauser F, Wilkesmann S, Nawaz Q, Hohenbild F, Rehder F, Saur M, Fellenberg J, Moghaddam A, Ali MS, Peukert W, Boccaccini AR. Effect of manganese, zinc, and copper on the biological and osteogenic properties of mesoporous bioactive glass nanoparticles. J Biomed Mater Res A 2020; 109:1457-1467. [PMID: 33289275 DOI: 10.1002/jbm.a.37136] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/09/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
Mesoporous bioactive glass nanoparticles (MBGNs) have demonstrated promising properties for the local delivery of therapeutically active ions with the aim to improve their osteogenic properties. Manganese (Mn), zinc (Zn), and copper (Cu) ions have already shown promising pro-osteogenic properties. Therefore, the concentration-dependent impact of MBGNs (composition in mol%: 70 SiO2 , 30 CaO) and MBGNs containing 5 mol% of either Mn, Zn, or Cu (composition in mol%: 70 SiO2 , 25 CaO, 5 MnO/ZnO/CuO) on the viability and osteogenic differentiation of human marrow-derived mesenchymal stromal cells (BMSCs) was assessed in this study. Mn-doped MBGNs (5Mn-MBGNs) showed a small "therapeutic window" with a dose-dependent negative impact on cell viability but increasing pro-osteogenic features alongside increasing Mn concentrations. Due to a constant release of Zn, 5Zn-MBGNs showed good cytocompatibility and upregulated the expression of genes encoding for relevant members of the osseous extracellular matrix during the later stages of cultivation. In contrast to all other groups, BMSC viability increased with increasing concentration of Cu-doped MBGNs (5Cu-MBGNs). Furthermore, 5Cu-MBGNs induced an increase in alkaline phosphatase activity. In conclusion, doping with Mn, Zn, or Cu can enhance the biological properties of MBGNs in different ways for their potential use in bone regeneration approaches.
Collapse
Affiliation(s)
- Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Wilkesmann
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Qaisar Nawaz
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Frederike Hohenbild
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Rehder
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Merve Saur
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Jörg Fellenberg
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany.,ATORG - Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Muhammad S Ali
- Institute of Particle Technology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
23
|
18F- based Quantification of the Osteogenic Potential of hMSCs. Int J Mol Sci 2020; 21:ijms21207692. [PMID: 33080871 PMCID: PMC7589629 DOI: 10.3390/ijms21207692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
In bone tissue engineering, there is a constant need to design new methods for promoting in vitro osteogenic differentiation. Consequently, there is a strong demand for fast, effective and reliable methods to track and quantify osteogenesis in vitro. In this study, we used the radiopharmacon fluorine-18 (18F) to evaluate the amount of hydroxylapatite produced by mesenchymal stem cells (MSCs) in a monolayer cell culture in vitro. The hydroxylapatite bound tracer was evaluated using µ-positron emission tomography (µ-PET) scanning and activimeter analysis. It was therefore possible to determine the amount of synthesized mineral and thus to conclude the osteogenic potential of the cells. A Student's t-test revealed a highly significant difference regarding tracer uptake between the osteogenic group and the corresponding control group (µ-PET p = 0.043; activimeter analysis p = 0.012). This tracer uptake showed a highly significant correlation with the gold standard of quantitative Alizarin Red staining (ARS) (r2 = 0.86) as well as with the absolute calcium content detected by inductively coupled plasma mass spectrometry (r2 = 0.81). The results showed that 18F labeling is a novel method to prove and quantify hydroxyapatite content in MSC monolayer cultures. The mineral layer remains intact for further analysis. This non-destructive in vitro method can be used to rapidly investigate bone tissue engineering strategies in terms of hydroxylapatite production, and could therefore accelerate the process of implementing new strategies in clinical practice.
Collapse
|
24
|
Hohenbild F, Arango-Ospina M, Moghaddam A, Boccaccini AR, Westhauser F. Preconditioning of Bioactive Glasses before Introduction to Static Cell Culture: What Is Really Necessary? Methods Protoc 2020; 3:E38. [PMID: 32397550 PMCID: PMC7359712 DOI: 10.3390/mps3020038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Due to their high bioreactivity, the in-vitro analysis of bioactive glasses (BGs) can be challenging when it comes to maintaining a physiological pH. To improve BG biocompatibility, a heterogenic spectrum of preconditioning approaches, such as "passivation" of the BGs by incubation in cell culture medium, are used but have never been directly compared. In this study, the effect of passivation periods of up to 72 h on pH alkalization and viability of human bone marrow-derived mesenchymal stromal cells was evaluated to determine a time-efficient passivation protocol using granules based on the 45S5-BG composition (in wt%: 45.0 SiO2, 24.5 Na2O, 24.5 CaO, 6.0 P2O5) in different concentrations. pH alkalization was most reduced after passivation of 24 h. Cell viability continuously improved with increasing passivation time being significantly higher after passivation of at least 24 h compared to non-passivated 45S5-BG and the necessary passivation time increased with increasing BG concentrations. In this setting, a passivation period of 24 h presented as an effective approach to provide a biocompatible cell culture setting. In conclusion, before introduction of BGs in cell culture, different passivation periods should be evaluated in order to meet the respective experimental settings, e.g., by following the experimental protocols used in this study.
Collapse
Affiliation(s)
- Frederike Hohenbild
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany;
| | - Marcela Arango-Ospina
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany; (M.A.-O.); (A.R.B.)
| | - Arash Moghaddam
- ATORG—Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany;
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany; (M.A.-O.); (A.R.B.)
| | - Fabian Westhauser
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany;
| |
Collapse
|
25
|
Wilkesmann S, Westhauser F, Fellenberg J. Combined Fluorescence-Based in Vitro Assay for the Simultaneous Detection of Cell Viability and Alkaline Phosphatase Activity during Osteogenic Differentiation of Osteoblast Precursor Cells. Methods Protoc 2020; 3:mps3020030. [PMID: 32357460 PMCID: PMC7359696 DOI: 10.3390/mps3020030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
Novel bone substitute materials need to be evaluated in terms of their osteogenic differentiation capacity and possible unwanted cytotoxic effects in order to identify promising candidates for the therapy of bone defects. The activity of alkaline phosphatase (ALP) is frequently quantified as an osteogenic marker, while various colorimetric assays, like MTT assay, are used to monitor cell viability. In addition, the DNA or protein content of the samples needs to be quantified for normalization purposes. As this approach is time consuming and often requires the analysis of multiple samples, we aimed to simplify this process and established a protocol for the combined fluorescence-based quantification of ALP activity and cell viability within one single measurement. We demonstrate that the fluorogenic substrate 4-methylumbelliferone-phosphate (4-MUP) and the commonly used para-nitrophenylphosphate (p-NPP) produce comparable and highly correlating results. We further show that fluorescein–diacetate (FDA) can be used to quantify both cell viability and cell number without interfering with the quantification of ALP activity. The measurement of additional normalization parameters is, therefore, unnecessary. Therefore, the presented assay allows for a time-efficient, simple and reliable analysis of both ALP activity and cell viability from one sample and might facilitate experiments evaluating the osteogenic differentiation of osteoblast precursor cells.
Collapse
|
26
|
Westhauser F, Wilkesmann S, Nawaz Q, Schmitz SI, Moghaddam A, Boccaccini AR. Osteogenic properties of manganese‐doped mesoporous bioactive glass nanoparticles. J Biomed Mater Res A 2020; 108:1806-1815. [DOI: 10.1002/jbm.a.36945] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord InjuryHeidelberg University Hospital Heidelberg Germany
| | - Sebastian Wilkesmann
- Center of Orthopedics, Traumatology, and Spinal Cord InjuryHeidelberg University Hospital Heidelberg Germany
| | - Qaisar Nawaz
- Institute of BiomaterialsUniversity of Erlangen‐Nuremberg Erlangen Germany
| | - Sarah I. Schmitz
- Center of Orthopedics, Traumatology, and Spinal Cord InjuryHeidelberg University Hospital Heidelberg Germany
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord InjuryHeidelberg University Hospital Heidelberg Germany
- ATORG ‐ Aschaffenburg Trauma and Orthopedic Research GroupCenter for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg‐Alzenau Aschaffenburg Germany
| | - Aldo R. Boccaccini
- Institute of BiomaterialsUniversity of Erlangen‐Nuremberg Erlangen Germany
| |
Collapse
|
27
|
Karadjian M, Senger AS, Essers C, Wilkesmann S, Heller R, Fellenberg J, Simon R, Westhauser F. Human Platelet Lysate Can Replace Fetal Calf Serum as a Protein Source to Promote Expansion and Osteogenic Differentiation of Human Bone-Marrow-Derived Mesenchymal Stromal Cells. Cells 2020; 9:E918. [PMID: 32283663 PMCID: PMC7226817 DOI: 10.3390/cells9040918] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
Fetal calf serum (FCS) is frequently used as a growth factor and protein source in bone-marrow-derived mesenchymal stromal cell (BMSC) culture media, although it is a xenogenic product presenting multiple disadvantages including but not limited to ethical concerns. A promising alternative for FCS is human platelet lysate (hPL), which is produced out of human platelet concentrates and happens to be a stable and reliable protein source. In this study, we investigated the influence of hPL in an expansion medium (ESM) and an osteogenic differentiation medium (ODM) on the proliferation and osteogenic differentiation capacity of human BMSC. Therefore, we assessed population doublings during cell expansion, performed alizarin red staining to evaluate the calcium content in the extracellular matrix and determined the activity of alkaline phosphatase (ALP) as osteogenic differentiation correlates. The proliferation rate of BMSC cultured in ESM supplemented with hPL exceeded the proliferation rate of BMSC cultured in the presence of FCS. Furthermore, the calcium content and ALP activity was significantly higher in samples incubated in hPL-supplemented ODM, especially in the early phases of differentiation. Our results show that hPL can replace FCS as a protein supplier in cell culture media and does not negatively affect the osteogenic differentiation capacity of BMSC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (M.K.); (A.-S.S.); (C.E.); (S.W.); (R.H.); (J.F.); (R.S.)
| |
Collapse
|
28
|
Westhauser F, Hohenbild F, Arango-Ospina M, Schmitz SI, Wilkesmann S, Hupa L, Moghaddam A, Boccaccini AR. Bioactive Glass (BG) ICIE16 Shows Promising Osteogenic Properties Compared to Crystallized 45S5-BG. Int J Mol Sci 2020; 21:ijms21051639. [PMID: 32121249 PMCID: PMC7084569 DOI: 10.3390/ijms21051639] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
The ICIE16-bioactive glass (BG) (48.0 SiO2, 6.6 Na2O, 32.9 CaO, 2.5 P2O5, 10.0 K2O (wt %)) has been developed as an alternative to 45S5-BG, the original BG composition (45.0 SiO2, 24.5 Na2O, 24.5 CaO, 6.0 P2O5 (wt %)), with the intention of broadening the BG sintering window while maintaining bioactivity. Because there is a lack of reports on ICIE16-BG biological properties, the influence of ICIE16-BG on viability, proliferation, and osteogenic differentiation of human mesenchymal stromal cells (MSCs) was evaluated in direct comparison to 45S5-BG in this study. The BGs underwent heat treatment similar to that which is required in order to fabricate scaffolds by sintering, which resulted in crystallization of 45S5-BG (45S5-CBG) while ICIE16 remained amorphous. Granules based on both BGs were biocompatible, but ICIE16-BG was less harmful to cell viability, most likely due to a more pronounced pH alkalization in the 45S5-CBG group. ICIE16-BG outperformed 45S5-CBG in terms of osteogenic differentiation at the cellular level, as determined by the increased activity of alkaline phosphatase. However, granules from both BGs were comparable regarding the stimulation of expression levels of genes encoding for osseous extracellular matrix (ECM) proteins. The addition of therapeutically active ions to ICIE16-BG might further improve its ability to stimulate ECM production and should be investigated in upcoming studies.
Collapse
Affiliation(s)
- Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (F.H.); (S.I.S.); (S.W.); (A.M.)
- Correspondence: (F.W.); (A.R.B.); Tel.: +49-6221-56-25000 (F.W.); +49-9131-85-28600 (A.R.B.)
| | - Frederike Hohenbild
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (F.H.); (S.I.S.); (S.W.); (A.M.)
| | - Marcela Arango-Ospina
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| | - Sarah I. Schmitz
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (F.H.); (S.I.S.); (S.W.); (A.M.)
| | - Sebastian Wilkesmann
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (F.H.); (S.I.S.); (S.W.); (A.M.)
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, 20500 Turku, Finland;
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (F.H.); (S.I.S.); (S.W.); (A.M.)
- ATORG - Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
- Correspondence: (F.W.); (A.R.B.); Tel.: +49-6221-56-25000 (F.W.); +49-9131-85-28600 (A.R.B.)
| |
Collapse
|
29
|
Schmitz SI, Widholz B, Essers C, Becker M, Tulyaganov DU, Moghaddam A, Gonzalo de Juan I, Westhauser F. Superior biocompatibility and comparable osteoinductive properties: Sodium-reduced fluoride-containing bioactive glass belonging to the CaO-MgO-SiO 2 system as a promising alternative to 45S5 bioactive glass. Bioact Mater 2020; 5:55-65. [PMID: 31956736 PMCID: PMC6961063 DOI: 10.1016/j.bioactmat.2019.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/12/2019] [Accepted: 12/22/2019] [Indexed: 02/09/2023] Open
Abstract
Bioactive glasses (BGs) are promising bone substitute materials. However, under certain circumstances BGs such as the well-known 45S5 Bioglass® (composition in wt%: 45.0 SiO2, 24.5 Na2O, 24.5 CaO, 6.0 P2O5) act cytotoxic due to a strong increase in pH caused by a burst release of sodium ions. A potential alternative is a sodium-reduced fluoride-containing BG belonging to the CaO–MgO–SiO2 system, namely BG1d-BG (composition in wt%: 46.1 SiO2, 28.7 CaO, 8.8 MgO, 6.2 P2O5, 5.7 CaF2, 4.5 Na2O), that has already been evaluated in-vitro, in-vivo and in preliminary clinical trials. Before further application, however, BG1d-BG should be compared to the benchmark amongst BGs, the 45S5 Bioglass® composition, to classify its effect on cell viability, proliferation and osteogenic differentiation of human mesenchymal stem cells (MSCs). Therefore, in this study, the biocompatibility and osteogenic potential of both BGs were investigated in an indirect and direct culture setting to assess the effect of the ionic dissolution products and the BGs’ physical presence on the cells. The results indicated an advantage of BG1d-BG over 45S5 Bioglass® regarding cell viability and proliferation. Both BGs induced an earlier onset of osteogenic differentiation and accelerated the expression of late osteoblast marker genes compared to the control group. In conclusion, BG1d-BG is an attractive candidate for further experimental investigation. The basic mechanisms behind the different impact on cell behavior should be assessed in further detail, e.g. by further alteration of the BG compositions. 45S5 Bioglass® is considered to be the benchmark amongst bioactive glasses (BGs). Sodium-reduced fluoride-containing BG1d BG was compared to 45S5-Bioglass®. Both BGs induced osteogenic differentiation of human MSCs. BG1d had an advantageous impact on cell viability and proliferation. BG1d-BG is an attractive candidate for further experimental investigation.
Collapse
Affiliation(s)
- S I Schmitz
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - B Widholz
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - C Essers
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - M Becker
- Disperse Solid Materials, Technical University Darmstadt, Otto-Berndt-Straße 3, 64287, Darmstadt, Germany
| | - D U Tulyaganov
- Department of Natural-Mathematical Sciences, Turin Polytechnic University in Tashkent, 17 Small Ring Street, 100095, Tashkent, Uzbekistan
| | - A Moghaddam
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany.,ATORG - Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739, Aschaffenburg, Germany
| | - I Gonzalo de Juan
- Disperse Solid Materials, Technical University Darmstadt, Otto-Berndt-Straße 3, 64287, Darmstadt, Germany
| | - F Westhauser
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| |
Collapse
|
30
|
Wilkesmann S, Fellenberg J, Nawaz Q, Reible B, Moghaddam A, Boccaccini AR, Westhauser F. Primary osteoblasts, osteoblast precursor cells or osteoblast‐like cell lines: Which human cell types are (most) suitable for characterizing 45S5‐bioactive glass? J Biomed Mater Res A 2019; 108:663-674. [DOI: 10.1002/jbm.a.36846] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Sebastian Wilkesmann
- Center of Orthopedics, Traumatology, and Spinal Cord Injury Heidelberg University Hospital Heidelberg Germany
| | - Jörg Fellenberg
- Center of Orthopedics, Traumatology, and Spinal Cord Injury Heidelberg University Hospital Heidelberg Germany
| | - Qaisar Nawaz
- Institute of Biomaterials University of Erlangen‐Nuremberg Erlangen Germany
| | - Bruno Reible
- Center of Orthopedics, Traumatology, and Spinal Cord Injury Heidelberg University Hospital Heidelberg Germany
| | - Arash Moghaddam
- ATORG—Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine Klinikum Aschaffenburg‐Alzenau Aschaffenburg Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials University of Erlangen‐Nuremberg Erlangen Germany
| | - Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury Heidelberg University Hospital Heidelberg Germany
| |
Collapse
|
31
|
Westhauser F, Widholz B, Nawaz Q, Tsitlakidis S, Hagmann S, Moghaddam A, Boccaccini AR. Favorable angiogenic properties of the borosilicate bioactive glass 0106-B1 result in enhanced in vivo osteoid formation compared to 45S5 Bioglass. Biomater Sci 2019; 7:5161-5176. [PMID: 31584047 DOI: 10.1039/c9bm01220f] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 45S5-bioactive glass (BG) composition is the most commonly investigated amongst BG-based bone substitutes. By changing BG compositions and by addition of therapeutically active ions such as boron, the biological features of BGs can be tailored towards specific needs and possible drawbacks can be overcome. The borosilicate glass 0106-B1 (composition in wt%: 37.5 SiO2, 22.6 CaO, 5.9 Na2O, 4.0 P2O5, 12.0 K2O, 5.5 MgO, 12.5 B2O3) has demonstrated pro-angiogenic properties. However, the osteogenic performance of the 0106-B1-BG and its influence on cell viability and proliferation in vitro as well as its osteogenic and angiogenic properties in vivo have not been investigated. Therefore, in this study, the impact of 0106-B1-BG and 45S5-BG on osteogenic differentiation, viability and proliferation on human mesenchymal stromal cells (MSCs) was assessed in vitro. Furthermore, MSC-seeded scaffolds made from both BG types were implanted subcutaneously in immunodeficient mice for 10 weeks. Osteoid formation was quantified by histomorphometry, vascularization was visualized by immunohistological staining. Additionally, the in vivo expression patterns of genes correlating with osteogenesis and angiogenesis were analyzed. In vitro, the impact of 45S5-BG and 0106-B1-BG on the proliferation, viability and osteogenic differentiation of MSCs was comparable. In vivo, scaffolds made from 0106-B1-BG significantly outperformed the 45S5-BG-based scaffolds regarding the amount and maturation of the osteoid. Furthermore, 0106-B1-BG-based scaffolds showed significantly increased angiogenic gene expression patterns. In conclusion, the beneficial angiogenic properties of 0106-B1-BG result in improved osteogenic properties in vivo, making the 0106-B1-BG a promising candidate for further investigation, e.g. in a bone defect model.
Collapse
Affiliation(s)
- F Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - B Widholz
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - Q Nawaz
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| | - S Tsitlakidis
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - S Hagmann
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - A Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany. and ATORG - Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany
| | - A R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| |
Collapse
|
32
|
Widholz B, Tsitlakidis S, Reible B, Moghaddam A, Westhauser F. Pooling of Patient-Derived Mesenchymal Stromal Cells Reduces Inter-Individual Confounder-Associated Variation without Negative Impact on Cell Viability, Proliferation and Osteogenic Differentiation. Cells 2019; 8:cells8060633. [PMID: 31238494 PMCID: PMC6628337 DOI: 10.3390/cells8060633] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 01/16/2023] Open
Abstract
Patient-derived mesenchymal stromal cells (MSCs) play a key role in bone tissue engineering. Various donor-specific factors were identified causing significant variability in the biological properties of MSCs impairing quality of data and inter-study comparability. These limitations might be overcome by pooling cells of different donors. However, the effects of pooling on osteogenic differentiation, proliferation and vitality remain unknown and have, therefore, been evaluated in this study. MSCs of 10 donors were cultivated and differentiated into osteogenic lineage individually and in a pooled setting, containing MSCs of each donor in equal parts. Proliferation was evaluated in expansion (assessment of generation time) and differentiation (quantification of dsDNA content) conditions. Vitality was visualized by a fluorescence-microscopy-based live/dead assay. Osteogenic differentiation was assessed by quantification of alkaline phosphatase (ALP) activity and extracellular calcium deposition. Compared to the individual setting, generation time of pooled MSCs was shorter and proliferation was increased during differentiation with significantly lower variances. Calcium deposition was comparable, while variances were significantly higher in the individual setting. ALP activity showed high variance in both groups, but increased comparably during the incubation period. In conclusion, MSC pooling helps to compensate donor-dependent variability and does not negatively influence MSC vitality, proliferation and osteogenic differentiation.
Collapse
Affiliation(s)
- Benedikt Widholz
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - Stefanos Tsitlakidis
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - Bruno Reible
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
- ATORG - Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany.
| | - Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| |
Collapse
|
33
|
Westhauser F, Karadjian M, Essers C, Senger AS, Hagmann S, Schmidmaier G, Moghaddam A. Osteogenic differentiation of mesenchymal stem cells is enhanced in a 45S5-supplemented β-TCP composite scaffold: an in-vitro comparison of Vitoss and Vitoss BA. PLoS One 2019; 14:e0212799. [PMID: 30811492 PMCID: PMC6392320 DOI: 10.1371/journal.pone.0212799] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/07/2019] [Indexed: 11/19/2022] Open
Abstract
Since the amount of autologous bone for the treatment of bone defects is limited and harvesting might cause complications, synthetic bone substitutes such as the popular β-tricalcium phosphate (β-TCP) based Vitoss have been developed as an alternative grafting material. β-TCPs exhibit osteoconductive properties, however material-initiated stimulation of osteogenic differentiation is limited. These limitations might be overcome by addition of 45S5 bioactive glass (BG) particles. This study aims to analyze the influence of BG particles in Vitoss BA (20 wt% BG particles with a size of 90–150 μm) on osteogenic properties, cell vitality and cell proliferation in direct comparison to Vitoss by evaluation of the underlying cellular mechanisms. For that purpose, Vitoss and Vitoss BA scaffolds were seeded with human mesenchymal stem cells (MSC) and underwent osteogenic differentiation in-vitro for up to 42 days. Cell vitality, proliferation, and osteogenic differentiation were monitored by quantitative gene expression analysis, determination of alkaline phosphatase activity, PrestoBlue cell viability assay, dsDNA quantification, and a fluorescence-microscopy-based live/dead-assay. It was demonstrated that BG particles decrease cell proliferation but do not have a negative impact on cell vitality. Especially the early stages of osteogenic differentiation were significantly improved in the presence of BG particles, resulting in earlier maturation of the MSC towards osteoblasts. Since most of the stimulatory effects induced by BG particles took place initially, particles exhibiting another surface-area-to-volume ratio should be considered in order to provide long-lasting stimulation.
Collapse
Affiliation(s)
- Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
- * E-mail:
| | - Maria Karadjian
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Christopher Essers
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Anne-Sophie Senger
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Sébastien Hagmann
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerhard Schmidmaier
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
- ATORG—Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Aschaffenburg, Germany
| |
Collapse
|
34
|
Karadjian M, Essers C, Tsitlakidis S, Reible B, Moghaddam A, Boccaccini AR, Westhauser F. Biological Properties of Calcium Phosphate Bioactive Glass Composite Bone Substitutes: Current Experimental Evidence. Int J Mol Sci 2019; 20:ijms20020305. [PMID: 30646516 PMCID: PMC6359412 DOI: 10.3390/ijms20020305] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/19/2022] Open
Abstract
Standard treatment for bone defects is the biological reconstruction using autologous bone—a therapeutical approach that suffers from limitations such as the restricted amount of bone available for harvesting and the necessity for an additional intervention that is potentially followed by donor-site complications. Therefore, synthetic bone substitutes have been developed in order to reduce or even replace the usage of autologous bone as grafting material. This structured review focuses on the question whether calcium phosphates (CaPs) and bioactive glasses (BGs), both established bone substitute materials, show improved properties when combined in CaP/BG composites. It therefore summarizes the most recent experimental data in order to provide a better understanding of the biological properties in general and the osteogenic properties in particular of CaP/BG composite bone substitute materials. As a result, BGs seem to be beneficial for the osteogenic differentiation of precursor cell populations in-vitro when added to CaPs. Furthermore, the presence of BG supports integration of CaP/BG composites into bone in-vivo and enhances bone formation under certain circumstances.
Collapse
Affiliation(s)
- Maria Karadjian
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Christopher Essers
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Stefanos Tsitlakidis
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Bruno Reible
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
- ATORG-Aschaffenburg Trauma and Orthopedics Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany.
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| | - Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| |
Collapse
|
35
|
Jiang YN, Zhao J, Chu FT, Jiang YY, Tang GH. Tension-loaded bone marrow stromal cells potentiate the paracrine osteogenic signaling of co-cultured vascular endothelial cells. Biol Open 2018; 7:bio.032482. [PMID: 29716948 PMCID: PMC6031349 DOI: 10.1242/bio.032482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Co-culture of bone marrow stromal cells (BMSCs) and vascular endothelial cells (VECs) is a promising strategy for better osteogenesis and pre-vascularization in bone tissue engineering. Recent reports have shown that mechanical stretching further promotes osteogenesis in BMSC/VEC co-culture systems, but the underlying mechanism of this process remains unclear. In this study, noncontact co-cultures of rat primary BMSCs and VECs were employed to interrogate paracrine cell-to-cell communications in response to tension. Exposure of VECs to 6% tension for 48 h elicited neither ALP activity nor mRNA expression of OCN and OPN in BMSCs incubated in a shared culture medium. Instead, BMSCs subjected to tension induced robust VEGF release, and its conditioned medium enhanced the proliferation and tubular formation of VECs with a concurrent increase in BMP-2 and IGF-1 production. Conditioned medium from activated VECs in turn promoted expression of osteogenic genes in BMSCs, followed by an increase in matrix mineralization. The addition of VEGF-R inhibitor Tivozanib to these systems abrogated the tension-induced paracrine effects on VECs and subsequently impaired BMSC osteogenesis. These results clearly demonstrate that the response of BMSCs to tension potentiates paracrine osteogenic signaling from VECs; this positive feedback loop is initiated by VEGF release.
Collapse
Affiliation(s)
- Yu Nan Jiang
- Department of Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.,Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, People's Republic of China
| | - Jun Zhao
- Department of Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.,Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, People's Republic of China
| | - Feng Ting Chu
- Department of Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.,Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, People's Republic of China
| | - Yang Yang Jiang
- Department of Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.,Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, People's Republic of China
| | - Guo Hua Tang
- Department of Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China .,Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, People's Republic of China
| |
Collapse
|
36
|
Reible B, Schmidmaier G, Moghaddam A, Westhauser F. Insulin-Like Growth Factor-1 as a Possible Alternative to Bone Morphogenetic Protein-7 to Induce Osteogenic Differentiation of Human Mesenchymal Stem Cells in Vitro. Int J Mol Sci 2018; 19:ijms19061674. [PMID: 29874864 PMCID: PMC6032281 DOI: 10.3390/ijms19061674] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/28/2022] Open
Abstract
Growth factors and mesenchymal stem cells (MSC) support consolidation of bone defects. Bone Morphogenetic Protein-7 (BMP-7) has been used clinically and experimentally, but the outcomes remain controversial. Increased systemic expression of Insulin-like Growth Factor-1 (IGF-1) significantly correlates with successful regeneration of bone healing disorders, making IGF-1 a promising alternative to BMP-7. There is no experimental data comparing the osteoinductive potential of IGF-1 and BMP-7. Therefore, in this study, the influence of IGF-1 and BMP-7 in different concentrations on the osteogenic differentiation of two human MSC-subtypes, isolated from reaming debris (RMSC) and iliac crest bone marrow (BMSC) has been assessed. A more sensitive reaction of BMSC towards stimulation with IGF-1 in concentrations of 400–800 ng/mL was found, leading to a significantly higher degree of osteogenic differentiation compared to stimulation with BMP-7. RMSC react more sensitively to stimulation with BMP-7 compared to BMSC. Lower concentrations of IGF-1 were necessary to significantly increase osteogenic differentiation of RMSC and BMSC compared to BMP-7. Therefore, IGF-1 should be considered as a valuable option to improve osteogenic differentiation of MSC and merits further experimental consideration. The MSC subtype and method of differentiation factor application also have to be considered, as they affect the outcome of osteogenic differentiation.
Collapse
Affiliation(s)
- Bruno Reible
- HTRG-Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - Gerhard Schmidmaier
- HTRG-Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - Arash Moghaddam
- HTRG-Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
- ATORG-Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany.
| | - Fabian Westhauser
- HTRG-Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| |
Collapse
|
37
|
Tanner MC, Heller R, Westhauser F, Miska M, Ferbert T, Fischer C, Gantz S, Schmidmaier G, Haubruck P. Evaluation of the clinical effectiveness of bioactive glass (S53P4) in the treatment of non-unions of the tibia and femur: study protocol of a randomized controlled non-inferiority trial. Trials 2018; 19:299. [PMID: 29843766 PMCID: PMC5975373 DOI: 10.1186/s13063-018-2681-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Treatment of non-union remains challenging and often necessitates augmentation of the resulting defect with an autologous bone graft (ABG). ABG is limited in quantity and its harvesting incurs an additional surgical intervention leaving the risk for associated complications and morbidities. Therefore, artificial bone graft substitutes that might replace autologous bone are needed. S53P4-type bioactive glass (BaG) is a promising material which might be used as bone graft substitute due to its osteostimulative, conductive and antimicrobial properties. In this study, we plan to examine the clinical effectiveness of BaG as a bone graft substitute in Masquelet therapy in comparison with present standard Masquelet therapy using an ABG with tricalciumphosphate to fill the bone defect. METHODS/DESIGN This randomized controlled, clinical non-inferiority trial will be carried out at the Department of Orthopedics and Traumatology at Heidelberg University. Patients who suffer from tibial or femoral non-unions with a segmental bone defect of 2-5 cm and who are receiving Masquelet treatment will be included in the study. The resulting bone defect will either be filled with autologous bone and tricalciumphosphate (control group, N = 25) or BaG (S53P4) (study group, N = 25). Subsequent to operative therapy, all patients will receive the same standardized follow-up procedures. The primary endpoint of the study is union achieved 1year after surgery. DISCUSSION The results from the current study will help evaluate the clinical effectiveness of this promising biomaterial in non-union therapy. In addition, this randomized trial will help to identify potential benefits and limitations regarding the use of BaG in Masquelet therapy. Data from the study will increase the knowledge about BaG as a bone graft substitute as well as identify patients possibly benefiting from Masquelet therapy using BaG and those who are more likely to fail, thereby improving the quality of non-union treatment. TRIAL REGISTRATION German Clinical Trials Register (DRKS), ID: DRKS00013882 . Registered on 22 January 2018.
Collapse
Affiliation(s)
- Michael C. Tanner
- HTRG – Heidelberg Trauma Research Group, Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany
| | - Raban Heller
- HTRG – Heidelberg Trauma Research Group, Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany
| | - Fabian Westhauser
- HTRG – Heidelberg Trauma Research Group, Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany
| | - Matthias Miska
- HTRG – Heidelberg Trauma Research Group, Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany
| | - Thomas Ferbert
- HTRG – Heidelberg Trauma Research Group, Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany
| | - Christian Fischer
- HTRG – Heidelberg Trauma Research Group, Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany
| | - Simone Gantz
- HTRG – Heidelberg Trauma Research Group, Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany
| | - Gerhard Schmidmaier
- HTRG – Heidelberg Trauma Research Group, Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany
| | - Patrick Haubruck
- HTRG – Heidelberg Trauma Research Group, Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany
| |
Collapse
|