1
|
Zhang JY, Xiang XN, Yu X, Liu Y, Jiang HY, Peng JL, He CQ, He HC. Mechanisms and applications of the regenerative capacity of platelets-based therapy in knee osteoarthritis. Biomed Pharmacother 2024; 178:117226. [PMID: 39079262 DOI: 10.1016/j.biopha.2024.117226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease in the elderly population and its substantial morbidity and disability impose a heavy economic burden on patients and society. Knee osteoarthritis (KOA) is the most common subtype of OA, which is characterized by damage to progressive articular cartilage, synovitis, and subchondral bone sclerosis. Most current treatments for OA are palliative, primarily aim at symptom management, and do not prevent the progression of the disease or restore degraded cartilage. The activation of α-granules in platelets releases various growth factors that are involved in multiple stages of tissue repair, suggesting potential for disease modification. In recent years, platelet-based therapies, such as platelet-rich plasma, platelet-rich fibrin, and platelet lysates, have emerged as promising regenerative treatments for KOA, but their related effects and mechanisms are still unclear. Therefore, this review aims to summarize the biological characteristics and functions of platelets, classify the products of platelet-based therapy and related preparation methods. Moreover, we summarize the basic research of platelet-based regeneration strategies for KOA and discuss the cellular effects and molecular mechanisms. Further, we describe the general clinical application of platelet-based therapy in the treatment of KOA and the results of the meta-analysis of randomized controlled trials.
Collapse
Affiliation(s)
- Jiang-Yin Zhang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiao-Na Xiang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xi Yu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yan Liu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hong-Ying Jiang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jia-Lei Peng
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Cheng-Qi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hong-Chen He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
2
|
Zhao L, Lai Y, Jiao H, Li J, Lu K, Huang J. CRISPR-mediated Sox9 activation and RelA inhibition enhance cell therapy for osteoarthritis. Mol Ther 2024; 32:2549-2562. [PMID: 38879753 PMCID: PMC11405173 DOI: 10.1016/j.ymthe.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/10/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
Osteoarthritis (OA) is a painful and debilitating disease affecting over 500 million people worldwide. Intraarticular injection of mesenchymal stromal cells (MSCs) shows promise for the clinical treatment of OA, but the lack of consistency in MSC preparation and application makes it difficult to further optimize MSC therapy and to properly evaluate the clinical outcomes. In this study, we used Sox9 activation and RelA inhibition, both mediated by the CRISPR-dCas9 technology simultaneously, to engineer MSCs with enhanced chondrogenic potential and downregulated inflammatory responses. We found that both Sox9 and RelA could be fine-tuned to the desired levels, which enhances the chondrogenic and immunomodulatory potentials of the cells. Intraarticular injection of modified cells significantly attenuated cartilage degradation and palliated OA pain compared with the injection of cell culture medium or unmodified cells. Mechanistically, the modified cells promoted the expression of factors beneficial to cartilage integrity, inhibited the production of catabolic enzymes in osteoarthritic joints, and suppressed immune cells. Interestingly, a substantial number of modified cells could survive in the cartilaginous tissues including articular cartilage and meniscus. Together, our results suggest that CRISPR-dCas9-based gene regulation is useful for optimizing MSC therapy for OA.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Hongli Jiao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jun Li
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Ke Lu
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
3
|
Chen B, Fu W, Jie C, Zhang G, Li Z, Liu Y, Zhou S. GPX7 reduces chondrocyte inflammation and extracellular matrix degradation triggered by IL‑1β, via a mechanism mediated by ferroptosis. Mol Med Rep 2024; 30:118. [PMID: 38757339 PMCID: PMC11129537 DOI: 10.3892/mmr.2024.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
During osteoarthritis (OA), chondrocytes become highly active, with increased matrix synthesis and inflammatory cytokine‑induced catabolic pathways. Early intervention strategies targeting pathological changes may attenuate or halt disease progression. The present study aimed to reveal the role of glutathione peroxidase (GPX)7 in OA. For this purpose, a research model was established by inducing C28/I2 human chondrocytes with interleukin (IL)‑1β, and the expression level of GPX7 was determined. To explore its roles, C28/I2 cells were transfected to gain GPX7 overexpression. The effects of GPX7 overexpression on intracellular inflammation, extracellular matrix (ECM) degradation, apoptosis and ferroptosis were then evaluated. In addition, the cells were treated with the ferroptosis inducer, erastin, and its effects on the aforementioned phenotypes were assessed. The level of GPX7 was decreased in response to IL‑1β treatment, and GPX7 overexpression suppressed cellular inflammation, ECM degradation and apoptosis. Moreover, the reduction of lipid peroxidation, ferrous ions and transferrin indicated that GPX7 overexpression inhibited ferroptosis. Subsequently, inflammation, ECM degradation and apoptosis were found to be promoted in the cells upon treatment with erastin. These findings suggested that the regulatory role of GPX7 may be mediated by a pathway involving ferroptosis. On the whole, the present study revealed that GPX7 reduces IL‑1β‑induced chondrocyte inflammation, apoptosis and ECM degradation partially through a mechanism involving ferroptosis. The results of the present study lay a theoretical foundation for subsequent OA‑related research and may enable the development of translational strategies for the treatment of OA.
Collapse
Affiliation(s)
- Boyuan Chen
- Department of Physical Education, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Weihao Fu
- Integrative Exercise Physiology Laboratory, Department of Physical Education, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Chunyang Jie
- Department of Physical Education, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Guoxiu Zhang
- Department of General Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Zhen Li
- Department of Physical Education, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Yihai Liu
- Department of Physical Education, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Shibo Zhou
- Department of Physical Education, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| |
Collapse
|
4
|
Feng J, Zhang Q, Pu F, Zhu Z, Lu K, Lu WW, Tong L, Yu H, Chen D. Signalling interaction between β-catenin and other signalling molecules during osteoarthritis development. Cell Prolif 2024; 57:e13600. [PMID: 38199244 PMCID: PMC11150147 DOI: 10.1111/cpr.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/29/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent disorder of synovial joint affecting multiple joints. In the past decade, we have witnessed conceptual switch of OA pathogenesis from a 'wear and tear' disease to a disease affecting entire joint. Extensive studies have been conducted to understand the underlying mechanisms of OA using genetic mouse models and ex vivo joint tissues derived from individuals with OA. These studies revealed that multiple signalling pathways are involved in OA development, including the canonical Wnt/β-catenin signalling and its interaction with other signalling pathways, such as transforming growth factor β (TGF-β), bone morphogenic protein (BMP), Indian Hedgehog (Ihh), nuclear factor κB (NF-κB), fibroblast growth factor (FGF), and Notch. The identification of signalling interaction and underlying mechanisms are currently underway and the specific molecule(s) and key signalling pathway(s) playing a decisive role in OA development need to be evaluated. This review will focus on recent progresses in understanding of the critical role of Wnt/β-catenin signalling in OA pathogenesis and interaction of β-catenin with other pathways, such as TGF-β, BMP, Notch, Ihh, NF-κB, and FGF. Understanding of these novel insights into the interaction of β-catenin with other pathways and its integration into a complex gene regulatory network during OA development will help us identify the key signalling pathway of OA pathogenesis leading to the discovery of novel therapeutic strategies for OA intervention.
Collapse
Affiliation(s)
- Jing Feng
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Qing Zhang
- Department of EmergencyRenmin Hospital, Wuhan UniversityWuhanHubeiChina
| | - Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Zhenglin Zhu
- Department of Orthopedic Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ke Lu
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - William W. Lu
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Liping Tong
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Huan Yu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Di Chen
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| |
Collapse
|
5
|
Zhao L, Lai Y, Jiao H, Huang J. Nerve growth factor receptor limits inflammation to promote remodeling and repair of osteoarthritic joints. Nat Commun 2024; 15:3225. [PMID: 38622181 PMCID: PMC11018862 DOI: 10.1038/s41467-024-47633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
Osteoarthritis (OA) is a painful, incurable disease affecting over 500 million people. Recent clinical trials of the nerve growth factor (NGF) inhibitors in OA patients have suggested adverse effects of NGF inhibition on joint structure. Here we report that nerve growth factor receptor (NGFR) is upregulated in skeletal cells during OA and plays an essential role in the remodeling and repair of osteoarthritic joints. Specifically, NGFR is expressed in osteochondral cells but not in skeletal progenitor cells and induced by TNFα to attenuate NF-κB activation, maintaining proper BMP-SMAD1 signaling and suppressing RANKL expression in mice. NGFR deficiency hyper-activates NF-κB in murine osteoarthritic joints, which impairs bone formation and enhances bone resorption as exemplified by a reduction in subchondral bone and osteophytes. In human OA cartilage, NGFR is also negatively associated with NF-κB activation. Together, this study suggests a role of NGFR in limiting inflammation for repair of diseased skeletal tissues.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Hongli Jiao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
6
|
Hollander JM, Goraltchouk A, Liu J, Xu E, Luppino F, McAlindon TE, Zeng L, Seregin A. Single Injection AAV2-FGF18 Gene Therapy Reduces Cartilage Loss and Subchondral Bone Damage in a Mechanically Induced Model of Osteoarthritis. Curr Gene Ther 2024; 24:331-345. [PMID: 38783531 DOI: 10.2174/0115665232275532231213063634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a highly debilitating, degenerative pathology of cartilaginous joints affecting over 500 million people worldwide. The global economic burden of OA is estimated at $260-519 billion and growing, driven by aging global population and increasing rates of obesity. To date, only the multi-injection chondroanabolic treatment regimen of Fibroblast Growth Factor 18 (FGF18) has demonstrated clinically meaningful disease-modifying efficacy in placebo-controlled human trials. Our work focuses on the development of a novel single injection disease-modifying gene therapy, based on FGF18's chondroanabolic activity. METHODS OA was induced in Sprague-Dawley rats using destabilization of the medial meniscus (DMM) (3 weeks), followed by intra-articular treatment with 3 dose levels of AAV2-FGF18, rh- FGF18 protein, and PBS. Durability, redosability, and biodistribution were measured by quantifying nLuc reporter bioluminescence. Transcriptomic analysis was performed by RNA-seq on cultured human chondrocytes and rat knee joints. Morphological analysis was performed on knee joints stained with Safranin O/Fast Green and anti-PRG antibody. RESULTS Dose-dependent reductions in cartilage defect size were observed in the AAV2-FGF18- treated joints relative to the vehicle control. Total defect width was reduced by up to 76% and cartilage thickness in the thinnest zone was increased by up to 106%. Morphologically, the vehicle- treated joints exhibited pronounced degeneration, ranging from severe cartilage erosion and bone void formation, to subchondral bone remodeling and near-complete subchondral bone collapse. In contrast, AAV2-FGF18-treated joints appeared more anatomically normal, with only regional glycosaminoglycan loss and marginal cartilage erosion. While effective at reducing cartilage lesions, treatment with rhFGF18 injections resulted in significant joint swelling (19% increase in diameter), as well as a decrease in PRG4 staining uniformity and intensity. In contrast to early-timepoint in vitro RNA-seq analysis, which showed a high degree of concordance between protein- and gene therapy-treated chondrocytes, in vivo transcriptomic analysis, revealed few gene expression changes following protein treatment. On the other hand, the gene therapy treatment exhibited a high degree of durability and localization over the study period, upregulating several chondroanabolic genes while downregulating OA- and fibrocartilage-associated markers. CONCLUSION FGF18 gene therapy treatment of OA joints can provide benefits to both cartilage and subchondral bone, with a high degree of localization and durability.
Collapse
Affiliation(s)
- Judith M Hollander
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, United States of America
- Remedium Bio, Inc. 1116 Great Plain Ave, Suite 203, Needham, MA, United States of America
| | - Alex Goraltchouk
- Remedium Bio, Inc. 1116 Great Plain Ave, Suite 203, Needham, MA, United States of America
| | - Jingshu Liu
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, United States of America
| | - Ellyn Xu
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, United States of America
| | - Francesco Luppino
- Remedium Bio, Inc. 1116 Great Plain Ave, Suite 203, Needham, MA, United States of America
| | - Timothy E McAlindon
- Division of Rheumatology, Immunology, and Allergy, Tufts Medical Center, Boston, MA, United States of America
| | - Li Zeng
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, United States of America
| | - Alexey Seregin
- Remedium Bio, Inc. 1116 Great Plain Ave, Suite 203, Needham, MA, United States of America
| |
Collapse
|
7
|
Zhao L, Lai Y, Jiao H, Huang J. Nerve Growth Factor Receptor Limits Inflammation to Promote Remodeling and Repair of Osteoarthritic Joints. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572937. [PMID: 38187570 PMCID: PMC10769345 DOI: 10.1101/2023.12.21.572937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Osteoarthritis (OA) is a painful, incurable disease affecting over 500 million people. The need for relieving OA pain is paramount but inadequately addressed, partly due to limited understandings of how pain signaling regulates non-neural tissues. Here we report that nerve growth factor receptor (NGFR) is upregulated in skeletal cells during OA and plays an essential role in the remodeling and repair of osteoarthritic joints. Specifically, NGFR is expressed in osteochondral cells but not in skeletal progenitor cells and induced by TNFα to attenuate NF-κB activation, maintaining proper BMP-SMAD1 signaling and suppressing RANKL expression. NGFR deficiency hyper-activates NF-κB in murine osteoarthritic joints, which impairs bone formation and enhances bone resorption as exemplified by a reduction in subchondral bone and osteophytes. In human OA cartilage, NGFR is also negatively associated with NF-κB activation. Together, this study uncovers a role of NGFR in limiting inflammation for repair of diseased skeletal tissues.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- These authors contributed equally: Lan Zhao, Jian Huang
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Hongli Jiao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- These authors contributed equally: Lan Zhao, Jian Huang
| |
Collapse
|
8
|
Huang J, Lai Y, Li J, Zhao L. Loss of miR-204 and miR-211 shifts osteochondral balance and causes temporomandibular joint osteoarthritis. J Cell Physiol 2023; 238:2668-2678. [PMID: 37697972 PMCID: PMC10841301 DOI: 10.1002/jcp.31120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Temporomandibular joint (TMJ) osteoarthritis (OA) is a common type of TMJ disorders causing pain and dysfunction in the jaw and surrounding tissues. The causes for TMJ OA are unknown and the underlying mechanism remains to be identified. In this study, we generated genetically-modified mice deficient of two homologous microRNAs, miR-204 and miR-211, both of which were confirmed by in situ hybridization to be expressed in multiple TMJ tissues, including condylar cartilage, articular eminence, and TMJ disc. Importantly, the loss-of-function of miR-204 and miR-211 caused an age-dependent progressive OA-like phenotype, including cartilage degradation and abnormal subchondral bone remodeling. Mechanistically, the TMJ joint deficient of the two microRNAs demonstrated a significant accumulation of RUNX2, a protein directly targeted by miR-204/-211, and upregulations of β-catenin, suggesting a disrupted balance between osteogenesis and chondrogenesis in the TMJ, which may underlie TMJ OA. Moreover, the TMJ with miR-204/-211 loss-of-function displayed an aberrant alteration in both collagen component and cartilage-degrading enzymes and exhibited exacerbated orofacial allodynia, corroborating the degenerative and painful nature of TMJ OA. Together, our results establish a key role of miR-204/-211 in maintaining the osteochondral homeostasis of the TMJ and counteracting OA pathogenesis through repressing the pro-osteogenic factors including RUNX2 and β-catenin.
Collapse
Affiliation(s)
- Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jun Li
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
9
|
Felekkis K, Pieri M, Papaneophytou C. Exploring the Feasibility of Circulating miRNAs as Diagnostic and Prognostic Biomarkers in Osteoarthritis: Challenges and Opportunities. Int J Mol Sci 2023; 24:13144. [PMID: 37685951 PMCID: PMC10487837 DOI: 10.3390/ijms241713144] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by progressive cartilage degradation and joint inflammation. As the most common aging-related joint disease, OA is marked by inadequate extracellular matrix synthesis and the breakdown of articular cartilage. However, traditional diagnostic methods for OA, relying on clinical assessments and radiographic imaging, often need to catch up in detecting early-stage disease or i accurately predicting its progression. Consequently, there is a growing interest in identifying reliable biomarkers that can facilitate early diagnosis and prognosis of OA. MicroRNAs (miRNAs) have emerged as potential candidates due to their involvement in various cellular processes, including cartilage homeostasis and inflammation. This review explores the feasibility of circulating miRNAs as diagnostic and prognostic biomarkers in OA, focusing on knee OA while shedding light on the challenges and opportunities associated with their implementation in clinical practice.
Collapse
Affiliation(s)
| | | | - Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, Nicosia 2417, Cyprus; (K.F.); (M.P.)
| |
Collapse
|
10
|
Li X, Han Y, Li G, Zhang Y, Wang J, Feng C. Role of Wnt signaling pathway in joint development and cartilage degeneration. Front Cell Dev Biol 2023; 11:1181619. [PMID: 37363728 PMCID: PMC10285172 DOI: 10.3389/fcell.2023.1181619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent musculoskeletal disease that affects approximately 500 million people worldwide. Unfortunately, there is currently no effective treatment available to stop or delay the degenerative progression of joint disease. Wnt signaling pathways play fundamental roles in the regulation of growth, development, and homeostasis of articular cartilage. This review aims to summarize the role of Wnt pathways in joint development during embryonic stages and in cartilage maintenance throughout adult life. Specifically, we focus on aberrant mechanical loading and inflammation as major players in OA progression. Excessive mechanical load activates Wnt pathway in chondrocytes, resulting in chondrocyte apoptosis, matrix destruction and other osteoarthritis-related changes. Additionally, we discuss emerging Wnt-related modulators and present an overview of emerging treatments of OA targeting Wnt signaling. Ultimately, this review provides valuable insights towards discovering new drugs or gene therapies targeting Wnt signaling pathway for diagnosing and treating osteoarthritis and other degenerative joint diseases.
Collapse
Affiliation(s)
- Xinyan Li
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanyuan Han
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guimiao Li
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingze Zhang
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Juan Wang
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chen Feng
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Orthopedic Clinical Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
Shi X, Mai Y, Fang X, Wang Z, Xue S, Chen H, Dang Q, Wang X, Tang S, Ding C, Zhu Z. Bone marrow lesions in osteoarthritis: From basic science to clinical implications. Bone Rep 2023; 18:101667. [PMID: 36909666 PMCID: PMC9996250 DOI: 10.1016/j.bonr.2023.101667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent musculoskeletal disease characterized by multiple joint structure damages, including articular cartilage, subchondral bone and synovium, resulting in disability and economic burden. Bone marrow lesions (BMLs) are common and important magnetic resonance imaging (MRI) features in OA patients. Basic and clinical research on subchondral BMLs in the pathogenesis of OA has been a hotspot. New evidence shows that subchondral bone degeneration, including BML and angiogenesis, occurs not only at or after cartilage degeneration, but even earlier than cartilage degeneration. Although BMLs are recognized as important biomarkers for OA, their exact roles in the pathogenesis of OA are still unclear, and disputes about the clinical impact and treatment of BMLs remain. This review summarizes the current basic and clinical research progress of BMLs. We particularly focus on molecular pathways, cellular abnormalities and microenvironmental changes of subchondral bone that contributed to the formation of BMLs, and emphasize the crosstalk between subchondral bone and cartilage in OA development. Finally, potential therapeutic strategies targeting BMLs in OA are discussed, which provides novel strategies for OA treatment.
Collapse
Affiliation(s)
- Xiaorui Shi
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiying Mai
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Fang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiqiang Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Song Xue
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haowei Chen
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qin Dang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoshuai Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Floramo JS, Molchanov V, Liu H, Liu Y, Craig SEL, Yang T. An Integrated View of Stressors as Causative Agents in OA Pathogenesis. Biomolecules 2023; 13:721. [PMID: 37238590 PMCID: PMC10216563 DOI: 10.3390/biom13050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Cells in the body are exposed to dynamic external and internal environments, many of which cause cell damage. The cell's response to this damage, broadly called the stress response, is meant to promote survival and repair or remove damage. However, not all damage can be repaired, and sometimes, even worse, the stress response can overtax the system itself, further aggravating homeostasis and leading to its loss. Aging phenotypes are considered a manifestation of accumulated cellular damage and defective repair. This is particularly apparent in the primary cell type of the articular joint, the articular chondrocytes. Articular chondrocytes are constantly facing the challenge of stressors, including mechanical overloading, oxidation, DNA damage, proteostatic stress, and metabolic imbalance. The consequence of the accumulation of stress on articular chondrocytes is aberrant mitogenesis and differentiation, defective extracellular matrix production and turnover, cellular senescence, and cell death. The most severe form of stress-induced chondrocyte dysfunction in the joints is osteoarthritis (OA). Here, we summarize studies on the cellular effects of stressors on articular chondrocytes and demonstrate that the molecular effectors of the stress pathways connect to amplify articular joint dysfunction and OA development.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Yang
- Laboratory of Skeletal Biology, Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| |
Collapse
|
13
|
Che Z, Song Y, Zhu L, Liu T, Li X, Huang L. Emerging roles of growth factors in osteonecrosis of the femoral head. Front Genet 2022; 13:1037190. [PMID: 36452155 PMCID: PMC9702520 DOI: 10.3389/fgene.2022.1037190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/24/2022] [Indexed: 12/20/2023] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a potentially disabling orthopedic condition that requires total hip arthroplasty in most late-stage cases. However, mechanisms underlying the development of ONFH remain unknown, and the therapeutic strategies remain limited. Growth factors play a crucial role in different physiological processes, including cell proliferation, invasion, metabolism, apoptosis, and stem cell differentiation. Recent studies have reported that polymorphisms of growth factor-related genes are involved in the pathogenesis of ONFH. Tissue and genetic engineering are attractive strategies for treating early-stage ONFH. In this review, we summarized dysregulated growth factor-related genes and their role in the occurrence and development of ONFH. In addition, we discussed their potential clinical applications in tissue and genetic engineering for the treatment of ONFH.
Collapse
Affiliation(s)
- Zhenjia Che
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Song
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Liwei Zhu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Tengyue Liu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xudong Li
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Lanfeng Huang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Mechanically Derived Tissue Stromal Vascular Fraction Acts Anti-inflammatory on TNF Alpha-Stimulated Chondrocytes In Vitro. Bioengineering (Basel) 2022; 9:bioengineering9080345. [PMID: 35892757 PMCID: PMC9332748 DOI: 10.3390/bioengineering9080345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Enzymatically isolated stromal vascular fraction (SVF) has already shown to be effective as a treatment for osteoarthritis (OA). Yet, the use of enzymes for clinical purpose is highly regulated in many countries. Mechanical preparation of SVF results in a tissue-like SVF (tSVF) containing intact cell−cell connections including extracellular matrix (ECM) and is therefore less regulated. The purpose of this study was to investigate the immunomodulatory and pro-regenerative effect of tSVF on TNFα-stimulated chondrocytes in vitro. tSVF was mechanically derived using the Fractionation of Adipose Tissue (FAT) procedure. Characterization of tSVF was performed, e.g., cellular composition based on CD marker expression, colony forming unit and differentiation capacity after enzymatic dissociation (from heron referred to as tSVF-derived cells). Different co-cultures of tSVF-derived cells and TNFα-stimulated chondrocytes were analysed based on the production of sulphated glycosaminoglycans and the anti-inflammatory response of chondrocytes. Characterization of tSVF-derived cells mainly contained ASCs, endothelial cells, leukocytes and supra-adventitial cells. tSVF-derived cells were able to form colonies and differentiate into multiple cell lineages. Co-cultures with chondrocytes resulted in a shift of the ratio between tSVF cells: chondrocytes, in favor of chondrocytes alone (p < 0.05), and IL-1β and COX2 gene expression was upregulated in TNFα-treated chondrocytes. After treatment with (a conditioned medium of) tSVF-derived cells, IL-1β and COX2 gene expression was significantly reduced (p < 0.01). These results suggest mechanically derived tSVF stimulates chondrocyte proliferation while preserving the function of chondrocytes. Moreover, tSVF suppresses TNFα-stimulated chondrocyte inflammation in vitro. This pro-regenerative and anti-inflammatory effect shows the potential of tSVF as a treatment for osteoarthritis.
Collapse
|
15
|
Lei L, Meng L, Changqing X, Chen Z, Gang Y, Shiyuan F. Effect of cell receptors in the pathogenesis of osteoarthritis: Current insights. Open Life Sci 2022; 17:695-709. [PMID: 35859614 PMCID: PMC9267313 DOI: 10.1515/biol-2022-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
Osteoarthritis (OA) is a chronic arthritic disease characterized by cartilage degradation, synovial inflammation, and subchondral bone lesions. The studies on the pathogenesis of OA are complex and diverse. The roles of receptors signaling in chondrocyte anabolism, inflammatory factors expression of synovial fibroblast, and angiogenesis in subchondral bone are particularly important for exploring the pathological mechanism of OA and clinical diagnosis and treatment. By reviewing the relevant literature, this article elaborates on the abnormal expression of receptors and the signaling transduction pathways from different pathological changes of OA anatomical components, aiming to provide new research ideas and clinical therapeutic value for OA pathogenesis.
Collapse
Affiliation(s)
- Li Lei
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Li Meng
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Xu Changqing
- Department of Orthopaedics, Dongxihu District People's Hospital Affiliated to Huazhong University of Science and Technology, Wuhan, China
| | - Zhu Chen
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Yao Gang
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Fang Shiyuan
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| |
Collapse
|
16
|
Kim JG, Rim YA, Ju JH. The Role of Transforming Growth Factor Beta in Joint Homeostasis and Cartilage Regeneration. Tissue Eng Part C Methods 2022; 28:570-587. [PMID: 35331016 DOI: 10.1089/ten.tec.2022.0016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) is an important regulator of joint homeostasis, of which dysregulation is closely associated with the development of osteoarthritis (OA). In normal conditions, its biological functions in a joint environment are joint protective, but it can be dramatically altered in different contexts, making its therapeutic application a challenge. However, with the deeper insights into the TGF-β functions, it has been proven that TGF-β augments cartilage regeneration by chondrocytes, and differentiates both the precursor cells of chondrocytes and stem cells into cartilage-generating chondrocytes. Following documentation of the therapeutic efficacy of chondrocytes augmented by TGF-β in the last decade, there is an ongoing phase III clinical trial examining the therapeutic efficacy of a mixture of allogeneic chondrocytes and TGF-β-overexpressing cells. To prepare cartilage-restoring chondrocytes from induced pluripotent stem cells (iPSCs), the stem cells are differentiated mainly using TGF-β with some other growth factors. Of note, clinical trials evaluating the therapeutic efficacy of iPSCs for OA are scheduled this year. Mesenchymal stromal stem cells (MSCs) have inherent limitations in that they differentiate into the osteochondral pathway, resulting in the production of poor-quality cartilage. Despite the established essential role of TGF-β in chondrogenic differentiation of MSCs, whether the coordinated use of TGF-β in MSC-based therapy for degenerated cartilage is effective is unknown. We herein reviewed the general characteristics and mechanism of action of TGF-β in a joint environment. Furthermore, we discussed the core interaction of TGF-β with principal cells of OA cell-based therapies, the chondrocytes, MSCs, and iPSCs. Impact Statement Transforming growth factor-beta (TGF-β) has been widely used as a core regulator to improve or formulate therapeutic regenerative cells for degenerative joints. It differentiates stem cells into chondrocytes and improves the chondrogenic potential of differentiated chondrocytes. Herein, we discussed the overall characteristics of TGF-β and reviewed the comprehension and utilization of TGF-β in cell-based therapy for degenerative joint disease.
Collapse
Affiliation(s)
- Jung Gon Kim
- Division of Rheumatology, Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
17
|
Potential Methods of Targeting Cellular Aging Hallmarks to Reverse Osteoarthritic Phenotype of Chondrocytes. BIOLOGY 2022; 11:biology11070996. [PMID: 36101377 PMCID: PMC9312132 DOI: 10.3390/biology11070996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease that causes pain, physical disability, and life quality impairment. The pathophysiology of OA remains largely unclear, and currently no FDA-approved disease-modifying OA drugs (DMOADs) are available. As has been acknowledged, aging is the primary independent risk factor for OA, but the mechanisms underlying such a connection are not fully understood. In this review, we first revisit the changes in OA chondrocytes from the perspective of cellular hallmarks of aging. It is concluded that OA chondrocytes share many alterations similar to cellular aging. Next, based on the findings from studies on other cell types and diseases, we propose methods that can potentially reverse osteoarthritic phenotype of chondrocytes back to a healthier state. Lastly, current challenges and future perspectives are summarized.
Collapse
|
18
|
Pandey V, Madi S, Gupta P. The promising role of autologous and allogeneic mesenchymal stromal cells in managing knee osteoarthritis. What is beyond Mesenchymal stromal cells? J Clin Orthop Trauma 2022; 26:101804. [PMID: 35242531 PMCID: PMC8857498 DOI: 10.1016/j.jcot.2022.101804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) express a wide range of properties anticipated to be beneficial for treating genetic, mechanical, and age-related degeneration in diseases such as osteoarthritis (OA). Although contemporary conservative management of OA is successful in many patients with mild-moderate OA, it often fails to improve symptoms in many patients who are not a candidate for any surgical management. Further, existing conservative treatment strategies do not prevent the progression of the disease and therefore fail to provide a long-term pain-free life. On the other hand, tremendous progress has been taking place in the exciting field of regenerative medicine involving MSCs (autologous and allogeneic), with promising translation taking place from basic science to the bedside. In this review, we comprehensively discuss the potential role of MSCs in treating OA, both autologous and off-the-shelf, allogeneic stem cells. Further, newer therapies are in the offing to treat OA, such as exosomes and growth factors.
Collapse
Affiliation(s)
- Vivek Pandey
- Sports Injury and Arthroscopy Division, Orthopaedics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India,Corresponding author. Sports injury and arthroscopy division, Orthopaedics, Kasturba medical college, Manipal. Manipal academy of Higher education, Manipal, 576104, India.
| | - Sandesh Madi
- Sports Injury and Arthroscopy Division, Orthopaedics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Pawan Gupta
- Stempeutics Research Pvt. Ltd, Manipal Hospital, Whitefield, Banaglore, 560048, India
| |
Collapse
|
19
|
Nowaczyk A, Szwedowski D, Dallo I, Nowaczyk J. Overview of First-Line and Second-Line Pharmacotherapies for Osteoarthritis with Special Focus on Intra-Articular Treatment. Int J Mol Sci 2022; 23:1566. [PMID: 35163488 PMCID: PMC8835883 DOI: 10.3390/ijms23031566] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) can be defined as the result of pathological processes of various etiologies leading to damage to the articular structures. Although the mechanism of degenerative changes has become better understood due to the plethora of biochemical and genetic studies, the drug that could stop the degenerative cascade is still unknown. All available forms of OA therapy are based on symptomatic treatment. According to actual guidelines, comprehensive treatment of OA should always include a combination of various therapeutic options aimed at common goals, which are pain relief in the first place, and then the improvement of function. Local treatment has become more common practice, which takes place between rehabilitation and pharmacological treatment in the hierarchy of procedures. Only in the case of no improvement and the presence of advanced lesions visible in imaging tests, should surgery be considered. Currently, an increasing number of studies are being published suggesting that intra-articular injections may be as effective or even more effective than non-steroidal anti-inflammatory drugs (NSAIDs) and result in fewer systemic adverse events. The most commonly used preparations are hyaluronic acid (HA), glucocorticosteroids (GS), and also platelet-rich plasma (PRP) in recent years. This review aims to present the mechanism of action and clinical effectiveness of different pharmacological options in relieving pain and improving functions in OA as well as the emerging approach in intra-articular treatment with PRP.
Collapse
Affiliation(s)
- Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, LudwikRydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
| | - Dawid Szwedowski
- Department of Orthopaedics and Trauma Surgery, Provincial Polyclinical Hospital, 87-100 Toruń, Poland;
- Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation, Gobbi N.P.O., 20133 Milan, Italy
| | - Ignacio Dallo
- Unit of Biological Therapies, SportMe Medical Center, Department of Orthopaedic Surgery and Sports Medicine, 41013 Seville, Spain;
| | - Jacek Nowaczyk
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina St., 87-100 Toruń, Poland
| |
Collapse
|
20
|
Zhou Q, Ren Q, Jiao L, Huang J, Yi J, Chen J, Lai J, Ji G, Zheng T. The potential roles of JAK/STAT signaling in the progression of osteoarthritis. Front Endocrinol (Lausanne) 2022; 13:1069057. [PMID: 36506076 PMCID: PMC9729341 DOI: 10.3389/fendo.2022.1069057] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is an age-related chronic progressive degenerative disease that induces persistent pain and disabilities. The development of OA is a complex process, and the risk factors are various, including aging, genetics, trauma and altered biomechanics. Inflammation and immunity play an important role in the pathogenesis of OA. JAK/STAT pathway is one of the most prominent intracellular signaling pathways, regulating cell proliferation, differentiation, and apoptosis. Inflammatory factors can act as the initiators of JAK/STAT pathway, which is implicated in the pathophysiological activity of chondrocyte. In this article, we provide a review on the importance of JAK/STAT pathway in the pathological development of OA. Potentially, JAK/STAT pathway becomes a therapeutic target for managing OA.
Collapse
Affiliation(s)
- Qingluo Zhou
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Linhui Jiao
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jun Yi
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jincai Chen
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinliang Lai
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Guanglin Ji, ; Tiansheng Zheng,
| | - Tiansheng Zheng
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Guanglin Ji, ; Tiansheng Zheng,
| |
Collapse
|
21
|
Cecerska-Heryć E, Goszka M, Serwin N, Roszak M, Grygorcewicz B, Heryć R, Dołęgowska B. Applications of the regenerative capacity of platelets in modern medicine. Cytokine Growth Factor Rev 2021; 64:84-94. [PMID: 34924312 DOI: 10.1016/j.cytogfr.2021.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Platelets produce platelet growth factors such as PDGF, IGF-1, EGF-, HGF, TGFβ, bFGF, and VEGF, which are crucial in regulating all stages of the wound healing process. The source of these substances is platelet-rich plasma (PRP). Over the past five decades, the interest and use of the regenerative properties of platelets have increased significantly in many different fields of medicine around the world. PRP and PRF plate preparations are used in: 1. Dentistry (they reduce bleeding, facilitate and accelerate soft tissue healing and bone regeneration - FGF 2, IGF-1, IGF-2, TGF-β1, and PDGF); 2. Sports medicine - IGF-1, IGF-2, TGF-β, VEGF, PDGF and bFGF, EGF); 3. dermatology and cosmetology (treatment of alopecia, hair reconstruction - FGF-7, HGF, acne scars, skin rejuvenation and regeneration, treatment of chronic and poorly healing wounds, burns, and acquired vitiligo); 4. Gynecology and reproductive medicine (treatment of infertility, erectile dysfunction - PDGF-β, TGF-β, IGF-1, in sexual dysfunction - PDGF, in vaginal atrophy); 5 Ophthalmology (in the healing of corneal epithelial wounds, in the treatment of dormant corneal ulcers, dry eye syndrome and the reconstruction of the corneal surface; 6. Neurology (regeneration of neurons, pain alleviation, and clinical symptoms - TGF-β 1, IGF-1, PDGF, VEGF) and FGF). Platelet-rich plasma therapy is a very interesting alternative and complement to traditional methods of treatment. However, the potential for using platelets is still not fully understood. The composition of platelet-rich plasma depends on many factors that may affect its use's efficacy and clinical benefits. Further research is necessary to standardize PRP delivery's preparation procedures and methods for a specific disease entity or clinical case.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland.
| | - Małgorzata Goszka
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Marta Roszak
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Rafał Heryć
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
22
|
Teunissen M, Miranda Bedate A, Coeleveld K, Riemers FM, Meij BP, Lafeber FPJG, Tryfonidou MA, Mastbergen SC. Enhanced Extracellular Matrix Breakdown Characterizes the Early Distraction Phase of Canine Knee Joint Distraction. Cartilage 2021; 13:1654S-1664S. [PMID: 34014119 PMCID: PMC8721609 DOI: 10.1177/19476035211014595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Joint distraction triggers intrinsic cartilage repair in animal models of osteoarthritis (OA), corroborating observations in human OA patients treated with joint distraction. The present study explores the still largely elusive mechanism initiating this repair process. DESIGN Unilateral OA was induced in the knee joint of 8 dogs using the groove model; the contralateral joint served as a control. After 10 weeks, 4 animals received joint distraction, the other 4 serving as OA controls. Halfway the distraction period (after 4 weeks of a standard 8-week distraction treatment), all animals were euthanized, and joint tissues were collected. A targeted quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis was performed of commonly involved processes including matrix catabolism/anabolism, inflammation, and known signaling pathways in OA. In addition, cartilage changes were determined on tissue sections using the canine OARSI (Osteoarthritis Research Society International) histopathology score and collagen type II (COL2A1) immunostaining. RESULTS Midway distraction, the distracted OA joint showed an upregulation of proteolytic genes, for example, ADAMTS5, MMP9, MMP13, compared to OA alone and the healthy joints, which correlated with an increased OARSI score. Additionally, genes of the transforming growth factor (TGF)-β and Notch pathway, and markers associated with progenitor cells were increased. CONCLUSIONS Joint distraction initiates both catabolic and anabolic transcriptional responses. The enhanced turnover, and thereby renewal of the matrix, could be the key to the cartilage repair observed in the months after joint distraction.
Collapse
Affiliation(s)
- Michelle Teunissen
- Department of Clinical Sciences,
Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alberto Miranda Bedate
- Department of Clinical Sciences,
Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Katja Coeleveld
- Rheumatology & Clinical Immunology,
UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Frank M. Riemers
- Department of Clinical Sciences,
Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Björn P. Meij
- Department of Clinical Sciences,
Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Floris P. J. G. Lafeber
- Rheumatology & Clinical Immunology,
UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences,
Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Simon C. Mastbergen
- Rheumatology & Clinical Immunology,
UMC Utrecht, Utrecht University, Utrecht, The Netherlands,Simon C. Mastbergen, Rheumatology &
Clinical Immunology, UMC Utrecht, Utrecht University, G02.228, PO Box 85500, GA,
Utrecht 3508, The Netherlands.
| |
Collapse
|
23
|
Austin-Williams S, Hussain MT, Oggero S, Norling LV. Enhancing extracellular vesicles for therapeutic treatment of arthritic joints. Free Radic Biol Med 2021; 175:80-94. [PMID: 34461260 DOI: 10.1016/j.freeradbiomed.2021.08.235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles are small membrane-derived packages of information that are released from virtually all cell types. These nano-packages contain regulatory material including proteins, lipids, mRNA and microRNA and are a key mechanism of paracellular communication within a given microenvironment. Encompassed with a lipid bilayer, these organelles have been attributed numerous roles in regulating both physiological and pathological functions. Herein, we describe the role of EVs in the context of Rheumatoid and Osteoarthritis and explore how they could be harnessed to treat inflammatory and degenerative joint conditions. These structures offer a promising therapeutic strategy for treating musculoskeletal diseases due to their bioactive content, stability, small size and intrinsic ability to enter the avascular cartilage, a notoriously challenging tissue to target. We also discuss how EVs can be manipulated to load therapeutic cargo or present additional targeting moieties to enhance their beneficial actions and tissue regenerative properties.
Collapse
Affiliation(s)
- Shani Austin-Williams
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Mohammed T Hussain
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Silvia Oggero
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Lucy V Norling
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, UK.
| |
Collapse
|
24
|
Extracellular vesicles as novel approaches for the treatment of osteoarthritis: a narrative review on potential mechanisms. J Mol Histol 2021; 52:879-891. [PMID: 34510315 DOI: 10.1007/s10735-021-10017-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is a progressive degeneration of articular cartilage with involvement of synovial membrane, and subchondral bone. Current treatment approaches have focused on controlling the OA symptoms, pain, and inflammation. Recently, cell-based therapies, including the application of stem cells such as mesenchymal stem cells (MSCs), have been introduced for restoration of the articular cartilage. Despite promising outcomes, there are some limitations in the application of MSCs for OA treatment. It has been demonstrated that the regenerative potential of stem cells is related to the production of paracrine factors. Extracellular vehicles (EVs), the main component of cell secretome, are membrane-bounded structures that deliver biologically active agents. The delivery of molecules (e.g., nucleic acids, proteins, and lipids) leads to cell-to-cell communication and the alteration of cell functions. In this review, general characteristics of EVs, as well as their potential mechanisms in the prevention and treatment of OA were considered. Based on in vitro and in vivo studies, EVs have shown to contribute to cartilage regeneration via suppression of degenerative factors and regulation of chondrocyte function in the synthesis of extracellular matrix components. Also, they inhibit the progression of OA or protect the cartilage from degradation via their impact on inflammatory cytokines. The different signaling pathways of EVs against the pathologic features of OA were summarized in this review. According to the results obtained from several investigations, more investigations should be design to prove the safety and effectiveness of EVs in the treatment and prevention of OA progression.
Collapse
|
25
|
Drapal V, Gamble JM, Robinson JL, Tamerler C, Arnold PM, Friis EA. Integration of clinical perspective into biomimetic bioreactor design for orthopedics. J Biomed Mater Res B Appl Biomater 2021; 110:321-337. [PMID: 34510706 PMCID: PMC9292211 DOI: 10.1002/jbm.b.34929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022]
Abstract
The challenges to accommodate multiple tissue formation metrics in conventional bioreactors have resulted in an increased interest to explore novel bioreactor designs. Bioreactors allow researchers to isolate variables in controlled environments to quantify cell response. While current bioreactor designs can effectively provide either mechanical, electrical, or chemical stimuli to the controlled environment, these systems lack the ability to combine all these stimuli simultaneously to better recapitulate the physiological environment. Introducing a dynamic and systematic combination of biomimetic stimuli bioreactor systems could tremendously enhance its clinical relevance in research. Thus, cues from different tissue responses should be studied collectively and included in the design of a biomimetic bioreactor platform. This review begins by providing a summary on the progression of bioreactors from simple to complex designs, focusing on the major advances in bioreactor technology and the approaches employed to better simulate in vivo conditions. The current state of bioreactors in terms of their clinical relevance is also analyzed. Finally, this review provides a comprehensive overview of individual biophysical stimuli and their role in establishing a biomimetic microenvironment for tissue engineering. To date, the most advanced bioreactor designs only incorporate one or two stimuli. Thus, the cell response measured is likely unrelated to the actual clinical performance. Integrating clinically relevant stimuli in bioreactor designs to study cell response can further advance the understanding of physical phenomenon naturally occurring in the body. In the future, the clinically informed biomimetic bioreactor could yield more efficiently translatable results for improved patient care.
Collapse
Affiliation(s)
- Victoria Drapal
- Bioengineering Program, University of Kansas, Lawrence, Kansas, USA
| | - Jordan M Gamble
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Jennifer L Robinson
- Bioengineering Program, University of Kansas, Lawrence, Kansas, USA.,Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Candan Tamerler
- Bioengineering Program, University of Kansas, Lawrence, Kansas, USA.,Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas, USA.,Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas, USA
| | - Paul M Arnold
- Carle School of Medicine, University of Illinois-Champaign Urbana, Champaign, Illinois, USA
| | - Elizabeth A Friis
- Bioengineering Program, University of Kansas, Lawrence, Kansas, USA.,Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas, USA.,Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
26
|
Azami M, Beheshtizadeh N. Identification of regeneration-involved growth factors in cartilage engineering procedure promotes its reconstruction. Regen Med 2021; 16:719-731. [PMID: 34287065 DOI: 10.2217/rme-2021-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: To fabricate mature cartilage for implantation, developmental biological processes and proteins should be understood and employed. Methods: A systems biology study of all protein-coding genes participating in cartilage regeneration resulted in a network graph with 11 nodes and 28 edges. Gene ontology and centrality analysis were performed based on the degree index. Results: The four most crucial biological processes along with the seven most interactive proteins involved in cartilage regeneration were identified. Some proteins, which are under serious discussion in cartilage developmental and disease processes, are included in regeneration. Conclusions: Findings positively correlate with the literature, supporting the use of the four most impressive proteins as growth factors applicable to cartilage tissue engineering, including COL2A1, SOX9, CTGF and TGFβ1.
Collapse
Affiliation(s)
- Mahmoud Azami
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Regenerative Medicine group (REMED), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Regenerative Medicine group (REMED), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| |
Collapse
|
27
|
Resh MD. Palmitoylation of Hedgehog proteins by Hedgehog acyltransferase: roles in signalling and disease. Open Biol 2021; 11:200414. [PMID: 33653085 PMCID: PMC8061759 DOI: 10.1098/rsob.200414] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hedgehog acyltransferase (Hhat), a member of the membrane-bound O-acyltransferase (MBOAT) family, catalyses the covalent attachment of palmitate to the N-terminus of Hedgehog proteins. Palmitoylation is a post-translational modification essential for Hedgehog signalling. This review explores the mechanisms involved in Hhat acyltransferase enzymatic activity, similarities and differences between Hhat and other MBOAT enzymes, and the role of palmitoylation in Hedgehog signalling. In vitro and cell-based assays for Hhat activity have been developed, and residues within Hhat and Hedgehog essential for palmitoylation have been identified. In cells, Hhat promotes the transfer of palmitoyl-CoA from the cytoplasmic to the luminal side of the endoplasmic reticulum membrane, where Shh palmitoylation occurs. Palmitoylation is required for efficient delivery of secreted Hedgehog to its receptor Patched1, as well as for the deactivation of Patched1, which initiates the downstream Hedgehog signalling pathway. While Hhat loss is lethal during embryogenesis, mutations in Hhat have been linked to disease states or abnormalities in mice and humans. In adults, aberrant re-expression of Hedgehog ligands promotes tumorigenesis in an Hhat-dependent manner in a variety of different cancers, including pancreatic, breast and lung. Targeting hedgehog palmitoylation by inhibition of Hhat is thus a promising, potential intervention in human disease.
Collapse
Affiliation(s)
- Marilyn D Resh
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 143, New York, NY 10065, USA
| |
Collapse
|
28
|
Zhu X, Chan YT, Yung PSH, Tuan RS, Jiang Y. Subchondral Bone Remodeling: A Therapeutic Target for Osteoarthritis. Front Cell Dev Biol 2021; 8:607764. [PMID: 33553146 PMCID: PMC7859330 DOI: 10.3389/fcell.2020.607764] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
There is emerging awareness that subchondral bone remodeling plays an important role in the development of osteoarthritis (OA). This review presents recent investigations on the cellular and molecular mechanism of subchondral bone remodeling, and summarizes the current interventions and potential therapeutic targets related to OA subchondral bone remodeling. The first part of this review covers key cells and molecular mediators involved in subchondral bone remodeling (osteoclasts, osteoblasts, osteocytes, bone extracellular matrix, vascularization, nerve innervation, and related signaling pathways). The second part of this review describes candidate treatments for OA subchondral bone remodeling, including the use of bone-acting reagents and the application of regenerative therapies. Currently available clinical OA therapies and known responses in subchondral bone remodeling are summarized as a basis for the investigation of potential therapeutic mediators.
Collapse
Affiliation(s)
- Xiaobo Zhu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yau Tsz Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick S H Yung
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
29
|
Zhang W, Qi L, Chen R, He J, Liu Z, Wang W, Tu C, Li Z. Circular RNAs in osteoarthritis: indispensable regulators and novel strategies in clinical implications. Arthritis Res Ther 2021; 23:23. [PMID: 33436088 PMCID: PMC7802294 DOI: 10.1186/s13075-021-02420-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, circular RNAs (circRNAs) have emerged as a hot spot and sparked intensive interest. Initially considered as the transcriptional noises, further studies have indicated that circRNAs are crucial regulators in multiple cellular biological processes, and thus engage in the development and progression of many diseases including osteoarthritis (OA). OA is a prevalent disease that mainly affects those aging, obese and post-traumatic population, posing as a major source of socioeconomic burden. Recently, numerous circRNAs have been found aberrantly expressed in OA tissues compared with counterparts. More importantly, circRNAs have been demonstrated to interplay with components in OA microenvironments, such as chondrocytes, synoviocytes and macrophages, by regulation of their proliferation, apoptosis, autophagy, inflammation, or extracellular matrix reorganization. Herein, in this review, we extensively summarize the roles of circRNAs in OA microenvironment, progression, and putative treatment, as well as envision the future directions for circRNAs research in OA, with the aim to provide a novel insight into this field.
Collapse
Affiliation(s)
- Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China
| | - Ruiqi Chen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China.
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China.
| |
Collapse
|
30
|
Allas L, Brochard S, Rochoux Q, Ribet J, Dujarrier C, Veyssiere A, Aury-Landas J, Grard O, Leclercq S, Vivien D, Ea HK, Maubert E, Cohen-Solal M, Boumediene K, Agin V, Baugé C. EZH2 inhibition reduces cartilage loss and functional impairment related to osteoarthritis. Sci Rep 2020; 10:19577. [PMID: 33177650 PMCID: PMC7658239 DOI: 10.1038/s41598-020-76724-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Histone methyltransferase EZH2 is upregulated during osteoarthritis (OA), which is the most widespread rheumatic disease worldwide, and a leading cause of disability. This study aimed to assess the impact of EZH2 inhibition on cartilage degradation, inflammation and functional disability. In vitro, gain and loss of EZH2 function were performed in human articular OA chondrocytes stimulated with IL-1β. In vivo, the effects of EZH2 inhibition were investigated on medial meniscectomy (MMX) OA mouse model. The tissue alterations were assayed by histology and the functional disabilities of the mice by actimetry and running wheel. In vitro, EZH2 overexpression exacerbated the action of IL-1β in chondrocytes increasing the expression of genes involved in inflammation, pain (NO, PGE2, IL6, NGF) and catabolism (MMPs), whereas EZH2 inhibition by a pharmacological inhibitor, EPZ-6438, reduced IL-1β effects. Ex vivo, EZH2 inhibition decreased IL-1β-induced degradation of cartilage. In vivo, intra-articular injections of the EZH2 inhibitor reduced cartilage degradation and improved motor functions of OA mice. This study demonstrates that the pharmacological inhibition of the histone methyl-transferase EZH2 slows the progression of osteoarthritis and improves motor functions in an experimental OA model, suggesting that EZH2 could be an effective target for the treatment of OA by reducing catabolism, inflammation and pain.
Collapse
Affiliation(s)
- Lyess Allas
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
| | - Sybille Brochard
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
| | - Quitterie Rochoux
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
- Service de Rhumatologie, CHU, Caen, France
| | - Jules Ribet
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
- Service de Rhumatologie, CHU, Caen, France
| | - Cleo Dujarrier
- UMRS1237 PhIND, INSERM, Normandie Univ, Institut Blood and Brain @ Caen-Normandie, Université de Caen, Caen, France
| | - Alexis Veyssiere
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
- Service de Chirurgie Maxillo-Faciale, CHU, Caen, France
| | | | - Ophélie Grard
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
| | - Sylvain Leclercq
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
- Service de Chirurgie Orthopédique, Clinique Saint-Martin, Caen, France
| | - Denis Vivien
- UMRS1237 PhIND, INSERM, Normandie Univ, Institut Blood and Brain @ Caen-Normandie, Université de Caen, Caen, France
- Department of Clinical Research, CHU Caen-Normandie, Caen, France
| | - Hang-Korng Ea
- UMR-1132 BIOSCAR, INSERM, Université de Paris, Paris, France
| | - Eric Maubert
- UMRS1237 PhIND, INSERM, Normandie Univ, Institut Blood and Brain @ Caen-Normandie, Université de Caen, Caen, France
| | | | - Karim Boumediene
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
| | - Véronique Agin
- UMRS1237 PhIND, INSERM, Normandie Univ, Institut Blood and Brain @ Caen-Normandie, Université de Caen, Caen, France
| | - Catherine Baugé
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France.
| |
Collapse
|
31
|
Smith JF, Starr EG, Goodman MA, Hanson RB, Palmer TA, Woolstenhulme JB, Weyand JA, Marchant AD, Bueckers SL, Nelson TK, Sterling MT, Rose BJ, Porter JP, Eggett DL, Kooyman DL. Topical Application of Wogonin Provides a Novel Treatment of Knee Osteoarthritis. Front Physiol 2020; 11:80. [PMID: 32132930 PMCID: PMC7040489 DOI: 10.3389/fphys.2020.00080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by inflammatory degradation of articular cartilage and subchondral bone. Wogonin, a compound extracted from the plant Scutellaria baicalensis (colloquially known as skullcap), has previously been shown to have direct anti-inflammatory and antioxidative properties. We examined the pain-reducing, anti-inflammatory, and chondroprotective effects of wogonin when applied as a topical cream. We validated the efficacy of delivering wogonin transdermally in a cream using pig ear skin in a Franz diffusion system. Using a surgical mouse model, we examined the severity and progression of OA with and without the topical application of wogonin. Using a running wheel to track activity, we found that mice with wogonin treatment were statistically more active than mice receiving vehicle treatment. OA progression was analyzed using modified Mankin and OARSI scoring and direct quantification of cyst-like lesions at the chondro-osseus junction; in each instance we observed a statistically significant attenuation of OA severity among mice treated with wogonin compared to the vehicle treatment. Immunohistochemistry revealed a significant decrease in protein expression of transforming growth factor β1 (TGF-β1), high temperature receptor A1 (HTRA1), matrix metalloprotease 13 (MMP-13) and NF-κB in wogonin-treated mice, further bolstering the cartilage morphology assessments in the form of a decrease in inflammatory and OA biomarkers.
Collapse
Affiliation(s)
- Jacob F. Smith
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Evan G. Starr
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Michael A. Goodman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Romney B. Hanson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Trent A. Palmer
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Jonathan B. Woolstenhulme
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Jeffery A. Weyand
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Andrew D. Marchant
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Shawen L. Bueckers
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Tanner K. Nelson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Matthew T. Sterling
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Brandon J. Rose
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - James P. Porter
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | | | - David L. Kooyman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
32
|
Role of Signal Transduction Pathways and Transcription Factors in Cartilage and Joint Diseases. Int J Mol Sci 2020; 21:ijms21041340. [PMID: 32079226 PMCID: PMC7072930 DOI: 10.3390/ijms21041340] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis and rheumatoid arthritis are common cartilage and joint diseases that globally affect more than 200 million and 20 million people, respectively. Several transcription factors have been implicated in the onset and progression of osteoarthritis, including Runx2, C/EBPβ, HIF2α, Sox4, and Sox11. Interleukin-1 β (IL-1β) leads to osteoarthritis through NF-ĸB, IκBζ, and the Zn2+-ZIP8-MTF1 axis. IL-1, IL-6, and tumor necrosis factor α (TNFα) play a major pathological role in rheumatoid arthritis through NF-ĸB and JAK/STAT pathways. Indeed, inhibitory reagents for IL-1, IL-6, and TNFα provide clinical benefits for rheumatoid arthritis patients. Several growth factors, such as bone morphogenetic protein (BMP), fibroblast growth factor (FGF), parathyroid hormone-related protein (PTHrP), and Indian hedgehog, play roles in regulating chondrocyte proliferation and differentiation. Disruption and excess of these signaling pathways cause genetic disorders in cartilage and skeletal tissues. Fibrodysplasia ossificans progressive, an autosomal genetic disorder characterized by ectopic ossification, is induced by mutant ACVR1. Mechanistic target of rapamycin kinase (mTOR) inhibitors can prevent ectopic ossification induced by ACVR1 mutations. C-type natriuretic peptide is currently the most promising therapy for achondroplasia and related autosomal genetic diseases that manifest severe dwarfism. In these ways, investigation of cartilage and chondrocyte diseases at molecular and cellular levels has enlightened the development of effective therapies. Thus, identification of signaling pathways and transcription factors implicated in these diseases is important.
Collapse
|
33
|
Tao F, Jiang T, Tao H, Cao H, Xiang W. Primary cilia: Versatile regulator in cartilage development. Cell Prolif 2020; 53:e12765. [PMID: 32034931 PMCID: PMC7106963 DOI: 10.1111/cpr.12765] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/21/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023] Open
Abstract
Cartilage is a connective tissue in the skeletal system and has limited regeneration ability and unique biomechanical reactivity. The growth and development of cartilage can be affected by different physical, chemical and biological factors, such as mechanical stress, inflammation, osmotic pressure, hypoxia and signalling transduction. Primary cilia are multifunctional sensory organelles that regulate diverse signalling transduction and cell activities. They are crucial for the regulation of cartilage development and act in a variety of ways, such as react to mechanical stress, mediate signalling transduction, regulate cartilage‐related diseases progression and affect cartilage tumorigenesis. Therefore, research on primary cilia‐mediated cartilage growth and development is currently extremely popular. This review outlines the role of primary cilia in cartilage development in recent years and elaborates on the potential regulatory mechanisms from different aspects.
Collapse
Affiliation(s)
- Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ting Jiang
- Department of Neurological Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hui Cao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Liao L, Zhang S, Zhao L, Chang X, Han L, Huang J, Chen D. Acute Synovitis after Trauma Precedes and is Associated with Osteoarthritis Onset and Progression. Int J Biol Sci 2020; 16:970-980. [PMID: 32140066 PMCID: PMC7053339 DOI: 10.7150/ijbs.39015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a whole-joint disease characterized by cartilage destruction, subchondral bone sclerosis, osteophyte formation, and synovitis. However, it remains unclear which part of the joint undergoes initial pathological changes that drives OA onset and progression. In the present study, we investigated the longitudinal alterations of the entire knee joint using a surgically-induced OA mouse model. Histology analysis showed that synovitis occurred as early as 1 week after destabilization of the medial meniscus (DMM), which preceded the events of cartilage degradation, subchondral sclerosis and osteophyte formation. Importantly, key pro-inflammatory cytokines such as IL-1β, IL-6, TNFα, and Ccl2, major matrix degrading enzymes including Adamts4, Mmp3 and Mmp13, as well as nerve growth factor (NGF), all increased significantly in both synovium and articular cartilage. It is notable that the inductions of these factors in synovium are far more extensive than those in articular cartilage. Results from behavioral tests demonstrated that sensitization of knee joint pain developed after 8 weeks, later than histological and molecular changes. In addition, the nanoindentation modulus of the medial tibiae decreased 4 weeks after DMM surgery, simultaneous with histological OA signs, which is also later than appearance of synovitis. Collectively, our data suggested that synovitis precedes and is associated with OA, and thus synovium may be an important target to intervene in OA treatment.
Collapse
Affiliation(s)
- Lifan Liao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Implant Dentistry, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Shanxing Zhang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Xiaofeng Chang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Implant Dentistry, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
35
|
Fan Y, Zhao L, Xie W, Yi D, He S, Chen D, Huang J. Serum miRNAs are potential biomarkers for the detection of disc degeneration, among which miR-26a-5p suppresses Smad1 to regulate disc homeostasis. J Cell Mol Med 2019; 23:6679-6689. [PMID: 31338931 PMCID: PMC6787501 DOI: 10.1111/jcmm.14544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 12/26/2022] Open
Abstract
Disc degeneration is a common clinical condition in which damaged discs cause chronic pain; however, a laboratory diagnosis method for its detection is not available. As circulating miRNAs have potential as biomarkers, their application in disc degeneration has not been explored. Here, we prepared serum miRNAs from a mouse disc degeneration model and performed miRNA‐Seq and quantitative PCR to characterize disc degeneration–associated miRNAs. We identified three miRNAs, including miR‐26a‐5p, miR‐122‐5p and miR‐215‐5p, undergoing perturbation during the pathogenesis of disc degeneration. Specifically, the levels of miR‐26a‐5p in the serum demonstrated steady increases in the model of disc degeneration, compared with those in the pre‐injury samples of younger age or compared with normal controls of the same age but without disc degeneration, whereas the miRNAs miR‐122‐5p and miR‐215‐5p exhibited lower expression in post‐injury samples than in their counterparts without the surgery. Moreover, we found that miR‐26a‐5p targets Smad1 expression, and Smad1 negatively regulates Vegfa expression in disc cells, and thus, miR‐26a‐5p promotes disc degeneration. In summary, we established a method that consistently profiles circulating miRNAs and identified multiple miRNAs as promising biomarkers for disc degeneration, among which miR‐26a‐5p enhances VEGF expression during disc degeneration through targeting Smad1 signalling.
Collapse
Affiliation(s)
- Yunshan Fan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Wanqing Xie
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Dan Yi
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Shisheng He
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
36
|
Huang J, Zhao L, Fan Y, Liao L, Ma PX, Xiao G, Chen D. The microRNAs miR-204 and miR-211 maintain joint homeostasis and protect against osteoarthritis progression. Nat Commun 2019; 10:2876. [PMID: 31253842 PMCID: PMC6599052 DOI: 10.1038/s41467-019-10753-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/24/2019] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is a common, painful disease. Currently OA is incurable, and its etiology largely unknown, partly due to limited understanding of OA as a whole-joint disease. Here we report that two homologous microRNAs, miR-204 and miR-211, maintain joint homeostasis to suppress OA pathogenesis. Specific knockout of miR-204/-211 in mesenchymal progenitor cells (MPCs) results in Runx2 accumulation in multi-type joint cells, causing whole-joint degeneration. Specifically, miR-204/-211 loss-of-function induces matrix-degrading proteases in articular chondrocytes and synoviocytes, stimulating articular cartilage destruction. Moreover, miR-204/-211 ablation enhances NGF expression in a Runx2-dependent manner, and thus hyper-activates Akt signaling and MPC proliferation, underlying multiplex non-cartilaginous OA conditions including synovial hyperplasia, osteophyte outgrowth and subchondral sclerosis. Importantly, miR-204/-211-deficiency-induced OA is largely rescued by Runx2 insufficiency, confirming the miR-204/-211-Runx2 axis. Further, intraarticular administration of miR-204-expressing adeno-associated virus significantly decelerates OA progression. Collectively, miR-204/-211 are essential in maintaining healthy homeostasis of mesenchymal joint cells to counteract OA pathogenesis. Osteoarthritis involves whole-joint tissue degeneration. Here, the authors show that miR-204 and miR-211 in mesenchymal joint cells regulate their proliferation, catabolic and osteogenic responses, and that disease progression is ameliorated by intra-articular miR-204 delivery in mice.
Collapse
Affiliation(s)
- Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Yunshan Fan
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Lifan Liao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Peter X Ma
- Department of Biologic and Materials Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Guozhi Xiao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|