1
|
Salem HF, Aboud HM, Abdellatif MM, Abou-Taleb HA. Nose-to-Brain Targeted Delivery of Donepezil Hydrochloride via Novel Hyaluronic Acid-Doped Nanotransfersomes for Alzheimer's Disease Mitigation. J Pharm Sci 2024; 113:1934-1945. [PMID: 38369023 DOI: 10.1016/j.xphs.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Alzheimer's disease is the most serious neurodegenerative disorder characterized by cognitive and memorial defects alongside deterioration in behavioral, thinking and social skills. Donepezil hydrochloride (DPZ) is one of the current two FDA-approved cholinesterase inhibitors used for the management of Alzheimer's disease. The current study aimed to formulate hyaluronic acid-coated transfersomes containing DPZ (DPZ-HA-TFS) for brain delivery through the intranasal pathway to surpass its oral-correlated GIT side effects. DPZ-HA-TFS were produced using a thin film hydration method and optimized with a 24 factorial design. The influence of formulation parameters on vesicle diameter, entrapment, cumulative release after 8 h, and ex vivo nasal diffusion after 24 h was studied. The optimal formulation was then evaluated for morphology, stability, histopathology and in vivo biodistribution studies. The optimized DPZ-HA-TFS formulation elicited an acceptable vesicle size (227.5 nm) with 75.83% entrapment efficiency, 37.94% cumulative release after 8 h, 547.49 µg/cm2 permeated through nasal mucosa after 24 h and adequate stability. Histopathological analysis revealed that the formulated DPZ-HA-TFS was nontoxic and tolerable for intranasal delivery. Intranasally administered DPZ-HA-TFS manifested significantly superior values for drug targeting index (5.08), drug targeting efficiency (508.25%) and direct nose-to-brain transport percentage (80.32%). DPZ-HA-TFS might be deemed as a promising intranasal nano-cargo for DPZ cerebral delivery to tackle Alzheimer's disease safely, steadily and in a non-invasive long-term pattern.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Heba M Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Mostafa M Abdellatif
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Heba A Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Merit University, Sohag, Egypt
| |
Collapse
|
2
|
Elhoseny SM, Saleh NM, Meshali MM. Self-Nanoemulsion Intrigues the Gold Phytopharmaceutical Chrysin: In Vitro Assessment and Intrinsic Analgesic Effect. AAPS PharmSciTech 2024; 25:54. [PMID: 38443653 DOI: 10.1208/s12249-024-02767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/10/2024] [Indexed: 03/07/2024] Open
Abstract
Chrysin is a natural flavonoid with a wide range of bioactivities. Only a few investigations have assessed the analgesic activity of chrysin. The lipophilicity of chrysin reduces its aqueous solubility and bioavailability. Hence, self-nanoemulsifying drug delivery systems (SNEDDS) were designed to overcome this problem. Kollisolv GTA, Tween 80, and Transcutol HP were selected as oil, surfactant, and cosurfactant, respectively. SNEDDS A, B, and C were prepared, loaded with chrysin (0.1%w/w), and extensively evaluated. The optimized formula (B) encompasses 25% Kollisolv GTA, 18.75% Tween 80, and 56.25% Transcutol HP was further assessed. TEM, in vitro release, and biocompatibility towards the normal oral epithelial cell line (OEC) were estimated. Brain targeting and acetic acid-induced writhing in a mouse model were studied. After testing several adsorbents, powdered SNEDDS B was formulated and evaluated. The surfactant/cosurfactant (S/CoS) ratio of 1:3 w/w was appropriate for the preparation of SNEDDS. Formula B exhibited instant self-emulsification, spherical nanoscaled droplets of 155.4 ± 32.02 nm, and a zeta potential of - 12.5 ± 3.40 mV. The in vitro release proved the superiority of formula B over chrysin suspension (56.16 ± 10.23 and 9.26 ± 1.67%, respectively). The biocompatibility of formula B towards OEC was duplicated (5.69 ± 0.03 µg/mL). The nociceptive pain was mitigated by formula B more efficiently than chrysin suspension as the writhing numbers reduced from 8.33 ± 0.96 to 0 after 60 min of oral administration. Aerosil R972 was selected as an adsorbent, and its chemical compatibility was confirmed. In conclusion, our findings prove the therapeutic efficacy of chrysin self-nanoemulsion as a potential targeting platform to combat pain.
Collapse
Affiliation(s)
- Samar Mohamed Elhoseny
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Noha Mohamed Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mahasen Mohamed Meshali
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
3
|
Phan NT, Tran YTH, Nguyen LT, Hoang YK, Bui CK, Nguyen HD, Vu GTT. Self Nanoelmusifying Drug Delivery System of Rosuvastatin: Bioavailability Evaluation and In vitro - In vivo Correlation. Curr Drug Deliv 2024; 21:734-743. [PMID: 36545742 DOI: 10.2174/1567201820666221220104244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Rosuvastatin, most commonly used in the form of calcium salt, belongs to the statin groups of synthetic antihyperlipidemic agents. Rosuvastatin possesses high permeability, however, its aqueous solubility is poor, causing a slow dissolution rate in water. Consequently, this dissolution rate has a decisive role in the release and absorption of rosuvastatin in the gastrointestinal tube. OBJECTIVE The aims of this study were to evaluate the absorption of the drug from the self-nano emulsifying drug delivery system of rosuvastatin (Ros SNEDDS) compared to rosuvastatin substance and to develop a level-A in vitro-in vivo correlation (IVIVC) for Ros SNEDDS. METHODS An in-house developed LC-MS/MS method was used to determine the concentrations of rosuvastatin in dog plasma. Six beagle dogs received an intravenous dose, Ros SNEDDS, rosuvastatin substance. In vitro dissolution of the Ros SNEDDS was carried out with different conditions. Correlation models were developed from the dissolution and absorption results of Ros SNEDDS. RESULTS The results showed a 1.7-fold enhanced oral bioavailability and 2.1-time increase of rosuvastatin Cmax in Ros SNEDDS form, compared to the rosuvastatin substance. A 900 ml dissolution medium of pH of 6.6 has demonstrated its suitability, the in vitro dissolution model was studied and supported by the Weibull equation with a weighting factor of 1/y2 as it presented the lowest values of AIC. CONCLUSION Ros SNEDDS demonstrated higher bioavailability of rosuvastatin in comparison to rosuvastatin substance and established a level A IVIVC used in future bioequivalence trials.
Collapse
Affiliation(s)
- Nghia Thi Phan
- Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi, Vietnam
- Bioequivalence Centre, National Institute of Drug Quality Control, Hanoi, Vietnam
| | - Yen Thi Hai Tran
- Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Linh Tran Nguyen
- Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Yen Kieu Hoang
- Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Cuong Khac Bui
- Laboratory Animal Research Center, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoa Dang Nguyen
- Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Giang Thi Thu Vu
- Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi, Vietnam
| |
Collapse
|
4
|
Alhadrami HA, El-Din ASGS, Hassan HM, Sayed AM, Alhadrami AH, Rateb ME, Naguib DM. Development and Evaluation of a Self-Nanoemulsifying Drug Delivery System for Sinapic Acid with Improved Antiviral Efficacy against SARS-CoV-2. Pharmaceutics 2023; 15:2531. [PMID: 38004511 PMCID: PMC10674535 DOI: 10.3390/pharmaceutics15112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
This study aimed to develop a self-nanoemulsifying drug delivery system (SNE) for sinapic acid (SA) to improve its solubility and antiviral activity. Optimal components for the SA-SNE formulation were selected, including Labrafil as the oil, Cremophor EL as the surfactant, and Transcutol as the co-surfactant. The formulation was optimized using surface response design, and the optimized SA-SNE formulation exhibited a small globule size of 83.6 nm, high solubility up to 127.1 ± 3.3, and a 100% transmittance. In vitro release studies demonstrated rapid and high SA release from the formulation. Pharmacokinetic analysis showed improved bioavailability by 2.43 times, and the optimized SA-SNE formulation exhibited potent antiviral activity against SARS-CoV-2. The developed SA-SNE formulation can enhance SA's therapeutic efficacy by improving its solubility, bioavailability, and antiviral activity. Further in silico, modeling, and Gaussian accelerated molecular dynamics (GaMD)-based studies revealed that SA could interact with and inhibit the viral main protease (Mpro). This research contributes to developing effective drug delivery systems for poorly soluble drugs like SA, opening new possibilities for their application via nebulization in SARS-CoV-2 therapy.
Collapse
Affiliation(s)
- Hani A Alhadrami
- Faculty of Applied Medical Sciences, Department of Medical Laboratory Technology, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Centre, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia
- Molecular Diagnostics Laboratory, King Abdulaziz University Hospital, P.O. Box 80402, Jeddah 21589, Saudi Arabia
| | - Ahmed S G Srag El-Din
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science & Technology, Gamasa City 35712, Egypt
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| | - Albaraa H Alhadrami
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Demiana M Naguib
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef 62513, Egypt
| |
Collapse
|
5
|
Zaki RM, Seshadri VD, Mutayran AS, Elsawaf LA, Hamad AM, Almurshedi AS, Yusif RM, Said M. Wound Healing Efficacy of Rosuvastatin Transethosomal Gel, I Optimal Optimization, Histological and In Vivo Evaluation. Pharmaceutics 2022; 14:pharmaceutics14112521. [PMID: 36432712 PMCID: PMC9692372 DOI: 10.3390/pharmaceutics14112521] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed to make a formulation and statistical optimization of transethosomal formulations of rosuvastatin (ROS) to enhance its topical wound healing efficiency. Design-Expert® software was used to employ I optimal design. The formulation variables in the study were surfactant concentration (%w/v), ethanol concentration (%w/v) and surfactant type (span 60 or tween 80), while the dependent responses were entrapment efficiency percent (EE%), vesicle size (VS) and zeta potential (ZP). The numerical optimization process employed by the design expert software resulted in an optimum formula composed of 0.819439 (%w/v) span 60, 40 (%w/v) ethanol and 100 mg lecithin with a desirability of 0.745. It showed a predicted EE% value of 66.5517 vs. 277.703 nm and a ZP of -33. When it was prepared and validated, it showed less than a 5% deviation from the predicted values. The optimum formula was subjected to further characterizations, such as DSC, XRD, TEM, in vitro release, the effect of aging and wound healing efficiency. The DSC thermogram made a confirmation of the compatibility of ROS with the ingredients used in the formulation. XRD showed the encapsulation of ROS in the transethosomal vesicles. The TEM image pointed out the spherical nature of the nanovesicles with the absence of aggregation. Additionally, the optimum formula revealed an enhancement of drug release in comparison with the drug suspension. It also showed good stability for one month. Furthermore, it revealed good wound healing efficiency when compared with the standard silver sulphadiazine (1% w/w) ointment or the drug-loaded gel, which could be related to the enhanced penetration of the nanosized vesicles of TESMs into the skin, which enhances the wound healing process. So, it could be regarded as a promising carrier of ROS for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
- Correspondence: ; Tel.: +966-540-617-870
| | - Vidya Devanathadesikan Seshadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Alanoud S. Mutayran
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Lara A. Elsawaf
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Abubaker M. Hamad
- Department of Pathophysiology, College of Health Sciences, AL-Rayan Colleges, Al-Hijra Road, Madinah Al Munawwarah 42541, Saudi Arabia
| | - Alanood S. Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Rehab Mohammad Yusif
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, P.O. Box 30039, Madinah Al Munawwarah 41477, Saudi Arabia
| | - Mayada Said
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
6
|
Panigrahi KC, Patra CN, Rao MEB, Jena GK, Sahoo L. SEDDS Basic Design and Recent Formulation Advancement: A Concurrent Review. Pharm Nanotechnol 2022; 10:289-298. [PMID: 35980062 DOI: 10.2174/2211738510666220817124744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 12/29/2022]
Abstract
In the present scenario, lipid-based novel drug delivery systems are the area of interest for the formulation scientist in order to improve the bioavailability of poorly water-soluble drugs. A selfemulsifying drug delivery system (SEDDS) upon contact with the gastrointestinal fluid, forms an o/w emulsion. SEDDS has gained popularity as a potential platform for improving the bioavailability of the lipophilic drug by overcoming several challenges. The various advantages like improved solubility, bypassing lymphatic transport, and improvement in bioavailability are associated with SMEDDS or SNEDDS. The extent of the formation of stable SEDDS depends on a specific combination of surfactant, co-surfactant, and oil. The present review highlighted the different aspects of formulation design along with optimization and characterization of SEDDS formulation. It also gives a brief description of the various aspects of the excipients used in SEDDS formulation. This review also includes the conflict between types of SEDDS based on droplet size. There is an extensive review of various research regarding different solidification techniques used for SEDDS in the last three years.
Collapse
Affiliation(s)
- K C Panigrahi
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences (Affiliated to Biju Patnaik University of Technology), Odisha, India
| | - C N Patra
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences (Affiliated to Biju Patnaik University of Technology), Odisha, India
| | - M E B Rao
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences (Affiliated to Biju Patnaik University of Technology), Odisha, India
| | - G K Jena
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences (Affiliated to Biju Patnaik University of Technology), Odisha, India
| | - L Sahoo
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences (Affiliated to Biju Patnaik University of Technology), Odisha, India
| |
Collapse
|
7
|
Tonjan R, Singh D. Functional Excipients and Novel Drug Delivery Scenario in Self-nanoemulsifying Drug Delivery System: A Critical Note. Pharm Nanotechnol 2022; 10:PNT-EPUB-125930. [PMID: 36043758 DOI: 10.2174/2211738510666220829085745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
Lipid-based formulations have emerged as prospective dosage forms for extracting the therapeutic effects of existing lipophilic compounds and novel chemical entities more efficiently. Compared to other excipients, lipids have the added benefit of enhancing the bioavailability of lipophilic and highly metabolizable drugs due to their unique physicochemical features and similarities to in vivo components. Furthermore, lipids can minimize the needed dose and even the toxicity of drugs with poor aqueous solubility when employed as the primary excipient. Hence, the aim of the present review is to highlight the functional behavior of lipid excipients used in SNEDD formulation along with the stability aspects of the formulation in vivo. Moreover, this review also covered the importance of SNEDDS in drug delivery, the therapeutic and manufacturing benefits of lipids as excipients, and the technological advances made so far to convert liquid to solid SNEDDS like melt granulation, adsorption on solid support, spray cooling, melt extrusion/ spheronization has also highlighted. The mechanistic understanding of SNEDD absorption in vivo is highly complex, which was discussed very critically in this review. An emphasis on their application and success on an industrial scale was presented, as supported by case studies and patent surveys.
Collapse
Affiliation(s)
- Russel Tonjan
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road (NH-95), Ghal Kalan, Moga, Punjab 142001, INDIA
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road (NH-95), Ghal Kalan, Moga, Punjab 142001, INDIA
| |
Collapse
|
8
|
Dayar E, Pechanova O. Targeted Strategy in Lipid-Lowering Therapy. Biomedicines 2022; 10:1090. [PMID: 35625827 PMCID: PMC9138651 DOI: 10.3390/biomedicines10051090] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/25/2023] Open
Abstract
Dyslipidemia is characterized by a diminished lipid profile, including increased level of total cholesterol and low-density lipoprotein cholesterol (LDL-c) and reduced level of high-density lipoprotein cholesterol (HDL-c). Lipid-lowering agents represent an efficient tool for the prevention or reduction of progression of atherosclerosis, coronary heart diseases and metabolic syndrome. Statins, ezetimibe, and recently proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are the most effective and used drugs in clinical lipid-lowering therapy. These drugs are mainly aimed to lower cholesterol levels by different mechanisms of actions. Statins, the agents of the first-line therapy-known as 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors-suppress the liver cholesterol synthesis. Ezetimibe as the second-line therapy can decrease cholesterol by inhibiting cholesterol absorption. Finally, the PCSK9 inhibitors act as an inducer of LDL excretion. In spite of their beneficial lipid-lowering properties, many patients suffer from their serious side effects, route of administration, or unsatisfactory physicochemical characteristics. Clinical demand for dose reduction and the improvement of bioavailability as well as pharmacodynamic and pharmacokinetic profile has resulted in the development of a new targeted therapy that includes nanoparticle carriers, emulsions or vaccination often associated with another more subtle form of administration. Targeted therapy aims to exert a more potent drug profile with lipid-lowering properties either alone or in mutual combination to potentiate their beneficial effects. This review describes the most effective lipid-lowering drugs, their favorable and adverse effects, as well as targeted therapy and alternative treatments to help reduce or prevent atherosclerotic processes and cardiovascular events.
Collapse
Affiliation(s)
| | - Olga Pechanova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
| |
Collapse
|
9
|
Qader AB, Kumar S, Kohli K, Hussein AA. Garlic oil loaded rosuvastatin solid self-nanoemulsifying drug delivery system to improve level of high-density lipoprotein for ameliorating hypertriglyceridemia. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2021.1929604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Adnan Burhan Qader
- Department of Pharmaceutics, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, India
| | - Kanchan Kohli
- Lloyd Institute of Management and Technology (Pharm.), Greater Noida, India
| | - Ahmed Abbas Hussein
- Department of Pharmaceutics, College of Pharmacy, Baghdad University, Baghdad, Iraq
| |
Collapse
|
10
|
Spanlastics as an efficient delivery system for the enhancement of thymoquinone anticancer efficacy: Fabrication and cytotoxic studies against breast cancer cell lines. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Mahmoudian M, Maleki Dizaj S, Salatin S, Löbenberg R, Saadat M, Islambulchilar Z, Valizadeh H, Zakeri-Milani P. Oral delivery of solid lipid nanoparticles: underlining the physicochemical characteristics and physiological condition affecting the lipolysis rate. Expert Opin Drug Deliv 2021; 18:1707-1722. [PMID: 34553650 DOI: 10.1080/17425247.2021.1982891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Lipid-based nano-drug delivery systems (LBNDDSs) have gained widespread attention in oral drug delivery due to their tunable and versatile properties such as biocompatibility and biodegradability, which makes them promising delivery systems for a variety of therapeutics. Currently, different types of LBNDDSs including liposomes, micelles, nanoemulsions, and solid lipid nanoparticles (SLNs) are developed for drug delivery applications. SLNs can be used as a controlled drug delivery system for oral delivery applications. However, its lipidic context makes that susceptible to lipolysis. The lipolysis rate of SLNs is affected by many factors that raise many questions for developing a more efficient delivery system. AREAS COVERED In the present work, we highlighted different factors affecting the digestion rate/level of SLNs in the gastrointestinal tract. This paper can be most useful for those researchers who are keen to develop a properly controlled drug delivery system based on SLNs for oral delivery applications. EXPERT OPINION SLNs can be used as a controlled drug delivery system for oral delivery applications. However, its lipidic context makes that susceptible to lipolysis. The lipolysis rate of SLNs is affected by many factors that raise many questions for developing a more efficient delivery system.
Collapse
Affiliation(s)
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Maryam Saadat
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Dawoud MHS, Fayez AM, Mohamed RA, Sweed NM. Optimization of nanovesicular carriers of a poorly soluble drug using factorial design methodology and artificial neural network by applying quality by design approach. Pharm Dev Technol 2021; 26:1035-1050. [PMID: 34514957 DOI: 10.1080/10837450.2021.1980009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The current work aims to utilize a quality by design (QbD) approach to develop and optimize nanovesicular carriers of a hydrophobic drug. Rosuvastatin calcium was used as a model drug, which suffers poor bioavailability. Several tools were used in the risk assessment study as Ishikawa diagrams. The critical process parameters (CPP) were found to be the particle size, polydispersity index, zeta potential, and entrapment efficiency. A factorial design was used in risk analysis, which was complemented with an artificial neural network (ANN); to assure its accuracy. A design space was established, with an optimized nanostructured lipid carrier formula containing 3.2% total lipid content, 0.139% surfactant, and 0.1197 mg % drug. The optimized formula showed a sustained drug release up to 72 h. It successfully lowered each of the total cholesterol, low-density lipoprotein, and triglycerides and elevated the high-density lipoprotein levels, as compared to the standard drug. Thus, the concurrent use of the factorial design with ANN using the QbD approach permitted the exploration of the experimental regions for a successful nanovesicular carrier formulation and could be used as a reference for many nanostructured drug delivery studies during their pharmaceutical development and product manufacturing.
Collapse
Affiliation(s)
- Marwa H S Dawoud
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo, Egypt
| | - Ahmed M Fayez
- Department of Pharmacology, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo, Egypt
| | - Reem A Mohamed
- Department of Pharmacology, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo, Egypt
| | - Nabila M Sweed
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo, Egypt
| |
Collapse
|
13
|
Salem HF, Nafady MM, Ewees MGED, Hassan H, Khallaf RA. Rosuvastatin calcium-based novel nanocubic vesicles capped with silver nanoparticles-loaded hydrogel for wound healing management: optimization employing Box-Behnken design: in vitro and in vivo assessment. J Liposome Res 2021; 32:45-61. [PMID: 33353435 DOI: 10.1080/08982104.2020.1867166] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chronic wounds are a serious problem that could cause severe morbidity and even death. The ability of statins including rosuvastatin calcium (RVS) to enhance wound healing was well reported. However, RVS is poorly soluble and has low bioavailability. Thus, this study aimed to prepare and evaluate RVS-loaded nanocubics to enhance its skin performance. In addition, silver nanoparticles (AgNPs) exhibited potent antimicrobial activity, thus, the optimum RVS-loaded nanocubics was capped with AgNPs to evaluate its effect in wound management. Box-Behnken design was adopted to prepare RVS nanocubics. The design investigated the effect of lecithin, poloxamer 407 concentrations and hydration time on vesicle size, zeta potential (ZP), entrapment efficiency (EE%) and in vitro drug release%. Optimum formulation capped with AgNPs was incorporated into a gel base and examined for wound healing efficiency using different pharmacological tests in rats. Nanocubics have shown a mean diameter between 167.2 ± 7.8 and 408 ± 18.4 nm, ZP values ranging from -20.9 ± 1.9 to -53.5 ± 4 mV, EE% equivocated between 31.6 ± 1.4 and 94.4 ± 8.6 and drug release after 12 h between 17.9 ± 1.9 and 68.0 ± 4.0%. The histopathological studies and serum tumour necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) levels confirmed the greater efficacy of RVS nanocubics capped with AgNPs gel in wound healing when compared with gentamicin ointment. RVS-loaded nanocubic vesicles and AgNPs-loaded hydrogel could be considered as a promising platform to enhance the wound healing and tissue repair processes.
Collapse
Affiliation(s)
- Heba F Salem
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed Mahmoud Nafady
- Pharmaceutics and Clinical Pharmacy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | | | - Hend Hassan
- Pharmaceutics and Clinical Pharmacy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Rasha A Khallaf
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
14
|
Abdelmonem R, Azer MS, Makky A, Zaghloul A, El-Nabarawi M, Nada A. Development, Characterization, and in-vivo Pharmacokinetic Study of Lamotrigine Solid Self-Nanoemulsifying Drug Delivery System. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4343-4362. [PMID: 33116420 PMCID: PMC7585523 DOI: 10.2147/dddt.s263898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022]
Abstract
Purpose This study aimed to prepare solid self-nanoemulsified drug delivery system (S-SNEDDS) of lamotrigine (LMG) for enhancing its dissolution and oral bioavailability (BA). Methods Nineteen liquid SNEDDS were prepared (R1-R19) using D-optimal design with different ratios of oil, surfactant (S), and cosurfactant (Cos). The formulations were characterized regarding robustness to dilution, droplet size, thermodynamic stability testing, self-emulsification time, in-vitro release in 0.1 N HCl and phosphate buffer (PB; pH 6.8). Design Expert® 11 software was used to select the optimum formulations. Eight S-SNEDDS were prepared (S1-S8) using 23 factorial design, and characterized by differential scanning calorimetry (DSC), powder x-ray diffraction (PXRD), and scanning electron microscopy (SEM). The optimum formulation was chosen regarding in-vitro drug released in 0.1 N HCl and PB, compared to pure LMG and commercial tablet (Lamictal®). The BA of LMG from the optimized S-SNEDDS formulation was evaluated in rabbits compared to pure LMG and Lamictal®. Results The optimized S-SNEDDS was S2, consisting of R9 adsorbed on Aeroperl® 300 in a ratio of 1:1, with the best results regarding in-vitro drug released in 0.1 N HCl at 15 min (100%) compared to pure LMG (73.40%) and Lamictal® (79.43%), and in-vitro drug released in PB at 45 min (100%) compared to pure LMG (30.46%) and Lamictal® (92.08%). DSC, PXRD, and SEM indicated that LMG was molecularly dispersed within the solid nano-system. The BA of S2 was increased 2.03 and 1.605 folds compared to pure LMG, and Lamictal®, respectively. Conclusion S2 is a promising S-SNEDDS formulation. It can be a potential carrier for improving dissolution, and BA of LMG.
Collapse
Affiliation(s)
- Rehab Abdelmonem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science and Technology, 6th of October City, Giza, Egypt
| | - Marian Sobhy Azer
- Department of Pharmaceutics, Faculty of Pharmacy, Misr University for Science and Technology, 6th of October City, Giza, Egypt
| | - Amna Makky
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdelazim Zaghloul
- Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aly Nada
- Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
15
|
Akhtar N, Mohammed SA, Khan RA, Yusuf M, Singh V, Mohammed HA, Al-Omar MS, Abdellatif AA, Naz M, Khadri H. Self-Generating nano-emulsification techniques for alternatively-routed, bioavailability enhanced delivery, especially for anti-cancers, anti-diabetics, and miscellaneous drugs of natural, and synthetic origins. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
A novel transdermal nanoethosomal gel of lercanidipine HCl for treatment of hypertension: optimization using Box-Benkhen design, in vitro and in vivo characterization. Drug Deliv Transl Res 2019; 10:227-240. [DOI: 10.1007/s13346-019-00676-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Feitosa RC, Geraldes DC, Beraldo-de-Araújo VL, Costa JSR, Oliveira-Nascimento L. Pharmacokinetic Aspects of Nanoparticle-in-Matrix Drug Delivery Systems for Oral/Buccal Delivery. Front Pharmacol 2019; 10:1057. [PMID: 31607914 PMCID: PMC6771228 DOI: 10.3389/fphar.2019.01057] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/20/2019] [Indexed: 01/01/2023] Open
Abstract
Oral route maintains its predominance among the ones used for drug delivery, especially when medicines are self-administered. If the dosage form is solid, therapy gains in dose precision and drug stability. Yet, some active pharmaceutical substances do not present the required solubility, permeability, or release profile for incorporation into traditional matrices. The combination of nanostructured drugs (nanoparticle [NP]) with these matrices is a new and little-explored alternative, which could bring several benefits. Therefore, this review focused on combined delivery systems based on nanostructures to administer drugs by the oral cavity, intended for buccal, sublingual, gastric, or intestinal absorption. We analyzed published NP-in-matrix systems and compared main formulation characteristics, pharmacokinetics, release profiles, and physicochemical stability improvements. The reported formulations are mainly semisolid or solid polymers, with polymeric or lipid NPs and one active pharmaceutical ingredient. Regarding drug specifics, most of them are poorly permeable or greatly metabolized. The few studies with pharmacokinetics showed increased drug bioavailability and, sometimes, a controlled release rate. From our knowledge, the gathered data make up the first focused review of these trendy systems, which we believe will help to gain scientific deepness and future advancements in the field.
Collapse
Affiliation(s)
- Renata Carvalho Feitosa
- Laboratory of Pharmaceutical Technology (Latef), Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, Brazil.,Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Danilo Costa Geraldes
- Laboratory of Pharmaceutical Technology (Latef), Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, Brazil.,Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Viviane Lucia Beraldo-de-Araújo
- Laboratory of Pharmaceutical Technology (Latef), Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, Brazil
| | - Juliana Souza Ribeiro Costa
- Laboratory of Pharmaceutical Technology (Latef), Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, Brazil.,Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Laura Oliveira-Nascimento
- Laboratory of Pharmaceutical Technology (Latef), Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, Brazil
| |
Collapse
|
18
|
Salem HF, Kharshoum RM, Abou-Taleb HA, Naguib DM. Nanosized nasal emulgel of resveratrol: preparation, optimization, in vitro evaluation and in vivo pharmacokinetic study. Drug Dev Ind Pharm 2019; 45:1624-1634. [PMID: 31353967 DOI: 10.1080/03639045.2019.1648500] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nano-emulgel has become one of the most significant controlled release systems, which has the advantages of both gels and nano-emulsions. This work aims at the formulation of nasal nano-emulgel for resveratrol, employing carbopol 934 and poloxamer 407 as the gelling agents. The optimum nano-emulsion was determined through further characterization of the selected system. The nasal nano-emulgel was prepared and tested for the in vitro release, the release kinetics, FTIR, ex vivo permeation, nasal mucosa toxicity, and in vivo pharmacokinetic study. The optimum nano-emulsion consisted of Tween 20, Capryol 90, and Transcutol at a ratio of (54.26: 23.81: 21.93%v/v), and it exhibited transmittance of 100%, resveratrol solubility of 159.9 ± 6.4 mg/mL, globule size of 30.65 nm. The in vitro resveratrol released from nano-emulsion and nasal nano-emulgel was 96.17 ± 4.43% and 78.53 ± 4.7%, respectively. Ex vivo permeation was sustained during 12 h up to 63.95 ± 4.7%. The histopathological study demonstrated that the formula is safe and tolerable to the nasal mucosa. Cmax and AUC (0-∞) of resveratrol obtained after nasal administration of nasal nano-emulgel was 2.23 and 8.05 times, respectively. Similarly, Tmax was increased up to 3.67 ± 0.82 h. The optimized nasal nano-emulgel established intranasal safety and bioavailability enhancement so it is considered as a well-designed system to target the brain.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University , Beni Suef , Egypt
| | - Rasha M Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University , Beni Suef , Egypt
| | - Heba A Abou-Taleb
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Nahda University (NUB) , Beni Suef , Egypt
| | - Demiana M Naguib
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Nahda University (NUB) , Beni Suef , Egypt
| |
Collapse
|
19
|
Salem HF, Kharshoum RM, Abou-Taleb HA, Naguib DM. Brain targeting of resveratrol through intranasal lipid vesicles labelled with gold nanoparticles: in vivo evaluation and bioaccumulation investigation using computed tomography and histopathological examination. J Drug Target 2019; 27:1127-1134. [PMID: 31094230 DOI: 10.1080/1061186x.2019.1608553] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Resveratrol is a promising neuroprotective agent against neurodegenerative disorders such as Alzheimer's disease. Resveratrol-loaded transferosomes and nanoemulsions were developed and labelled with gold nanoparticles (GNPs). The water maze test was utilised to identify the effect on spatial memory recovery. The treated rats were examined for cellular uptake and bioaccumulation of drug in the brain using computed tomography (CT) and histopathological examination utilising GNPs as a biomarker. Compared with nanoemulsions, transferosomes displayed higher permeation of up to 81.29 ± 2.64% and higher fluorescence intensity with p < .05. Transferosomes significantly enhanced behavioural acquisition and spatial memory function in the amnesic rats compared with both the nanoemulsion formulation and the pure drug. CT effectively demonstrated the accumulation of GNPs in the brains of all treated rats, while superior accumulation of GNPs was observed in the rats that received the transferosome formulation. The histopathology also demonstrated GNP accumulation in the nuclei and cytoplasm in the brain tissues of both the transferosome- and nanoemulsion-treated groups. Therefore, the developed transferosomes may be considered as a well-designed brain targeting system that might further be applied for targeting many drugs to be used in the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Beni-Suef University , Beni-Suef , Egypt
| | - Rasha M Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Beni-Suef University , Beni-Suef , Egypt
| | - Heba A Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Nahda University (NUB) , Beni-Suef , Egypt
| | - Demiana M Naguib
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Nahda University (NUB) , Beni-Suef , Egypt
| |
Collapse
|
20
|
Panigrahi KC, Patra CN, Rao MEB. Quality by Design Enabled Development of Oral Self-Nanoemulsifying Drug Delivery System of a Novel Calcimimetic Cinacalcet HCl Using a Porous Carrier: In Vitro and In Vivo Characterisation. AAPS PharmSciTech 2019; 20:216. [PMID: 31172322 DOI: 10.1208/s12249-019-1411-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/03/2019] [Indexed: 11/30/2022] Open
Abstract
In this present research, work quality by design-enabled development of cinacalcet HCl (CH)-loaded solid self-nanoemulsifying drug delivery system (S-SNEDDS) was conducted using a porous carrier in order to achieve immediate drug release and better oral bioavailability. Capmul MCM (CAP), Tween 20 (TW 20) and Transcutol P (TRP) were selected as excipients. Cumulative % drug release at 30 min (Q30), emulsification times (ET), mean globule size (GS) and polydispersity index (PDI) were identified as critical quality attributes (CQAs). Factor mode effect analysis (FMEA) and Taguchi screening design were applied for screening of factors. The optimised single dose of S-SNEDDS obtained using Box-Behnken design (BBD) consisted of 30 mg of CH, 50 mg of CAP, 149.75 mg of TW 20, 55 mg of TRP and 260.75 mg of Neusilin US2. It showed an average Q30 of 97.6%, ET of 23.3 min, GS of 89.5 nm and PDI of 0.211. DSC, XRD and SEM predict the amorphous form of S-SNEDDS. In vivo pharmacokinetic study revealed better pharmacokinetic parameters of S-SNEDDS. The above study concluded that the optimised S-SNEDDS is effective to achieve the desired objective. Graphical Abstract.
Collapse
|
21
|
Salem HF, Kharshoum RM, Sayed OM, Abdel Hakim LF. Formulation development of self-nanoemulsifying drug delivery system of celecoxib for the management of oral cavity inflammation. J Liposome Res 2018; 29:195-205. [PMID: 30221598 DOI: 10.1080/08982104.2018.1524484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The oral administration of celecoxib (CLX) is a real problem because of its low aqueous solubility that results in high variability in absorption and its severe adverse effect such as cardiotoxic effects and gastrointestinal toxicity. Self-nanoemulsifying drug delivery systems (SNEDDS) can enhance the poor dissolution and erratic absorption of poorly water-soluble drugs such as CLX. This study was conducted to investigate the potential of SNEDDS to enhance the efficacy of CLX on inflamed mucous tissue and reduce systemic adverse effects by increasing its poor dissolution properties. A pseudo-ternary phase diagram was derived from the results of CLX solubility experiments in various excipients. These studies revealed the use of Labrafil M 2515 CS as oil, tween 80 as a surfactant, and polyethylene glycol 400 as a co-surfactant for the optimization of SNEDDS formulations. Eight formulations were formulated and characterized by their particle size, polydispersity index, viscosity, globular shape, drug solubility, self-emulsification efficiency, in vitro drug release, and permeation. The anti-inflammatory effect of CLX-SNEDDS was evaluated by carrageenan-induced cheek oedema in rats. The cheeks were treated with CLX-SNEDDS before oedema induction and then noticed for narrow periods (2 h) followed by histopathological studies to determine the efficacy of treatment. The selected formulations (F3 and F5) showed spherical morphologies under transmission electron microscopy, mean droplet sizes of 116.9 ± 1.78 and 124 ± 1.87 nm, respectively, complete in vitro drug release, and high cumulative amounts of drug permeation in 8 h. They also showed significant remarkable cheek oedema inhibition in comparison with the control groups (p < 0.05). CLX-SNEDDS was found to achieve effective local therapeutic concentration and intended to reduce cheek oedema, congestive capillary, inflammatory cells, and side effects due to lower dose size.
Collapse
Affiliation(s)
- Heba F Salem
- a Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy , University of Beni-Suef , Beni-Suef , Egypt
| | - Rasha M Kharshoum
- a Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy , University of Beni-Suef , Beni-Suef , Egypt
| | - Ossama M Sayed
- a Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy , University of Beni-Suef , Beni-Suef , Egypt
| | - Lekaa F Abdel Hakim
- a Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy , University of Beni-Suef , Beni-Suef , Egypt
| |
Collapse
|
22
|
Dou YX, Zhou JT, Wang TT, Huang YF, Chen VP, Xie YL, Lin ZX, Gao JS, Su ZR, Zeng HF. Self-nanoemulsifying drug delivery system of bruceine D: a new approach for anti-ulcerative colitis. Int J Nanomedicine 2018; 13:5887-5907. [PMID: 30319255 PMCID: PMC6167998 DOI: 10.2147/ijn.s174146] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Bruceine D (BD) is a major bioactive component isolated from the traditional Chinese medicinal plant Brucea javanica which has been widely utilized to treat dysentery (also known as ulcerative colitis [UC]). Methods To improve the water solubility and absolute bioavailability of BD, we developed a self-nanoemulsifying drug delivery system (SNEDDS) composing of MCT (oil), Solutol HS-15 (surfactant), propylene glycol (co-surfactant) and BD. The physicochemical properties and pharmacokinetics of BD-SNEDDS were characterized, and its anti-UC activity and potential mechanism were evaluated in TNBS-induced UC rat model. Results The prepared nanoemulsion has multiple beneficial aspects including small mean droplet size, low polydispersity index (PDI), high zeta potential (ZP) and excellent stability. Transmission electron microscopy showed that nanoemulsion droplets contained uniform shape and size of globules. Pharmacokinetic studies demonstrated that BD-SNEDDS exhibited enhanced pharmacokinetic parameters as compared with BD-suspension. Moreover, BD-SNEDDS significantly restored the colon length and body weight, reduced disease activity index (DAI) and colon pathology, decreased histological scores, diminished oxidative stress, and suppressed TLR4, MyD88, TRAF6, NF-κB p65 protein expressions in TNBS-induced UC rat model. Conclusion These results demonstrated that BD-SNEDDS exhibited highly improved oral bioavailability and advanced anti-UC efficacy. In conclusion, our current results provided a foundation for further research of BD-SNEDDS as a potential complementary therapeutic agent for UC treatment.
Collapse
Affiliation(s)
- Yao-Xing Dou
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Department of Pharmacy, The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China,
| | - Jiang-Tao Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Tong-Tong Wang
- Department of Pharmacy, The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China,
| | - Yan-Feng Huang
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Vicky Ping Chen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - You-Liang Xie
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jian-Sheng Gao
- Guangzhou Baiyunshan Mingxing Pharmaceutical Co. Ltd., Guangzhou, People's Republic of China
| | - Zi-Ren Su
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Hui-Fang Zeng
- Department of Pharmacy, The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China,
| |
Collapse
|