1
|
Darwish AB, Salama A, Essam Ibrahim Al-Samadi I. Formulation, optimisation, and evaluation of Lornoxicam-loaded Novasomes for targeted ulcerative colitis therapy: in vitro and in vivo investigations. J Drug Target 2025:1-14. [PMID: 39831638 DOI: 10.1080/1061186x.2025.2456929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
The purpose of this work was to create and assess Lornoxicam (LOR) loaded Novasomes (Novas) for the efficient treatment of ulcerative colitis. The study was performed using a 23 factorial design to investigate the impact of several formulation variables. Three separate parameters were investigated: Surface Active agent (SAA) type (X1), LOR concentration (X2), and SAA: Oleic acid ratio (X3). The dependent responses included encapsulation efficiency (Y1: EE %), particle size (Y2: PS), zeta potential (Y3: ZP), and polydispersity index (Y4: PDI). The vesicles demonstrated remarkable LOR encapsulation efficiency, ranging from 81.32 ± 3.24 to 98.64 ± 0.99%. The vesicle sizes ranged from 329 ± 9.88 to 583.4 ± 9.04 nm with high negative zeta potential values. The release pattern for Novas' LOR was biphasic and adhered to Higuchi's model. An in-vivo study assessed how LOR-Novas affected rats' acetic acid-induced ulcerative colitis (UC). The optimised LOR-Novas effectively reduced colonic ulceration (p < 0.05) and reduced the inflammatory pathway via inhibiting Toll-like receptor 4 (TLR4), Nuclear factor kappa β (NF-κβ) and inducible nitric oxide (iNO). At the same time, it elevated Silent information regulator-1(SIRT-1) and reduced glutathione (GSH) colon contents. Thus, the current study suggested that the formulation of LOR-Novas may be a viable treatment for ulcerative colitis.
Collapse
Affiliation(s)
| | - Abeer Salama
- Pharmacology Department, National Research Centre, Cairo, Egypt
| | - Inas Essam Ibrahim Al-Samadi
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
2
|
Manjushree H, Nayak D, Halagali P, Rathnanand M, Tawale R, Ananthmurthy K, Aranjani JM, Tippavajhala VK. Menthol-based Novel Ultra-Deformable Vesicle: Formulation, Optimization and Evaluation of an Antifungal Drug. AAPS PharmSciTech 2025; 26:23. [PMID: 39779535 DOI: 10.1208/s12249-024-03021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The current study aims to establish a novel ultra-deformable vesicular system to enhance the drug penetration across the skin by preparing the ketoconazole-loaded menthosomes. It was achieved through regular thin-film evaporation & hydration techniques. To examine the effect of formulation parameters on menthosome characteristics, a 23 full factorial design was used using Design-Expert® software. The optimized batch exhibited a vesicle size (107.6 nm), a polydispersity index (PDI) (0.248), entrapment efficiency (% EE) (76.9%), and a zeta potential (-33.7 mV). Results from ex vivo skin permeation studies and in vitro drug release demonstrated enhanced improved skin permeation and drug release compared to other formulations. An in vitro antifungal and in vivo pharmacodynamic study, elucidated the enhanced effectiveness of the optimized formulation against Candida albicans. In summary, menthosomes could serve as a potent vehicle to enhance drug penetration via the skin to improve its antifungal activity.
Collapse
Affiliation(s)
- Hema Manjushree
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576107, India
| | - Devika Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576107, India
| | - Praveen Halagali
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576107, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576107, India
| | - Roshan Tawale
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576107, India
| | - Koteshwara Ananthmurthy
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576107, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576107, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576107, India.
| |
Collapse
|
3
|
Mahmoud TM, Abdelfatah MM, Omar MM, Hasan OA, Wali SM, El-Mofty MS, Ewees MG, Salem AE, Abd-El-Galil TI, Mahmoud DM. Enhancing the Therapeutic Effect and Bioavailability of Irradiated Silver Nanoparticle-Capped Chitosan-Coated Rosuvastatin Calcium Nanovesicles for the Treatment of Liver Cancer. Pharmaceutics 2025; 17:72. [PMID: 39861720 PMCID: PMC11769262 DOI: 10.3390/pharmaceutics17010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/14/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Liver cancer is a prevalent form of carcinoma worldwide. A novel chitosan-coated optimized formulation capped with irradiated silver nanoparticles (INops) was fabricated to boost the anti-malignant impact of rosuvastatin calcium (RC). Using a 23-factorial design, eight formulations were produced using the solvent evaporation process. The formulations were characterized in vitro to identify the optimal formulation (Nop). The FTIR spectra showed that the fingerprint region is not superimposed with that of the drug; DSC thermal analysis depicted a negligible peak shift; and XRPD diffractograms revealed the disappearance of the typical drug peaks. Nop had an entrapment efficiency percent (EE%) of 86.2%, a polydispersity index (PDI) of 0.254, a zeta potential (ZP) of -35.3 mV, and a drug release after 12 h (Q12) of 55.6%. The chitosan-coated optimized formulation (CS.Nop) showed significant mucoadhesive strength that was 1.7-fold greater than Nop. Physical stability analysis of CS.Nop revealed negligible alterations in VS, ZP, PDI, and drug retention (DR) at 4 °C. The irradiated chitosan-coated optimized formulation capped with silver nanoparticles (INops) revealed the highest inhibition effect on carcinoma cells (97.12%) compared to the chitosan-coated optimized formulation (CS.Nop; 81.64) and chitosan-coated optimized formulation capped with silver nanoparticles (CS.Nop.AgNPs; 92.41). The bioavailability of CS-Nop was 4.95-fold greater than RC, with a residence time of about twice the free drug. CS.Nop has displayed a strong in vitro-in vivo correlation with R2 0.9887. The authors could propose that novel INop could serve as an advanced platform to improve oral bioavailability and enhance hepatic carcinoma recovery.
Collapse
Affiliation(s)
- Tamer Mohamed Mahmoud
- Pharmaceutics and Industrial Pharmacy Department, Al-Manara College for Medical Sciences, Maysan 62010, Iraq;
| | | | - Mahmoud Mohamed Omar
- Department of Pharmaceutics and Pharmaceutical Technology, Deraya University, Minia 61519, Egypt;
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Omiya Ali Hasan
- Department of Pharmaceutics and Pharmaceutical Technology, Deraya University, Minia 61519, Egypt;
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Saad M. Wali
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohamed S. El-Mofty
- Oral Medicine, Periodontology, Oral Diagnosis and Radiology Department, Ain Shams University, Cairo 11566, Egypt;
- Oral Medicine, Periodontology, Oral Diagnosis and Radiology Department, Nahda University, Beni-Suef 62764, Egypt
| | - Mohamed G. Ewees
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62764, Egypt;
- Department of Pharmacology and Toxicology, College of Pharmacy, Almaaqal University, Basrah 61014, Iraq
| | - Amel E. Salem
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo 11562, Egypt;
| | | | - Dina Mohamed Mahmoud
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni Suef 62764, Egypt;
| |
Collapse
|
4
|
Darwish AB, Salama A, Younis MM. Neuroprotective efficiency of celecoxib vesicular bilosomes for the management of lipopolysaccharide-induced Alzheimer in mice employing 2 3 full factorial design. Inflammopharmacology 2024; 32:3925-3942. [PMID: 39017993 PMCID: PMC11550292 DOI: 10.1007/s10787-024-01522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
The aim of this study was to develop and evaluate bilosomes loaded with Celecoxib (CXB) for the efficient treatment of Alzheimer. The thin-film hydration approach was utilized in the formulation of CXB bilosomes (CXB-BLs). The study used a 23-factorial design to investigate the impact of several formulation variables. Three separate parameters were investigated: bile salt type (X1), medication amount (X2), and lipid-bile salt ratio (X3). The dependent responses included entrapment efficiency (Y1: EE %), particle size (Y2: PS), and zeta potential (Y3: ZP). The formulation factors were statistically optimized using the Design-Expert® program. The vesicles demonstrated remarkable CXB encapsulation efficiency, ranging from 94.16 ± 1.91 to 98.38 ± 0.85%. The vesicle sizes ranged from 241.8 ± 6.74 to 352 ± 2.34 nm. The produced formulations have high negative zeta potential values, indicating strong stability. Transmission electron microscopy (TEM) revealed that the optimized vesicles had a spherical form. CXB release from BLs was biphasic, with the release pattern following Higuchi's model. In vivo studies confirmed the efficiency of CXB-BLs in management of lipopolysaccharide-induced Alzheimer as CXB-BLs ameliorated cognitive dysfunction, decreased acetylcholinesterase (AChE), and inhibited neuro-inflammation and neuro-degeneration through reducing Toll-like receptor (TLR4), and Interleukin-1β (IL-1β) levels. The findings suggested that the created CXB-BLs could be a potential drug delivery strategy for Alzheimer's treatment.
Collapse
Affiliation(s)
- Asmaa Badawy Darwish
- Pharmaceutical Technology Department, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt.
| | - Abeer Salama
- Pharmacology Department, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Mostafa Mohammed Younis
- Pharmaceutical Technology Department, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
5
|
Aralelimath K, Sahoo J, Wairkar S. Dermal drug delivery via bilosomes: a synergistic integration for better therapeutic outcomes. J Microencapsul 2024; 41:818-831. [PMID: 39508079 DOI: 10.1080/02652048.2024.2423618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The dermal route is commonly used to deliver the drugs at the targeted site and achieve maximum therapeutic efficacy. The stratum corneum, the uppermost layer of the skin, presents a significant diffusional barrier for most drugs. Various nanoformulations face challenges such as limited drug absorption and inadequate retention at the targeted site, frequently hindering therapeutic efficacy. Researchers are increasingly exploring innovative strategies that leverage nanotechnology and specialized carriers to address these challenges and enhance the outcomes of dermal medications. A novel drug delivery system, bilosomes, has been designed as a potential vesicular carrier system for the dermal route. Bilosomes are colloidal, lipid-based vesicles stabilized with bile salts, offering greater stability during storage and transportation. The lipid bilayer of bilosomes imparts ultra-flexibility, facilitating penetration through the stratum corneum. This review explores the use of bilosomes in dermal formulations for treating diverse diseases, their developmental techniques, and characterization, and it sheds light on their advantages over traditional lipid nanocarriers.
Collapse
Affiliation(s)
- Kartik Aralelimath
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, India
| | - Jagannath Sahoo
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, India
| |
Collapse
|
6
|
Said AR, Arafa MF, El-Dakroury WA, Alshehri S, El Maghraby GM. Bilosomes and Niosomes for Enhanced Intestinal Absorption and In Vivo Efficacy of Cytarabine in Treatment of Acute Myeloid Leukemia. Pharmaceuticals (Basel) 2024; 17:1572. [PMID: 39770414 PMCID: PMC11677554 DOI: 10.3390/ph17121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Cytarabine (CTR) is a hydrophilic anticancer drug used to treat leukemia. It suffers from poor permeability and intestinal metabolism, diminishing its oral bioavailability. BACKGROUND/OBJECTIVES The objective was to develop and evaluate niosomes and bilosomes for enhanced intestinal absorption; hence, oral bioavailability. RESULTS CTR-loaded niosomes and bilosomes with vesicle sizes of 152 and 204.3 nm were successfully prepared with acceptable properties. The presence of bile salts increased the zeta potential of bilosomes. The recorded entrapment efficiency of cytarabine was acceptable for such a hydrophilic drug. CTR-bilosomes showed a pH-dependent drug release pattern with preferred release in pH 6.8. Intestinal absorption behavior indicated a site-dependent CTR absorption pattern with unfavorable absorption in the distal intestine. Niosomal and bilosomal formulations enhanced intestinal absorption parameters with evidence for a predominant paracellular absorption mechanism that bypasses intestinal barriers. The investigation of the anti-leukemic effect of niosomal and bilosomal formulations indicated that both formulations ameliorated the blood parameters, reflecting significant improvement in leukemia treatment compared with the drug solution. Pathological examination of blood films revealed decreased blast cells in peripheral blood in groups treated with tested formulations. METHODS Tested formulations were prepared according to the pro-concentrate method and characterized for particle size, zeta potential, entrapment efficiency, and in vitro release. CTR-loaded niosomes and bilosomes were evaluated for enhanced intestinal absorption utilizing the single-pass in situ intestinal perfusion method in rabbits, and the anti-leukemic effect was assessed using the benzene-induced leukemia model in rats. CONCLUSIONS This study introduced surfactant vesicles for enhanced oral bioavailability of CTR.
Collapse
Affiliation(s)
- Abdelrahman R. Said
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (M.F.A.); (G.M.E.M.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt
| | - Mona F. Arafa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (M.F.A.); (G.M.E.M.)
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Walaa A. El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Gamal M. El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (M.F.A.); (G.M.E.M.)
- Faculty of Pharmacy, Alsalam University, Tanta 31527, Egypt
| |
Collapse
|
7
|
Kumar D, Sachdeva K, Tanwar R, Devi S. Review on novel targeted enzyme drug delivery systems: enzymosomes. SOFT MATTER 2024; 20:4524-4543. [PMID: 38738579 DOI: 10.1039/d4sm00301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The goal of this review is to present enzymosomes as an innovative means for site-specific drug delivery. Enzymosomes make use of an enzyme's special characteristics, such as its capacity to accelerate the reaction rate and bind to a particular substrate at a regulated rate. Enzymosomes are created when an enzyme forms a covalent linkage with a liposome or lipid vesicle surface. To construct enzymosomes with specialized activities, enzymes are linked using acylation, direct conjugation, physical adsorption, and encapsulation techniques. By reducing the negative side effects of earlier treatment techniques and exhibiting efficient medication release, these cutting-edge drug delivery systems improve long-term sickness treatments. They could be a good substitute for antiplatelet medication, gout treatment, and other traditional medicines. Recently developed supramolecular vesicular delivery systems called enzymosomes have the potential to improve drug targeting, physicochemical characteristics, and ultimately bioavailability in the pharmaceutical industry. Enzymosomes have advantages over narrow-therapeutic index pharmaceuticals as focusing on their site of action enhances both their pharmacodynamic and pharmacokinetic profiles. Additionally, it reduces changes in normal enzymatic activity, which enhances the half-life of an enzyme and accomplishes enzyme activity on specific locations.
Collapse
Affiliation(s)
- Dinesh Kumar
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| | - Komal Sachdeva
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| | - Rajni Tanwar
- Department of Pharmaceutical Sciences, Starex University, Gurugram, India
| | - Sunita Devi
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| |
Collapse
|
8
|
Kaurav H, Tripathi M, Kaur SD, Bansal A, Kapoor DN, Sheth S. Emerging Trends in Bilosomes as Therapeutic Drug Delivery Systems. Pharmaceutics 2024; 16:697. [PMID: 38931820 PMCID: PMC11206586 DOI: 10.3390/pharmaceutics16060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, there has been a notable surge in the utilization of stabilized bile acid liposomes, chemical conjugates, complexes, mixed micelles, and other drug delivery systems derived from bile acids, often referred to as bilosomes. The molecular structure and interactions of these amphiphilic compounds provide a distinctive and captivating subject for investigation. The enhanced stability of new generation bilosomes inside the gastrointestinal system results in the prevention of drug degradation and an improvement in mucosal penetration. These characteristics render bilosomes to be a prospective nanocarrier for pharmaceutical administration, prompting researchers to investigate their potential in other domains. This review paper discusses bilosomes that have emerged as a viable modality in the realm of drug delivery and have significant promise for use across several domains. Moreover, this underscores the need for additional investigation and advancement in order to comprehensively comprehend the prospective uses of bilosomes and their effectiveness in the field of pharmaceutical administration. This review study explores the current scholarly attention on bilosomes as prospective carriers for drug delivery. Therapeutic areas where bilosomes have shown outstanding performance in terms of drug delivery are outlined in the graphical abstract.
Collapse
Affiliation(s)
- Hemlata Kaurav
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, P.O. Box 9, Solan 173229, Himachal Pradesh, India; (H.K.); (M.T.); (D.N.K.)
| | - Meenakshi Tripathi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, P.O. Box 9, Solan 173229, Himachal Pradesh, India; (H.K.); (M.T.); (D.N.K.)
| | - Simran Deep Kaur
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, P.O. Box 9, Solan 173229, Himachal Pradesh, India; (H.K.); (M.T.); (D.N.K.)
| | - Amit Bansal
- Formulation Research and Development, Perrigo Company plc, Allegan, MI 49010, USA;
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, P.O. Box 9, Solan 173229, Himachal Pradesh, India; (H.K.); (M.T.); (D.N.K.)
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| |
Collapse
|
9
|
Abdallah MH, Shahien MM, Alshammari A, Ibrahim S, Ahmed EH, Atia HA, Elariny HA. The Exploitation of Sodium Deoxycholate-Stabilized Nano-Vesicular Gel for Ameliorating the Antipsychotic Efficiency of Sulpiride. Gels 2024; 10:239. [PMID: 38667658 PMCID: PMC11048809 DOI: 10.3390/gels10040239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The present study explored the effectiveness of bile-salt-based nano-vesicular carriers (bilosomes) for delivering anti-psychotic medication, Sulpiride (Su), via the skin. A response surface methodology (RSM), using a 33 Box-Behnken design (BBD) in particular, was employed to develop and optimize drug-loaded bilosomal vesicles. The optimized bilosomes were assessed based on their vesicle size, entrapment efficiency (% EE), and the amount of Sulpiride released. The Sulpiride-loaded bilosomal gel was generated by incorporating the optimized Su-BLs into a hydroxypropyl methylcellulose polymer. The obtained gel was examined for its physical properties, ex vivo permeability, and in vivo pharmacokinetic performance. The optimum Su-BLs exhibited a vesicle size of 211.26 ± 10.84 nm, an encapsulation efficiency of 80.08 ± 1.88% and a drug loading capacity of 26.69 ± 0.63%. Furthermore, the use of bilosomal vesicles effectively prolonged the release of Su over a period of twelve hours. In addition, the bilosomal gel loaded with Su exhibited a three-fold increase in the rate at which Su transferred through the skin, in comparison to oral-free Sulpiride. The relative bioavailability of Su-BL gel was almost four times as high as that of the plain Su suspension and approximately two times as high as that of the Su gel. Overall, bilosomes could potentially serve as an effective technique for delivering drugs through the skin, specifically enhancing the anti-psychotic effects of Sulpiride by increasing its ability to penetrate the skin and its systemic bioavailability, with few adverse effects.
Collapse
Affiliation(s)
- Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia;
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mona M. Shahien
- Department of Pediatrics, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia; (M.M.S.); (S.I.)
| | - Alia Alshammari
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia;
| | - Somaia Ibrahim
- Department of Pediatrics, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia; (M.M.S.); (S.I.)
| | - Enas Haridy Ahmed
- Department of Anatomy, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia;
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hanan Abdelmawgoud Atia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (H.A.A.); (H.A.E.)
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Hemat A. Elariny
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (H.A.A.); (H.A.E.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| |
Collapse
|
10
|
Emzhik M, Qaribnejad A, Haeri A, Dadashzadeh S. Bile salt-enriched vs. non-enriched nanoparticles: comparison of their physicochemical characteristics and release pattern. Pharm Dev Technol 2024; 29:187-211. [PMID: 38369965 DOI: 10.1080/10837450.2024.2320279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Bile salts were first used in the preparation of nanoparticles due to their stabilizing effects. As time went by, they attracted much attention and were increasingly employed in fabricating nanoparticles. It is well accepted that the physicochemical properties of nanoparticles are influential factors in their permeation, distribution, elimination and degree of effectiveness as well as toxicity. The review of articles shows that the use of bile salts in the structure of nanocarriers may cause significant changes in their physicochemical properties. Hence, having information about the effect of bile salts on the properties of nanoparticles could be valuable in the design of optimal carriers. Herein, we review studies in which bile salts were used in preparing liposomes, niosomes and other nanocarriers. Furthermore, the effects of bile salts on entrapment efficiency, particle size, polydispersity index, zeta potential, release profile and stability of nanoparticles are pointed out. Finally, we debate how to take advantage of bile salts potential for preparing desirable nanocarriers.
Collapse
Affiliation(s)
- Marjan Emzhik
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirsajad Qaribnejad
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Sideek SA, El-Nassan HB, Fares AR, Elkasabgy NA, ElMeshad AN. Cross-Linked Alginate Dialdehyde/Chitosan Hydrogel Encompassing Curcumin-Loaded Bilosomes for Enhanced Wound Healing Activity. Pharmaceutics 2024; 16:90. [PMID: 38258101 PMCID: PMC10819348 DOI: 10.3390/pharmaceutics16010090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The current study aimed to fabricate curcumin-loaded bilosomal hydrogel for topical wound healing purposes, hence alleviating the poor aqueous solubility and low oral bioavailability of curcumin. Bilosomes were fabricated via the thin film hydration technique using cholesterol, Span® 60, and two different types of bile salts (sodium deoxycholate or sodium cholate). Bilosomes were verified for their particle size (PS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE%), and in vitro drug release besides their morphological features. The optimum formulation was composed of cholesterol/Span® 60 (molar ratio 1:10 w/w) and 5 mg of sodium deoxycholate. This optimum formulation was composed of a PS of 246.25 ± 11.85 nm, PDI of 0.339 ± 0.030, ZP of -36.75 ± 0.14 mv, EE% of 93.32% ± 0.40, and the highest percent of drug released over three days (96.23% ± 0.02). The optimum bilosomal formulation was loaded into alginate dialdehyde/chitosan hydrogel cross-linked with calcium chloride. The loaded hydrogel was tested for its water uptake capacity, in vitro drug release, and in vivo studies on male Albino rats. The results showed that the loaded hydrogel possessed a high-water uptake percent at the four-week time point (729.50% ± 43.13) before it started to disintegrate gradually; in addition, it showed sustained drug release for five days (≈100%). In vivo animal testing and histopathological studies supported the superiority of the curcumin-loaded bilosomal hydrogel in wound healing compared to the curcumin dispersion and plain hydrogel, where there was a complete wound closure attained after the three-week period with a proper healing mechanism. Finally, it was concluded that curcumin-loaded bilosomal hydrogel offered a robust, efficient, and user-friendly dosage form for wound healing.
Collapse
Affiliation(s)
- Sarah A. Sideek
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (S.A.S.); (A.R.F.)
| | - Hala B. El-Nassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| | - Ahmed R. Fares
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (S.A.S.); (A.R.F.)
| | - Nermeen A. Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (S.A.S.); (A.R.F.)
| | - Aliaa N. ElMeshad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (S.A.S.); (A.R.F.)
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Technology, The Egyptian Chinese University, Cairo 11786, Egypt
| |
Collapse
|
12
|
Suvarna V, Mallya R, Deshmukh K, Sawant B, Khan TA, Omri A. Novel Vesicular Bilosomal Delivery Systems for Dermal/Transdermal Applications. Curr Drug Deliv 2024; 21:961-977. [PMID: 37424346 DOI: 10.2174/1567201820666230707161206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 07/11/2023]
Abstract
The application of therapeutically active molecules through the dermal/transdermal route into the skin has evolved as an attractive formulation strategy in comparison to oral delivery systems for the treatment of various disease conditions. However, the delivery of drugs across the skin is limited due to poor permeability. Dermal/transdermal delivery is associated with ease of accessibility, enhanced safety, better patient compliance, and reduced variability in plasma drug concentrations. It has the ability to bypass the first-pass metabolism, which ultimately results in steady and sustained drug levels in the systemic circulation. Vesicular drug delivery systems, including bilosomes, have gained significant interest due to their colloidal nature, improved drug solubility, absorption, and bioavailability with prolonged circulation time for a large number of new drug molecules. Bilosomes are novel lipid vesicular nanocarriers comprising bile salts, such as deoxycholic acid, sodium cholate, deoxycholate, taurocholate, glycocholate or sorbitan tristearate. These bilosomes are associated with high flexibility, deformability, and elasticity attributed to their bile acid component. These carriers are advantageous in terms of improved skin permeation, increased dermal and epidermal drug concentration, and enhanced local action with reduced systemic absorption of the drug, resulting in reduced side effects. The present article provides a comprehensive overview of the biopharmaceutical aspects of dermal/transdermal bilosome delivery systems, their composition, formulation techniques, characterization methods, and applications.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India
| | - Rashmi Mallya
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India
| | - Kajal Deshmukh
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India
| | - Bhakti Sawant
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India
| | - Tabassum Asif Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
13
|
Nayak D, Rathnanand M, Tippavajhala VK. Unlocking the Potential of Bilosomes and Modified Bilosomes: a Comprehensive Journey into Advanced Drug Delivery Trends. AAPS PharmSciTech 2023; 24:238. [PMID: 37989979 DOI: 10.1208/s12249-023-02696-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023] Open
Abstract
Vesicular drug delivery systems have revolutionized the pharmaceutical field, offering a promising path for achieving targeted and sustained drug delivery. The oral, transdermal, and ocular routes of administration offer optimal ease in attaining desired therapeutic outcomes. However, conventional treatment strategies are all plagued with several challenges, such as poor skin permeability, ocular barriers, and gastrointestinal (GIT) degradation leading to vesicular disruption with the release of the encapsulated drug before reaching the targeted site of action. In recent years, bilosomes-stabilized nanovesicles containing bile salts have received considerable attention due to their versatility and adaptability for diverse applications. These bilayered vesicles enhance the solubility of lipophilic drugs and improve formulation stability in the gastrointestinal tract. They exhibit ultra-deformable properties, improving stratum corneum permeability, making them ideal candidates for oral and transdermal drug delivery. In addition, bilosomes find utility in topical drug delivery, making them applicable for ocular administration. Over the past decade, extensive research has highlighted bilosomes' potential as superior vesicular carriers surpassing liposomes and niosomes. Advances in this field have led to the development of modified bilosomes, such as probilosomes and surface-modified bilosomes, further enhancing their capabilities and therapeutic potential. Thus, the present review provides a comprehensive summary of bilosomes, modified bilosomes, surface modifications with their mechanism of action, formulation components, preparation methods, patents, and a wide array of recent pharmaceutical applications in oral, transdermal, and ocular drug delivery. The enhanced properties of bilosomes offer promising prospects for targeted and effective drug delivery, providing potential solutions for addressing various therapeutic challenges.
Collapse
Affiliation(s)
- Devika Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
14
|
Abou Assi R, Abdulbaqi IM, Tan SM, Wahab HA, Darwis Y, Chan SY. Breaking barriers: bilosomes gel potentials to pave the way for transdermal breast cancer treatment with Tamoxifen. Drug Dev Ind Pharm 2023:1-12. [PMID: 37722711 DOI: 10.1080/03639045.2023.2256404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
OBJECTIVE Breast cancer affects women globally, regardless of age or location. On the other hand, Tamoxifen (TXN), a class II biopharmaceutical drug is acting as a prophylactic/treating agent for women at risk of and/or with hormone receptor-positive breast cancer. However, its oral administration has life-threatening side effects, which have led researchers to investigate alternative delivery methods. One such method is transdermal drug delivery utilizing bile salts as penetration enhancers, aka Bilosomes. METHODS Bilosomes formulations were optimized statistically for the outcome of vesicle shape, size, and entrapment efficiency using two types of bile, i.e. sodium taurocholate and sodium cholate. These bilosomes were then loaded into HPMC base gel and further characterized for their morphology, drug content, pH, viscosity, spreadability and eventually ex-vivo skin penetration and deposition studies. RESULTS Findings showed that sodium cholate has superiority as a penetration enhancer over sodium taurocholate in terms of morphological characterizes, zeta potential, and cumulative amounts of tamoxifen permeated per unit area (15.13 ± 0.71 μg/cm2 and 6.51 ± 0.6 μg/cm2 respectively). In fact, bilosomes designed with sodium cholate provided around 9 folds of skin deposition compared to TXN non-bilosomal gel. CONCLUSION Bilosomes gels could be a promising option for locally delivering tamoxifen to the breast through the skin, offering an encouraging transdermal solution.
Collapse
Affiliation(s)
- Reem Abou Assi
- Thoughts Formulation Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
- EDEN Research Group, Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Kirkuk, Iraq
| | - Ibrahim M Abdulbaqi
- Thoughts Formulation Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
- PractSol Research Group, College of Pharmacy, Al-Kitab University, Kirkuk, Iraq
- Pharmaceutical Design and Simulation (PhDS) Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden, Penang, Malaysia
| | - Siew Mei Tan
- Thoughts Formulation Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Habibah A Wahab
- Pharmaceutical Design and Simulation (PhDS) Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden, Penang, Malaysia
| | - Yusrida Darwis
- Thoughts Formulation Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Siok-Yee Chan
- Thoughts Formulation Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
15
|
Nanospanlastics as a Novel Approach for Improving the Oral Delivery of Resveratrol in Lipopolysaccharide-Induced Endotoxicity in Mice. J Pharm Innov 2023. [DOI: 10.1007/s12247-023-09711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Abstract
Purpose
Resveratrol (RSV) is a natural polyphenolic compound that has numerous biological effects. Owing to its poor bioavailability, only trace concentrations of RSV could be found at the site of action. Therefore, the present study was aimed at developing RSV-loaded nanospanlastics to improve its oral delivery and therapeutic activity.
Methods
RSV-loaded nanospanlastics were prepared using the thin film hydration technique. The developed formulations were characterized via vesicular size (VS), polydispersity index (PDI), zeta potential (ZP) measurements, fourier transform infrared (FT-IR) spectroscopy analysis and transmission electron microscopy (TEM). In vitro release profile was carried out using dialysis bag diffusion technique. In vivo study was carried out using lipopolysaccharide (LPS)-induced endotoxicity model in mice to evaluate the formulations activity.
Results
The results revealed the successful development of RSV-loaded nanospanlastics which exhibited EE% ranging from 45 to 85%, particle sizes ranging from 260.5 to 794.3 nm; negatively charged zeta potential (≤ − 20 mV) and TEM revealed their spherical shape. An in vitro release study showed biphasic pattern with sustained release of drug up to 24 h. In vivo results showed the superiority of RSV-loaded nanospanlastics over conventional niosomes in attenuating serum levels of liver and kidney functions (aspartate transaminase (AST), alanine transaminase (ALT), and creatinine) in LPS-induced endotoxic mice. Furthermore, both of them suppressed the elevated oxidative stress and inflammatory markers (malondialdehyde (MDA), nitric oxide (NO), and interleukin-1beta (IL-1β)) estimated in the liver and kidney tissues. However, the nanospanlastics showed a prevalence effect over conventional niosomes in kidney measurements and the histopathological examinations.
Conclusions
These findings reveal the potential of nanospanlastics in improving the oral delivery and therapeutic efficacy of RSV.
Collapse
|
16
|
Salem HF, Moubarak GA, Ali AA, Salama AAA, Salama AH. Budesonide-Loaded Bilosomes as a Targeted Delivery Therapeutic Approach Against Acute Lung Injury in Rats. J Pharm Sci 2023; 112:760-770. [PMID: 36228754 PMCID: PMC9549718 DOI: 10.1016/j.xphs.2022.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/02/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022]
Abstract
Budesonide (BUD), a glucocorticoids drug, inhibits all steps in the inflammatory response. It can reduce and treat inflammation and other symptoms associated with acute lung injury such as COVID-19. Loading BUD into bilosomes could boost its therapeutic activity, and lessen its frequent administration and side effects. Different bilosomal formulations were prepared where the independent variables were lipid type (Cholesterol, Phospholipon 80H, L-alpha phosphatidylcholine, and Lipoid S45), bile salt type (Na cholate and Na deoxycholate), and drug concentration (10, 20 mg). The measured responses were: vesicle size, entrapment efficiency, and release efficiency. One optimum formulation (composed of cholesterol, Na cholate, and 10 mg of BUD) was selected and investigated for its anti-inflammatory efficacy in vivo using Wistar albino male rats. Randomly allocated rats were distributed into four groups: The first: normal control group and received intranasal saline, the second one acted as the acute lung injury model received intranasal single dose of 2 mg/kg potassium dichromate (PD). Whereas the third and fourth groups received the market product (Pulmicort® nebulising suspension 0.5 mg/ml) and the optimized formulation (0.5 mg/kg; intranasal) for 7 days after PD instillation, respectively. Results showed that the optimized formulation decreased the pro-inflammatory cytokines TNF-α, and TGF-β contents as well as reduced PKC content in lung. These findings suggest the potentiality of BUD-loaded bilosomes for the treatment of acute lung injury with the ability of inhibiting the pro-inflammatory cytokines induced COVID-19.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ghada Abdelsabour Moubarak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt
| | - Adel A Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Abeer A A Salama
- Pharmacology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Alaa H Salama
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt; Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
17
|
Sakr MG, El-Zahaby SA, Al-Mahallawi AM, Ghorab DM. Fabrication of betaxolol hydrochloride-loaded highly permeable ocular bilosomes (HPOBs) to combat glaucoma: In vitro, ex vivo & in vivo characterizations. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104363] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
18
|
Imam SS, Gilani SJ, Zafar A, Jumah MNB, Alshehri S. Formulation of Miconazole-Loaded Chitosan-Carbopol Vesicular Gel: Optimization to In Vitro Characterization, Irritation, and Antifungal Assessment. Pharmaceutics 2023; 15:pharmaceutics15020581. [PMID: 36839903 PMCID: PMC9959533 DOI: 10.3390/pharmaceutics15020581] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Miconazole nitrate (MN) is a poorly water-soluble and antifungal drug used for fungal infections. The present research work was designed to develop topical MN-loaded bilosomes (BSs) for the improvement of therapeutic efficacy. MZBSs were prepared by using the thin-film hydration method and further optimized by using the Box-Behnken statistical design (BBD). The optimized miconazole bilosome (MZBSo) showed nano-sized vesicles, a low polydispersity index, a high entrapment efficiency, and zeta potential. Further, MZBSo was incorporated into the gel using carbopol 934P and chitosan polymers. The selected miconazole bilosome gel (MZBSoG2) demonstrated an acceptable pH (6.4 ± 0.1), viscosity (1856 ± 21 cP), and spreadability (6.6 ± 0.2 cm2). Compared to MZBSo (86.76 ± 3.7%), MZBSoG2 showed a significantly (p < 0.05) slower drug release (58.54 ± 4.1%). MZBSoG2 was found to be a non-irritant because it achieved a score of zero (standard score) in the HET-CAM test. It also exhibited significant antifungal activity compared to pure MZ against Candida albicans and Aspergillus niger. The stability study results showed no significant changes after stability testing under accelerated conditions. MZ-loaded gels could serve as effective alternative carriers for improving therapeutic efficacy.
Collapse
Affiliation(s)
- Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Foundation Year of Health Colleges, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Correspondence: (S.J.G.); (A.Z.)
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
- Correspondence: (S.J.G.); (A.Z.)
| | - May Nasser Bin Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi Society for Applied Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
19
|
Khafagy ES, Almutairy BK, Abu Lila AS. Tailoring of Novel Bile Salt Stabilized Vesicles for Enhanced Transdermal Delivery of Simvastatin: A New Therapeutic Approach against Inflammation. Polymers (Basel) 2023; 15:polym15030677. [PMID: 36771977 PMCID: PMC9921379 DOI: 10.3390/polym15030677] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Simvastatin (SMV), a cholesterol-lowering agent, has antioxidant and anti-inflammatory effects. Nevertheless, the oral use of SMV is linked with poor systemic bioavailability owing to its limited aqueous solubility and extensive first-pass metabolism. The aim of this study was to evaluate the feasibility of transdermal delivery of SMV using bile salt stabilized vesicles (bilosomes) for enhancing the anti-inflammatory potential of SMV. SMV-loaded bilosomes (SMV-BS) were prepared by the thin film hydration technique and optimized by 33 Box-Behnken design. The fabricated SMV-BS were assessed for vesicle size, entrapment efficiency (% EE) and cumulative drug release. The optimized formula was incorporated into HPMC gel and investigated for physical properties, ex vivo permeation, in vivo pharmacokinetic study and anti-inflammatory potential in inflamed paw edema rat model. The optimized SMV-BS showed vesicle size of 172.1 ± 8.1 nm and % EE of 89.2 ± 1.8%. In addition, encapsulating SMV within bilosomal vesicles remarkably sustained drug release over 12 h, compared to plain drug suspension. Furthermore, SMV-loaded bilosomal gel showed a three-fold enhancement in SMV transdermal flux, compared to plain drug suspension. Most importantly, the relative bioavailability of SMV-BS gel was ~2-fold and ~3-fold higher than those of oral SMV suspension and SMV gel, respectively. In carrageenan-induced paw edema model, SMV-BS gel induced a potent anti-inflammatory effect, as evidenced by a remarkable reduction in paw edema, which was comparable to that of the standard anti-inflammatory drug, indomethacin. Collectively, bilosomes might represent a plausible transdermal drug delivery system that could enhance the anti-inflammatory activity of SMV by boosting its skin permeation and its systemic bioavailability.
Collapse
Affiliation(s)
- El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: ; Tel.: +966-533-564-286
| | - Bjad K. Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
20
|
Formulation of tizanidine hydrochloride-loaded provesicular system for improved oral delivery and therapeutic activity employing a 2 3 full factorial design. Drug Deliv Transl Res 2023; 13:580-592. [PMID: 35927549 PMCID: PMC9794545 DOI: 10.1007/s13346-022-01217-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/31/2022]
Abstract
Tizanidine hydrochloride (TZN) is one of the most effective centrally acting skeletal muscle relaxants. The objective of this study is to prepare TZN-loaded proniosomes (TZN-PN) aiming at enhanced oral delivery and therapeutic activity. TZN-PN were prepared by coacervation phase separation method. The developed vesicles were characterized via entrapment efficiency percentage (EE%), vesicular size (VS), and zeta potential (ZP). A 23 full factorial design was employed to attain an optimized TZN-PN formulation. The optimized TZN-PN were further characterized via in vitro release study and transmission electron microscopy (TEM). In vivo rotarod test was employed for determination of the muscle relaxant activities of rats and levels of GABA and EAAT2 were detected. The developed TZN-PN exhibited relatively high EE% (75.78-85.45%), a VS ranging between (348-559 nm), and a ZP (-26.47 to -59.64). In vitro release profiles revealed sustained release of TZN from the optimized TZN-PN, compared to free drug up to 24 h. In vivo rotarod study revealed that the elevation in coordination was in the following order: normal control < free TZN < market product < TZN-PN (F6). Moreover, the optimized TZN-PN exhibited significant elevated coordination activity by 39% and 26% compared to control group and market product group, respectively. This was accompanied with an elevation in both GABA and EAAT2 serum levels. Thus, it could be concluded that encapsulation of TZN in the provesicular nanosystem proniosomes has enhanced the anti-nociceptive effect of the drug and consequently its therapeutic activity.
Collapse
|
21
|
Zewail M, Gaafar PME, Youssef NAHA, Ali ME, Ragab MF, Kamal MF, Noureldin MH, Abbas H. Novel Siprulina platensis Bilosomes for Combating UVB Induced Skin Damage. Pharmaceuticals (Basel) 2022; 16:36. [PMID: 36678533 PMCID: PMC9865528 DOI: 10.3390/ph16010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The recent interest in bioactive compounds from natural sources has led to the evolution of the skin care industry. Efforts to develop biologically active ingredients from natural sources have resulted in the emergence of enhanced skin care products. Spirulina (SPR), a nutritionally enriched cyanobacteria-type microalga, is rich in nutrients and phytochemicals. SPR possesses antioxidant, immunomodulatory, and anti-inflammatory activities. Spirulina-loaded bilosomes (SPR-BS), a novel antiaging drug delivery system, were designed for the first time by incorporation in a lecithin−bile salt-integrated system for bypassing skin delivery obstacles. The optimized BS had good entrapment efficiency, small particle size, optimal zeta potential, and sustained drug release pattern. Blank and SPR-loaded BS formulations were safe, with a primary irritancy index of <2 based on the Draize test. In vivo tests were conducted, and photoprotective antiaging effects were evaluated visually and biochemically by analyzing antioxidant, anti-inflammatory, and anti-wrinkling markers following ultraviolet (UV) B irradiation. Results of biochemical marker analysis and histopathological examination confirmed the superior antiaging effect of SPR-BS compared with SPR. Thus, SPR-loaded BS is a promising nanoplatform for SPR delivery, can be used for treating UV-induced skin damage, and offers maximum therapeutic outcomes.
Collapse
Affiliation(s)
- Mariam Zewail
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour P.O. Box 22511, Egypt
| | - Passent M. E. Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt
| | - Nancy Abdel Hamid Abou Youssef
- Department of Pharmaceutics, Faculty of Pharmacy, Pharos University in Alexandria (PUA), Alexandria P.O. Box 21500, Egypt
| | - Merhan E. Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza P.O. Box 12211, Egypt
| | - Mai F. Ragab
- Pharmacology Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo P.O. Box 11835, Egypt
| | - Miranda F. Kamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour P.O. Box 22511, Egypt
| | - Mohamed H. Noureldin
- Department of Biochemistry, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour P.O. Box 22511, Egypt
| |
Collapse
|
22
|
Elkomy MH, El Menshawe SF, Kharshoum RM, Abdeltwab AM, Hussein RRS, Hamad DS, Alsalahat I, Aboud HM. Innovative pulmonary targeting of terbutaline sulfate-laded novasomes for non-invasive tackling of asthma: statistical optimization and comparative in vitro/ in vivo evaluation. Drug Deliv 2022; 29:2058-2071. [PMID: 35801404 PMCID: PMC9272939 DOI: 10.1080/10717544.2022.2092236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Asthma represents a globally serious non-communicable ailment with significant public health outcomes for both pediatrics and adults triggering vast morbidity and fatality in critical cases. The β2-adrenoceptor agonist, terbutaline sulfate (TBN), is harnessed as a bronchodilator for monitoring asthma noising symptoms. Nevertheless, the hepatic first-pass metabolism correlated with TBN oral administration mitigates its clinical performance. Likewise, the regimens of inhaled TBN dosage forms restrict its exploitation. Consequently, this work is concerned with the assimilation of TBN into a novel non-phospholipid nanovesicular paradigm termed novasomes (NVS) for direct and effective TBN pulmonary targeting. TBN-NVS were tailored based on the thin film hydration method and Box-Behnken design was applied to statistically optimize the formulation variables. Also, the aerodynamic pattern of the optimal TBN-NVS was explored via cascade impaction. Moreover, comparative pharmacokinetic studies were conducted using a rat model. TBN elicited encapsulation efficiency as high as 70%. The optimized TBN-NVS formulation disclosed an average nano-size of 223.89 nm, ζ potential of −31.17 mV and a sustained drug release up to 24 h. Additionally, it manifested snowballed in vitro lung deposition behavior in cascade impactor with a fine particle fraction of 86.44%. In vivo histopathological studies verified safety of intratracheally-administered TBN-NVS. The pharmacokinetic studies divulged 3.88-fold accentuation in TBN bioavailability from the optimum TBN-NVS versus the oral TBN solution. Concisely, the results proposed that NVS are an auspicious nanovector for TBN pulmonary delivery with integral curbing of the disease owing to target specificity.
Collapse
Affiliation(s)
- Mohammed H Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Shahira F El Menshawe
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha M Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Amany M Abdeltwab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Raghda R S Hussein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Clinical Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Doaa S Hamad
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Izzeddin Alsalahat
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Heba M Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
23
|
Novel Bile Salt Stabilized Vesicles-Mediated Effective Topical Delivery of Diclofenac Sodium: A New Therapeutic Approach for Pain and Inflammation. Pharmaceuticals (Basel) 2022; 15:ph15091106. [PMID: 36145327 PMCID: PMC9506322 DOI: 10.3390/ph15091106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The oral delivery of diclofenac sodium (DNa), a non-steroidal analgesic, anti-inflammatory drug, is associated with various gastrointestinal side effects. The aim of the research was to appraise the potential of transdermal delivery of DNa using bilosomes as a vesicular carrier (BSVC) in inflamed paw edema. DNa-BSVCs were elaborated using a thin-film hydration technique and optimized using a 31.22 multilevel categoric design with Design Expert® software 10 software (Stat-Ease, Inc., Minneapolis, MI, USA). The effect of formulation variables on the physicochemical properties of BSVC, as well as the optimal formulation selection, was investigated. The BSVCs were evaluated for various parameters including entrapment efficiency (EE%), vesicle size (VS), zeta potential (ZP) and permeation studies. The optimized BSVC was characterized for in vitro release, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and incorporated into hydrogel base. The optimized DNa-BSVC gel effectiveness was assessed in vivo using carrageenan-induced paw edema animal model via cyclooxygenase 2 (COX-2), interleukin 6 (IL-6), Hemooxygenase 1 (HO-1) and nuclear factor-erythroid factor2-related factor 2 (Nfr-2) that potentiate anti-inflammatory and anti-oxidant activity coupled with histopathological investigation. The resulting vesicles presented VS from 120.4 ± 0.65 to 780.4 ± 0.99 nm, EE% from 61.7 ± 3.44 to 93.2 ± 2.21%, ZP from −23.8 ± 2.65 to −82.1 ± 12.63 mV and permeation from 582.9 ± 32.14 to 1350.2 ± 45.41 µg/cm2. The optimized BSVCs were nano-scaled spherical vesicles with non-overlapped bands of their constituents in the FTIR. Optimized formulation has superior skin permeability ex vivo approximately 2.5 times greater than DNa solution. Furthermore, histological investigation discovered that the formed BSVC had no skin irritating properties. It was found that DNa-BSVC gel suppressed changes in oxidative inflammatory mediators (COX-2), IL-6 and consequently enhanced Nrf2 and HO-1 levels. Moreover, reduction of percent of paw edema by about three-folds confirmed histopathological alterations. The results revealed that the optimized DNa-BSVC could be a promising transdermal drug delivery system to boost anti-inflammatory efficacy of DNa by enhancing the skin permeation of DNa and suppressing the inflammation of rat paw edema.
Collapse
|
24
|
Ahmed YM, Orfali R, Hamad DS, Rateb ME, Farouk HO. Sustainable Release of Propranolol Hydrochloride Laden with Biconjugated-Ufasomes Chitosan Hydrogel Attenuates Cisplatin-Induced Sciatic Nerve Damage in In Vitro/In Vivo Evaluation. Pharmaceutics 2022; 14:1536. [PMID: 35893792 PMCID: PMC9394333 DOI: 10.3390/pharmaceutics14081536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerve injuries significantly impact patients' quality of life and poor functional recovery. Chitosan-ufasomes (CTS-UFAs) exhibit biomimetic features, making them a viable choice for developing novel transdermal delivery for neural repair. This study aimed to investigate the role of CTS-UFAs loaded with the propranolol HCl (PRO) as a model drug in enhancing sciatica in cisplatin-induced sciatic nerve damage in rats. Hence, PRO-UFAs were primed, embedding either span 20 or 60 together with oleic acid and cholesterol using a thin-film hydration process based on full factorial design (24). The influence of formulation factors on UFAs' physicochemical characteristics and the optimum formulation selection were investigated using Design-Expert® software. Based on the optimal UFA formulation, PRO-CTS-UFAs were constructed and characterized using transmission electron microscopy, stability studies, and ex vivo permeation. In vivo trials on rats with a sciatic nerve injury tested the efficacy of PRO-CTS-UFA and PRO-UFA transdermal hydrogels, PRO solution, compared to normal rats. Additionally, oxidative stress and specific apoptotic biomarkers were assessed, supported by a sciatic nerve histopathological study. PRO-UFAs and PRO-CTS-UFAs disclosed entrapment efficiency of 82.72 ± 2.33% and 85.32 ± 2.65%, a particle size of 317.22 ± 6.43 and 336.12 ± 4.9 nm, ζ potential of -62.06 ± 0.07 and 65.24 ± 0.10 mV, and accumulatively released 70.95 ± 8.14% and 64.03 ± 1.9% PRO within 6 h, respectively. Moreover, PRO-CTS-UFAs significantly restored sciatic nerve structure, inhibited the cisplatin-dependent increase in peripheral myelin 22 gene expression and MDA levels, and further re-established sciatic nerve GSH and CAT content. Furthermore, they elicited MBP re-expression, BCL-2 mild expression, and inhibited TNF-α expression. Briefly, our findings proposed that CTS-UFAs are promising to enhance PRO transdermal delivery to manage sciatic nerve damage.
Collapse
Affiliation(s)
- Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Doaa S. Hamad
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| | - Mostafa E. Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Hanan O. Farouk
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| |
Collapse
|
25
|
Elkomy MH, Alruwaili NK, Elmowafy M, Shalaby K, Zafar A, Ahmad N, Alsalahat I, Ghoneim MM, Eissa EM, Eid HM. Surface-Modified Bilosomes Nanogel Bearing a Natural Plant Alkaloid for Safe Management of Rheumatoid Arthritis Inflammation. Pharmaceutics 2022; 14:pharmaceutics14030563. [PMID: 35335939 PMCID: PMC8951435 DOI: 10.3390/pharmaceutics14030563] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory illness affecting the joints. The characteristic of RA is gradual joint deterioration. Current RA treatment alleviates signs such as inflammation and pain and substantially slows the progression of the disease. In this study, we aimed to boost the transdermal delivery of berberine (a natural product) by encapsulating it in chitosan, surface-modified bilosomes nanogel for better management of the inflammation of RA. The chitosan-coated bilosomes loaded with berberine (BER-CTS-BLS) were formulated according to the thin-film hydration approach and optimized for various causal variables, considering the effect of lipid, sodium deoxycholate, and chitosan concentrations on the size of the particles, entrapment, and the surface charge. The optimized BER-CTS-BLS has 202.3 nm mean diameter, 83.8% entrapment, and 30.8 mV surface charge. The optimized BER-CTS-BLS exhibited a delayed-release profile in vitro and increased skin permeability ex vivo. Additionally, histological examination revealed that the formulated BLS had no irritating effects on the skin. Furthermore, the optimized BER-CTS-BLS ability to reduce inflammation was evaluated in rats with carrageenan-induced paw edema. Our results demonstrate that the group treated with topical BER-CTS-BLS gel exhibited a dramatic reduction in rat paw edema swelling percentage to reach 24.4% after 12 h, which was substantially lower than other groups. Collectively, chitosan-coated bilosomes containing berberine have emerged as a promising therapeutic approach to control RA inflammation.
Collapse
Affiliation(s)
- Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (N.K.A.); (M.E.); (K.S.); (A.Z.); (N.A.)
- Correspondence: author: ; Tel.: +966-56-096-7705
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (N.K.A.); (M.E.); (K.S.); (A.Z.); (N.A.)
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (N.K.A.); (M.E.); (K.S.); (A.Z.); (N.A.)
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (N.K.A.); (M.E.); (K.S.); (A.Z.); (N.A.)
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (N.K.A.); (M.E.); (K.S.); (A.Z.); (N.A.)
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (N.K.A.); (M.E.); (K.S.); (A.Z.); (N.A.)
| | - Izzeddin Alsalahat
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 1TP, UK;
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Essam M. Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt; (E.M.E.); (H.M.E.)
| | - Hussein M. Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt; (E.M.E.); (H.M.E.)
| |
Collapse
|
26
|
Salem HF, Nafady MM, Ali AA, Khalil NM, Elsisi AA. Evaluation of Metformin Hydrochloride Tailoring Bilosomes as an Effective Transdermal Nanocarrier. Int J Nanomedicine 2022; 17:1185-1201. [PMID: 35330695 PMCID: PMC8938169 DOI: 10.2147/ijn.s345505] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/03/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Metformin hydrochloride (metformin HCL), a first-line drug treating diabetes type II, was known to cause severe gastritis, so seeking a non-oral dosage form was the new trend. Bilosomes are bilayer nano-vesicles of non-ionic surfactants embodying bile salts. In our study, bilosomes were investigated as an acceptable novel carrier for active targeting transdermal delivery of metformin HCL, circumventing its side effects. Methods Twelve bilosome formulations were prepared with solvent evaporation method with slight modification according to a 31.22 full factorial design, and the optimized formulation was determined using Design -Expert 13 software (Stat-Ease, Inc., Minneapolis, Minnesota, USA) studying the effect of surfactant and bile salt types on the entrapment efficiency (EE), vesicle size (VS), polydispersity index (PDI), zeta potential (ZP), percentage of drug released within 24 h (R), and flux of drug permeated within 6 h (Jss) of vesicles. In addition, the optimized formulation was further evaluated to Fourier-transform infrared spectroscopy (FTIR), deformability index (DI), and transmission electron microscope (TEM) to ensure bilosomes formation, elasticity, and spherical shape, respectively. Results The resulting vesicles publicized EE from 56.21% to 94.21%, VS from 183.64 to 701.8 nm, PDI values oscillating between 0.33 and 0.53, ZP (absolute value) from 29 to 44.2 mV, biphasic release profile within 24 h from 60.62 and up to 75.28%, and permeation flux enhancement (198.79–431.91 ng cm −2 h−1) in comparison with the non-formulated drug (154.26 ng cm −2 h−1). Optimized formulation was found to be F8 with EE = 79.49%, VS = 237.68 nm, ZP = 40.9 mV, PDI = 0.325, R = 75.28%, Jss = 333.45 ng cm−2 h−1 and DI = 6.5 with spherical self-closed non-aggregated vesicles and non-superimposed bands of its components in the FTIR. Conclusion Overall results showed that bilosome incorporation of metformin HCL improved permeation and offered a new nano-carrier for active transdermal delivery. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/a-_3Fxhau2E
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammed M Nafady
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
- Correspondence: Mohammed M Nafady, Department of Pharmaceutics, Faculty of Pharmacy Nahda University, Beni-Suef, 62511, Egypt, Tel +01100719792, Email ;
| | - Adel A Ali
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nermeen M Khalil
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Amani A Elsisi
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
27
|
Abbas H, El Sayed NS, Ali ME, Elsheikh MA. Integrated lecithin–bile salt nanovesicles as a promising approach for effective skin delivery of luteolin to improve UV-induced skin damage in Wistar Albino rats. Colloids Surf B Biointerfaces 2022; 211:112299. [DOI: 10.1016/j.colsurfb.2021.112299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022]
|
28
|
Formulation and Evaluation of Topical Nano-Lipid-Based Delivery of Butenafine: In Vitro Characterization and Antifungal Activity. Gels 2022; 8:gels8020133. [PMID: 35200513 PMCID: PMC8872403 DOI: 10.3390/gels8020133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/31/2022] Open
Abstract
The present research work was designed to prepare butenafine (BN)-loaded bilosomes (BSs) by the thin-film hydration method. BN is a sparingly water-soluble drug having low permeability and bioavailability. BSs are lipid-based nanovesicles used to entrap water-insoluble drugs for enhanced permeation across the skin. BSs were prepared by the thin-film hydration method and optimized by the Box-Behnken design (BBD) using lipid (A), span 60 (B), and sodium deoxycholate (C) as independent variables. The selected formulation (BN-BSo) was converted into the gel using Carbopol 940 as a gelling agent. The prepared optimized gel (BN-BS-og) was further evaluated for the gel characterization, drug release, drug permeation, irritation, and anti-fungal study. The optimized bilosomes (BN-BSo) showed a mean vesicle size of 215 ± 6.5 nm and an entrapment efficiency of 89.2 ± 1.5%. The DSC study showed that BN was completely encapsulated in the BS lipid matrix. BN-BSog showed good viscosity, consistency, spreadability, and pH. A significantly (p < 0.05) high release (81.09 ± 4.01%) was achieved from BN-BSo compared to BN-BSog (65.85 ± 4.87%) and pure BN (17.54 ± 1.37 %). The permeation study results revealed that BN-BSo, BN-BSog, and pure BN exhibited 56.2 ± 2.7%, 39.2 ± 2.9%, and 16.6 ± 2.3%. The enhancement ratio of permeation flux was found to be 1.4-fold and 3.4-fold for the BN-BS-og and pure BN dispersion. The HET-CAM study showed that BN-BSog was found to be nonirritant as the score was found within the limit. The antifungal study revealed a significant (p < 0.05) enhanced antifungal activity against C. albicans and A. niger. The findings of the study revealed that BS is an important drug delivery system for transdermal delivery.
Collapse
|
29
|
Salama A, El-Hashemy HA, Darwish AB. Formulation and optimization of lornoxicam-loaded bilosomes using 23 full factorial design for the management of osteoarthritis in rats: Modulation of MAPK/Erk1 signaling pathway. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Hady MA, Darwish AB, Abdel-Aziz MS, Sayed OM. Design of transfersomal nanocarriers of nystatin for combating vulvovaginal candidiasis; A different prospective. Colloids Surf B Biointerfaces 2021; 211:112304. [PMID: 34959094 DOI: 10.1016/j.colsurfb.2021.112304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/26/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
The objective of this study was to prepare and evaluate Nystatin (NYS) loaded transfersomes to achieve better treatment of vulvovaginal candidiasis. Nystatin transferosomes were formulated utilizing thin film hydration method. A 32 full factorial design was employed to evaluate the effect of different formulation variables. Two independent variables were chosen; the ratio between lecithin surfactant (X1) was set at three levels (10-40), and the type of surfactants (X2) was set at three levels (Span 60, Span 85 and Pluronic F-127). The dependent responses were; entrapment efficiency (Y1: EE %), vesicles size (Y2: VS) and release rate (Y3: RR). Design Expert® software was utilized to statistically optimize formulation variables. The vesicles revealed high NYS encapsulation efficiency ranging from 97.35 ± 0.03 to 98.01 ± 0.20% whereas vesicle size ranged from 194.8 ± 20.42 to 400.8 ± 42.09 nm. High negative zeta potential values indicated good stability of the prepared formulations. NYS release from transfersomes was biphasic and the release pattern followed Higuchi's model. The optimized formulation (F7) exhibited spherical morphology under transmission electron microscopy (TEM). In-vitro and in-vivo antifungal efficiency studies revealed that the optimized formula F7 exhibited significant eradication of candida infestation in comparison to free NYS. The results revealed that the developed NYS transfersomes could be a promising drug delivery system to enhance antifungal efficacy of NYS.
Collapse
Affiliation(s)
- Mayssa Abdel Hady
- Department of Pharmaceutical Technology, National Research Centre, El Bohouth Street, Cairo12622, Egypt
| | - Asmaa B Darwish
- Department of Pharmaceutical Technology, National Research Centre, El Bohouth Street, Cairo12622, Egypt.
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, El Bohouth Street, Cairo 12622, Egypt
| | - Ossama M Sayed
- Department of Pharmaceutics Industrial Pharmacy, Faculty of Pharmacy, Sinai University - Kantara Branch, Egypt.
| |
Collapse
|
31
|
Zafar A, Alruwaili NK, Imam SS, Alsaidan OA, Yasir M, Ghoneim MM, Alshehri S, Anwer MK, Almurshedi AS, Alanazi AS. Development and evaluation of luteolin loaded pegylated bilosome: optimization, in vitro characterization, and cytotoxicity study. Drug Deliv 2021; 28:2562-2573. [PMID: 34866534 PMCID: PMC8654410 DOI: 10.1080/10717544.2021.2008055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The present research was aimed to develop luteolin (LL) loaded pegylated bilosomes (PG-BLs) for oral delivery. The luteolin bilosomes (BLs) were prepared by the thin-film hydration method and further optimized by the Box-Behnken design (four-factors at three-levels). The prepared LL-BLs were evaluated for vesicle size (VS), PDI, zeta potential (ZP), and entrapment efficiency to select the optimized formulation. The optimized formulation was further assessed for surface morphology, drug release, gut permeation, antioxidant, and antimicrobial study. The cytotoxicity study was conducted on breast cancer cell lines (MDA-MB-231 and MCF7). The optimized formulation LL-PG-BLs-opt exhibited a VS of 252.24 ± 3.54 nm, PDI of 0.24, ZP of -32 mV with an encapsulation efficiency of 75.05 ± 0.65%. TEM study revealed spherical shape vesicles without aggregation. The DSC and XRD results revealed that LL was encapsulated into a PG-BLs matrix. LL-PG-BLs-opt exhibited a biphasic release pattern as well as significantly high permeation (p<.05) was achieved vis-a-vis LL-BL-opt and LL dispersion. The antioxidant activity result revealed 70.31 ± 3.22%, 83.76 ± 2.56%, and 96.87 ± 2.11% from LL-dispersion, LL-BLs-opt, and LL-PG-BLs-opt, respectively. Furthermore, LL-PG-BLs-opt exhibited high cell viability on both cell lines than LL-BL-opt and pure LL. The IC50 value was found to be 390 µM and 510 µM against MCF7 and MDA-MB-231 cancer cells, respectively. The antimicrobial activity result exhibited LL-PG-BLs-opt had better antibacterial activity than pure LL against Staphylococcus aureus and Escherichia coli. Hence, PG-BLs might provide an efficient nano oral delivery for the management of the different diseases.
Collapse
Affiliation(s)
- Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Mohd Yasir
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Alanood S Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah S Alanazi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia.,Health Sciences Research Unit, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| |
Collapse
|
32
|
Despotopoulou D, Lagopati N, Pispas S, Gazouli M, Demetzos C, Pippa N. The technology of transdermal delivery nanosystems: from design and development to preclinical studies. Int J Pharm 2021; 611:121290. [PMID: 34788674 DOI: 10.1016/j.ijpharm.2021.121290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Transdermal administration has gained much attention due to the remarkable advantages such as patient compliance, drug escape from first-pass elimination, favorable pharmacokinetic profile and prolonged release properties. However, the major limitation of these systems is the limited skin penetration of the stratum corneum, the skin's most important barrier, which protects the body from the insertion of substances from the environment. Transdermal drug delivery systems are aiming to the disruption of the stratum corneum in order for the active pharmaceutical ingredients to enter successfully the circulation. Therefore, nanoparticles are holding a great promise because they can act as effective penetration enhancers due to their small size and other physicochemical properties that will be analyzed thoroughly in this report. Apart from the investigation of the physicochemical parameters, a comparison between the different types of nanoparticles will be performed. The complexity of skin anatomy and the unclear mechanisms of penetration should be taken into consideration to reach some realistic conclusions regarding the way that the described parameters affect the skin permeability. To the best of the authors knowledge, this is among the few reports on the literature describing the technology of transdermal delivery systems and how this technology affects the biological activity.
Collapse
Affiliation(s)
- Despoina Despotopoulou
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece
| | - Nefeli Lagopati
- Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Science, Laboratory of Biology, School of Medicine National and Kapodistrian University of Athens, Greece
| | - Costas Demetzos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
33
|
El-Hashemy HA. Design, formulation and optimization of topical ethosomes using full factorial design: in-vitro and ex-vivo characterization. J Liposome Res 2021; 32:74-82. [PMID: 34697998 DOI: 10.1080/08982104.2021.1955925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present study aimed to develop lomefloxacin-loaded ethosomal vesicles intended to be applied topically for treating skin infections. Ethosomes were prepared using the cold method. The formulation variables were optimized using 22 factorial design and Design Expert® software for analyzing the data statistically and graphically using response surface plots. Phosphatidylcholine (X1) and ethanol (X2) were chosen as the independent variables, while the dependent variables comprised entrapment efficiency (Y1), vesicles size (Y2) and zeta potential (Y3). The optimized ethosomes were subsequently incorporated into Carbopol® 940 gel and characterized for rheological behaviour, in-vitro release, ex-vivo skin permeation and deposition. The ex-vivo permeation and skin deposition studies showed better results compared to drug solutions. In a nutshell, the ethosomal vesicles were found to be a promising carrier demonstrating enhanced topical delivery of lomefloxacin.
Collapse
Affiliation(s)
- Hadeer A El-Hashemy
- Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
34
|
El-Nabarawi M, Nafady M, Elmenshawe S, Elkarmalawy M, Teaima M. Liver Targeting of Daclatasvir via Tailoring Sterically Stabilized Bilosomes: Fabrication, Comparative In Vitro/In Vivo Appraisal and Biodistribution Studies. Int J Nanomedicine 2021; 16:6413-6426. [PMID: 34556987 PMCID: PMC8455511 DOI: 10.2147/ijn.s319255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/30/2021] [Indexed: 01/29/2023] Open
Abstract
INTRODUCTION Hepatitis C virus (HCV) is a significant public health concern that threatens millions of individuals worldwide. Daclatasvir (DAC) is a promising direct-acting antiviral approved for treating HCV infection around the world. The goal of this study was to encapsulate DAC into novel polyethylene glycol (PEG) decorated bilosomes (PEG-BILS) to achieve enhanced drug delivery to the liver. METHODS DAC-loaded BILS were primed by a thin film hydrating technique. The study of the impact of various formulation variables on the properties of BILS and selection of the optimal formulation was generated using Design-Expert® software. The optimum preparation was then pegylated via the incorporation of PEG-6-stearate (5% w/w, with respect to the lipid phase). RESULTS The optimum PEG-BILS formulation, containing PL:SDC ratio (5:1), 5 mg cholesterol, and 30 min sonication, yielded spherical vesicles in the nanoscale (200±15.2 nm), elevated percent of entrapment efficiency (95.5±7.77%), and a sustained release profile of DAC with 35.11±2.3% release. In vivo and drug distribution studies revealed an enhanced hepatocellular delivery of DAC-loaded PEG-BILS compared to DAC-unPEG-BILS and DAC suspension, where DAC-PEG-BILS achieved 1.19- and 1.54 times the AUC0-24 of DAC-unPEG-BILS and DAC suspension, respectively. Compared with DAC-unPEG-BILS and DAC suspension, DAC-PEG-BILS delivered about 2 and 3 times higher DAC into the liver, respectively. CONCLUSION The innovative encapsulation of DAC-PEG-BILS has a great potential for liver targeting.
Collapse
Affiliation(s)
- Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed Nafady
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Shahira Elmenshawe
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa Elkarmalawy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University of Technology and Information, Cairo, Egypt
| | - Mahmoud Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
35
|
Bioanalytical Comparison of Transdermal Delivery of Tizanidine from Different Nanovesicular Carriers. J Pharm Innov 2021. [DOI: 10.1007/s12247-020-09447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Ali AA, Hassan AH, Eissa EM, Aboud HM. Response Surface Optimization of Ultra-Elastic Nanovesicles Loaded with Deflazacort Tailored for Transdermal Delivery: Accentuated Bioavailability and Anti-Inflammatory Efficacy. Int J Nanomedicine 2021; 16:591-607. [PMID: 33531803 PMCID: PMC7846863 DOI: 10.2147/ijn.s276330] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/19/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The aim of the present study was to develop deflazacort (DFZ) ultra-elastic nanovesicles (UENVs) loaded gel for topical administration to evade gastrointestinal adverse impacts accompanying DFZ oral therapy. METHODS UENVs were elaborated according to D-optimal mixture design employing different edge activators as Span-60, Tween-85 and sodium cholate which were incorporated into the nanovesicles to improve the deformability of vesicles bilayer. DFZ-UENVs were formulated by thin-film hydration technique followed by characterization for different parameters including entrapment efficiency (%EE), particle size, in vitro release and ex vivo permeation studies. The composition of the optimized DFZ-UENV formulation was found to be DFZ (10 mg), Span-60 (30 mg), Tween-85 (30 mg), sodium cholate (3.93 mg), L-α phosphatidylcholine (60 mg) and cholesterol (30 mg). The optimum formulation was incorporated into hydrogel base then characterized in terms of physical parameters, in vitro drug release, ex vivo permeation study and pharmacodynamics evaluation. Finally, pharmacokinetic study in rabbits was performed via transdermal application of UENVs gel in comparison to oral drug. RESULTS The optimum UENVs formulation exhibited %EE of 74.77±1.33, vesicle diameter of 219.64±2.52 nm, 68.88±1.64% of DFZ released after 12 h and zeta potential of -55.57±1.04 mV. The current work divulged successful augmentation of the bioavailability of DFZ optimum formulation by about 1.37-fold and drug release retardation compared to oral drug tablets besides significant depression of edema, cellular inflammation and capillary congestion in carrageenan-induced rat paw edema model. CONCLUSION The transdermal DFZ-UENVs can achieve boosted bioavailability and may be suggested as an auspicious non-invasive alternative platform for oral route.
Collapse
Affiliation(s)
- Adel A Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Amira H Hassan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Essam M Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Heba M Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
37
|
Mohsen AM, Salama A, Kassem AA. Development of acetazolamide loaded bilosomes for improved ocular delivery: Preparation, characterization and in vivo evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Chacko IA, Ghate VM, Dsouza L, Lewis SA. Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applications. Colloids Surf B Biointerfaces 2020; 195:111262. [PMID: 32736123 DOI: 10.1016/j.colsurfb.2020.111262] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/19/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
Abstract
Topical and transdermal application of active pharmaceutical ingredients to the skin is an attractive strategy being explored by formulation scientists to treat disease conditions rather than the oral drug delivery. Several approaches have been attempted, and many of them have emerged with significant clinical potential. However, the delivery of drugs across the skin is an arduous task due to permeation limiting barriers. It, therefore, requires the aid of external agents or carrier systems for efficient permeation. Lipid-based vesicular systems are carriers for the transport of drugs through the stratum corneum (dermal drug delivery) and into the bloodstream for systemic action (transdermal drug delivery) overcoming the barrier properties. This review article describes the various vesicular systems reported for skin delivery of actives with relevant case studies. The vesicular systems presented here are in the order of their advent from conventional systems to the advanced lipid vesicles. The design and development of drugs in vesicular systems have brought a new dimension to the treatment of disease conditions overcoming the permeation limiting barriers, thus improving its efficacy.
Collapse
Affiliation(s)
- Indhu A Chacko
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Vivek M Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Leonna Dsouza
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
39
|
Beg S, Alharbi KS, Alruwaili NK, Alotaibi NH, Almalki WH, Alenezi SK, Altowayan WM, Alshammari MS, Rahman M. Nanotherapeutic systems for delivering cancer vaccines: recent advances. Nanomedicine (Lond) 2020; 15:1527-1537. [PMID: 32410483 DOI: 10.2217/nnm-2020-0046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
With an increase in the global burden of cancer-related deaths, the quest for developing new therapeutic solutions has taken momentum. In this regard, the idea of using cancer vaccines came to existence approximately 30 years ago, where gene therapy interventions have shown significant improvement in the therapeutic outcomes against several types of cancers. Cancer vaccines usually encounter a number of challenges with limited targeting ability to the tumors. Nanocarriers have been studied as a technological innovation for tumor targeting of gene therapeutics. This article provides a critical insight into the recent progress made in nanotherapeutic strategies for genetic vaccine delivery for treatment against various types of cancers. Moreover, the article intends to provide a summary of the research work being done on this topic.
Collapse
Affiliation(s)
- Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Khalid S Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Nasser Hadal Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology & Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sattam K Alenezi
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Waleed M Altowayan
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Mohammed S Alshammari
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, SIHAS, Faculty of Health Science, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| |
Collapse
|
40
|
Khalil RM, Abdelbary A, Arini SKE, Basha M, El-Hashemy HA, Farouk F. Development of tizanidine loaded aspasomes as transdermal delivery system: ex-vivo and in-vivo evaluation. J Liposome Res 2019; 31:19-29. [PMID: 31646921 DOI: 10.1080/08982104.2019.1684940] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
New generation of amphiphilic vesicles known as aspasomes were investigated as potential carriers for transdermal delivery of tizanidine (TZN). Using full factorial design, an optimal formulation was developed by evaluating the effects of selected variables on the properties of the vesicles with regards to entrapment efficiency, vesicle size and cumulative percentage released. The optimal formula (TZN-AS 6) consisting of 20 mg TZN, 50 mg ascorbyl palmitate (AP), 50 mg cholesterol (CH) and 50 mg Span 60, represented well dispersed spherical vesicles in the nanorange sizes and exhibited excellent stability under different storage conditions. Ex-vivo permeation studies using excised rat skin showed a 4.4-fold increase of the steady state flux in comparison to the unformulated drug (p < 0.05). The pharmacokinetic parameters obtained from the in-vivo study using Wistar rats, showed that the bioavailability of TZN was enhanced significantly (p < 0.05) when compared to the oral market product of TZN, Sirdalud®. Moreover, skin irritancy tests confirmed that the vesicles were non-invasive and safe for the skin. Based on the results obtained, the optimised aspasomes formula represents a promising Nano platform for TZN to be administered transdermally, thus improving the therapeutic efficacy of this important muscle relaxant.
Collapse
Affiliation(s)
- Rawia M Khalil
- Department of Pharmaceutical Technology, National Research Centre, Cairo, Egypt
| | - Ahmed Abdelbary
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Mona Basha
- Department of Pharmaceutical Technology, National Research Centre, Cairo, Egypt
| | - Hadeer A El-Hashemy
- Department of Pharmaceutical Technology, National Research Centre, Cairo, Egypt
| | - Faten Farouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alahlram Canadian University, Cairo, Egypt
| |
Collapse
|