1
|
Lai NHY, Mohd Zahir IA, Liew AKY, Ogawa S, Parhar I, Soga T. Teleosts as behaviour test models for social stress. Front Behav Neurosci 2023; 17:1205175. [PMID: 37744951 PMCID: PMC10512554 DOI: 10.3389/fnbeh.2023.1205175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Stress is an important aspect of our everyday life and exposure to it is an unavoidable occurrence. In humans, this can come in the form of social stress or physical stress from an injury. Studies in animal models have helped researchers to understand the body's adaptive response to stress in human. Notably, the use of behavioural tests in animal models plays a pivotal role in understanding the neural, endocrine and behavioural changes induced by social stress. Under socially stressed conditions, behavioural parameters are often measured physiological and molecular parameters as changes in behaviour are direct responses to stress and are easily assessed by behavioural tests. Throughout the past few decades, the rodent model has been used as a well-established animal model for stress and behavioural changes. Recently, more attention has been drawn towards using fish as an animal model. Common fish models such as zebrafish, medaka, and African cichlids have the advantage of a higher rate of reproduction, easier handling techniques, sociability and most importantly, share evolutionary conserved genetic make-up, neural circuitry, neuropeptide molecular structure and function with mammalian species. In fact, some fish species exhibit a clear diurnal or seasonal rhythmicity in their stress response, similar to humans, as opposed to rodents. Various social stress models have been established in fish including but not limited to chronic social defeat stress, social stress avoidance, and social stress-related decision-making. The huge variety of behavioural patterns in teleost also aids in the study of more behavioural phenotypes than the mammalian species. In this review, we focus on the use of fish models as alternative models to study the effects of stress on different types of behaviours. Finally, fish behavioural tests against the typical mammalian model-based behavioural test are compared and discussed for their viability.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
2
|
Sen Sarma O, Frymus N, Axling F, Thörnqvist PO, Roman E, Winberg S. Optimizing zebrafish rearing-Effects of fish density and environmental enrichment. Front Behav Neurosci 2023; 17:1204021. [PMID: 37456810 PMCID: PMC10340554 DOI: 10.3389/fnbeh.2023.1204021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Despite its popularity in research, there is very little scientifically validated knowledge about the best practices on zebrafish (Danio rerio) husbandry, which has led to several facilities having their own husbandry protocols. This study was performed to expand knowledge on the effects of enrichment and fish density on the welfare of zebrafish, with hopes of providing a scientific basis for future recommendations and legislations. Methods Zebrafish were reared at three different stocking densities, (1, 3 or 6 fish/L), in tanks with or without environmental enrichment. Agonistic behavior was observed twice a week for 9 weeks directly in the housing tanks. Aspects of welfare is known to be reflected in neuroendocrine stress responses. Thus, cortisol secretion in response to lowering the water level was analyzed for each group. In addition, we assessed cortisol secretion in response to confinement and risk-taking behavior (boldness) using the novel tank diving test for individual fish. At termination of the experiment fish were subjected to stress by transfer to a novel environment and brain tissue was sampled for analysis of brain monoaminergic activity. Results Fish kept at the lowest density (1 fish/L) showed a significantly higher level of aggression than fish kept at 3 or 6 fish/L. Moreover, fish kept at this low density showed significantly higher cortisol secretion on a group level than fish kept at the higher stocking densities, when subjected to lowering of the water level. Keeping fish at 1 fish/L also had effects on brain monoamines, these fish showing higher brain dopamine concentrations but lower dopamine turnover than fish kept at higher densities. Neither stocking density or enrichment had any clear effects on the behavior of individual fish in the novel tank diving test. However, fish kept at high densities showed lower and more variable growth rates than fish kept at 1 fish/L. Discussion Taken together these results suggest that zebrafish should not be kept at a density of 1 fish/L. The optimal stocking density is likely to be in the range of 3-6 fish/L.
Collapse
Affiliation(s)
- Oly Sen Sarma
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Natalia Frymus
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Fredrik Axling
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Erika Roman
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Svante Winberg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
3
|
Winberg S, Sneddon L. Impact of intraspecific variation in teleost fishes: aggression, dominance status and stress physiology. J Exp Biol 2022; 225:278485. [DOI: 10.1242/jeb.169250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ABSTRACT
Dominance-based social hierarchies are common among teleost fishes. The rank of an animal greatly affects its behaviour, physiology and development. The outcome of fights for social dominance is affected by heritable factors and previous social experience. Divergent stress-coping styles have been demonstrated in a large number of teleosts, and fish displaying a proactive coping style have an advantage in fights for social dominance. Coping style has heritable components, but it appears to be largely determined by environmental factors, especially social experience. Agonistic behaviour is controlled by the brain's social decision-making network, and its monoaminergic systems play important roles in modifying the activity of this neuronal network. In this Review, we discuss the development of dominance hierarchies, how social rank is signalled through visual and chemical cues, and the neurobiological mechanisms controlling or correlating with agonistic behaviour. We also consider the effects of social interactions on the welfare of fish reared in captivity.
Collapse
Affiliation(s)
- Svante Winberg
- Uppsala University 1 Behavioural Neuroendocrinology, Department of Medical Cell Biology , , 751 23 Uppsala , Sweden
| | - Lynne Sneddon
- University of Gothenburg 2 Department of Biological and Environmental Sciences , , PO Box: 463, 405 31 Gothenburg , Sweden
| |
Collapse
|
4
|
Humbert JW, Williams K, Onthank KL. Den Associated Behavior of Octopus Rubescens Revealed By a Motion-Activated Camera Trap System. Integr Comp Biol 2022; 62:1131-1143. [DOI: 10.1093/icb/icac124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Dens are a crucial component of the life history of most shallow water octopuses. However, den usage dynamics have only been explored in a few species over relatively short durations, and Octopus rubescens denning behavior has never been explored in situ. We built four underwater camera traps to observe the behavior of Octopus rubescens in and around their dens. To distinguish individuals, octopuses were captured and given a unique identifiable visible implant elastomer tag on the dorsal side of their mantle. After being tagged and photographed, each octopus was released back to its original capture site within its original den bottle. The site is unique in that octopuses reside almost exclusively in discarded bottles, therefore aiding in locating and monitoring dens. Motion-activated cameras were suspended in a metal field of view above bottle dens of released octopuses to observe den associated behaviors. Cameras were regularly retrieved and replaced to allow continuous monitoring of den locations in 71-hour intervals for over a month. We found that O. rubescens was primarily active during the day and had frequent interactions with conspecifics (other members within the species). We also found that rockfish and red rock crabs tended to frequent den locations more often when octopuses were not present, while kelp greenling both visited dens more frequently and stayed longer when octopuses were present. Our results demonstrate the utility of motion-activated camera traps for behavioral and ecological studies of nearshore mobile organisms.
Collapse
Affiliation(s)
- Jefferson W Humbert
- Walla Walla University, Department of Biological Sciences , College Place, WA , USA
| | - Kresimir Williams
- NOAA Fisheries Alaska Fisheries Science Center, National Marine Fisheries Service , Seattle, WA , USA
| | - Kirt L Onthank
- Walla Walla University, Department of Biological Sciences , College Place, WA , USA
| |
Collapse
|
5
|
Survey on the Past Decade of Technology in Animal Enrichment: A Scoping Review. Animals (Basel) 2022; 12:ani12141792. [PMID: 35883339 PMCID: PMC9311579 DOI: 10.3390/ani12141792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/04/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Enrichment is important for supporting the well-being of captive animals. Enrichment increase animal quality of life through encouraging natural behaviours. As enrichment is shifting to a more centered role in animal care, technology is becoming increasingly accessible and is becoming embedded in animal enrichment in creative ways. This review explores the trends in technology usage in animal enrichment studies. Through pulling the past decade of technology enrichment work together, we discuss gaps such as needing to include a larger variety of species (extending passed mammals), ensuring enrichment designs focus primarily on the senses an animal uses to interact with the world rather than human senses, and encouraging similar study designs across animal contexts to allow for streamlined comparisons. Abstract Environmental enrichment is adding complexity to an environment that has a positive impact on a captive animal as a necessity of care. Computing technology is being rapidly weaved throughout the space in both enrichment devices as well as evaluating enrichment outcomes. In this article, we present a scoping review of 102 captive animal enrichment studies and propose a contextual lens for exploring current practices. We discuss the importance of directed growth in species inclusion, transitioning beyond anthro-centric designs, and utilizing shared methodologies.
Collapse
|
6
|
Andersson M, Roques JAC, Aliti GM, Ademar K, Sundh H, Sundell K, Ericson M, Kettunen P. Low Holding Densities Increase Stress Response and Aggression in Zebrafish. BIOLOGY 2022; 11:725. [PMID: 35625453 PMCID: PMC9139139 DOI: 10.3390/biology11050725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
With laboratory zebrafish (Danio rerio) being an established and popular research model, there is a need for universal, research-based husbandry guidelines for this species, since guidelines can help promote good welfare through providing appropriate care. Despite the widespread use of zebrafish in research, it remains unclear how holding densities affect their welfare. Previous studies have mainly evaluated the effects of holding densities on a single parameter, such as growth, reproductive output, or social interactions, rather than looking at multiple welfare parameters simultaneously. Here we investigated how chronic (nine weeks) exposure to five different holding densities (1, 4, 8, 12, and 16 fish/L) affected multiple welfare indicators. We found that fish in the 1 fish/L density treatment had higher free water cortisol concentrations per fish, increased vertical distribution, and displayed aggressive behaviour more frequently than fish held at higher densities. On the other hand, density treatments had no effect on anxiety behaviour, whole-brain neurotransmitter levels, egg volume, or the proportion of fertilised eggs. Our results demonstrate that zebrafish can be held at densities between 4 and 16 fish/L without compromising their welfare. However, housing zebrafish in the density of 1 fish/L increased their stress level and aggressive behaviour.
Collapse
Affiliation(s)
- Marica Andersson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden; (M.A.); (G.M.A.); (K.A.); (M.E.)
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.A.C.R.); (H.S.); (K.S.)
- Department of Marine Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
- Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Jonathan A. C. Roques
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.A.C.R.); (H.S.); (K.S.)
- Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Geoffrey Mukisa Aliti
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden; (M.A.); (G.M.A.); (K.A.); (M.E.)
| | - Karin Ademar
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden; (M.A.); (G.M.A.); (K.A.); (M.E.)
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.A.C.R.); (H.S.); (K.S.)
- Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Kristina Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.A.C.R.); (H.S.); (K.S.)
- Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Mia Ericson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden; (M.A.); (G.M.A.); (K.A.); (M.E.)
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden; (M.A.); (G.M.A.); (K.A.); (M.E.)
| |
Collapse
|
7
|
Buenhombre J, Daza-Cardona EA, Sousa P, Gouveia A. Different influences of anxiety models, environmental enrichment, standard conditions and intraspecies variation (sex, personality and strain) on stress and quality of life in adult and juvenile zebrafish: A systematic review. Neurosci Biobehav Rev 2021; 131:765-791. [PMID: 34592257 DOI: 10.1016/j.neubiorev.2021.09.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/14/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022]
Abstract
Antagonist and long-lasting environmental manipulations (EM) have successfully induced or reduced the stress responses and quality of life of zebrafish. For instance, environmental enrichment (EE) generally reduces anxiety-related behaviours and improves immunity, while unpredictable chronic stress (UCS) and aquarium-related stressors generate the opposite effects. However, there is an absence of consistency in outcomes for some EM, such as acute exposure to stressors, social enrichment and some items of structural enrichment. Therefore, considering intraspecies variation (sex, personality, and strain), increasing intervention complexity while improving standardisation of protocols and contemplating the possibility that EE may act as a mild stressor on a spectrum between too much (UCS) and too little (standard conditions) stress intensity or stimulation, would reduce the inconsistencies of these outcomes. It would also help explore the mechanism behind stress resilience and to standardise EM protocols. Thus, this review critically analyses and compares knowledge existing over the last decade concerning environmental manipulations for zebrafish and the influences that sex, strain, and personality may have on behavioural, physiological, and fitness-related responses.
Collapse
Affiliation(s)
- Jhon Buenhombre
- ICB Biological Sciences, Federal University of Pará, Rua Augusto Correa 01, Belém, PA, Brazil.
| | | | - Pêssi Sousa
- ICB Biological Sciences, Federal University of Pará, Rua Augusto Correa 01, Belém, PA, Brazil
| | - Amauri Gouveia
- ICB Biological Sciences, Federal University of Pará, Rua Augusto Correa 01, Belém, PA, Brazil
| |
Collapse
|
8
|
Andersson M, Kettunen P. Effects of Holding Density on the Welfare of Zebrafish: A Systematic Review. Zebrafish 2021; 18:297-306. [PMID: 34448632 DOI: 10.1089/zeb.2021.0018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The zebrafish is becoming an increasingly popular research animal around the world. Its welfare is affected by an array of environmental factors, such as food access and water quality. Holding density is an important welfare aspect, not least due to its interaction with other housing conditions. Despite the extensive use of zebrafish in research, little is known of how densities affect its welfare. In this systematic review, we have performed a large literature search, compiled, and evaluated all publications regarding zebrafish holding density. We have analyzed how density effects growth, reproduction, and stress response, including behavior, water quality, and pathogenic outbreaks in young and adult fish. Our review shows that the holding densities tested vary largely depending on the research focus, for example, body growth or behavior. In fact, research indicates that future recommendations on holding density could depend on which welfare aspects are considered. Overall, there is a need for more studies investigating the interactive effects of density on welfare indicators, such as reproduction coupled with stress response. We stress the necessity of including holding density in universal housing guidelines and reporting information on holding conditions of larvae and adults when publishing zebrafish work.
Collapse
Affiliation(s)
- Marica Andersson
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Lebedeva L, Zhumabayeva B, Gebauer T, Kisselev I, Aitasheva Z. Zebrafish ( Danio rerio) as a Model for Understanding the Process of Caudal Fin Regeneration. Zebrafish 2020; 17:359-372. [PMID: 33259770 DOI: 10.1089/zeb.2020.1926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
After its introduction for scientific investigation in the 1950s, the cypriniform zebrafish, Danio rerio, has become a valuable model for the study of regenerative processes and mechanisms. Zebrafish exhibit epimorphic regeneration, in which a nondifferentiated cell mass formed after amputation is able to fully regenerate lost tissue such as limbs, heart muscle, brain, retina, and spinal cord. The process of limb regeneration in zebrafish comprises several stages characterized by the activation of specific signaling pathways and gene expression. We review current research on key factors in limb regeneration using zebrafish as a model.
Collapse
Affiliation(s)
- Lina Lebedeva
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, The Republic of Kazakhstan
| | - Beibitgul Zhumabayeva
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, The Republic of Kazakhstan
| | - Tatyana Gebauer
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, České Budějovice, Czech Republic
| | - Ilya Kisselev
- Institute of General Genetics and Cytology, Almaty, The Republic of Kazakhstan
| | - Zaure Aitasheva
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, The Republic of Kazakhstan
| |
Collapse
|
10
|
Sanders E, Farmer SC. Aquatic Models: Water Quality and Stability and Other Environmental Factors. ILAR J 2020; 60:141-149. [PMID: 33094818 DOI: 10.1093/ilar/ilaa008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 11/12/2022] Open
Abstract
The use of aquatic animals in ecotoxicology, genetic, and biomedical research has grown immensely in recent years, especially due to the increased use of zebrafish in the laboratory setting. Because water is the primary environment of most aquatic species, the composition and management of this water is paramount to ensuring their health and welfare. In this publication, we will describe the important variables in water quality that can influence animal health and research results, using the zebrafish model for detailed specifics of optimal conditions. Wherever possible, recommendations are provided to reduce the potential impact of poor or highly variable water quality, and standards are given which can be used as institutional goals to maximize animal health and welfare and reduce research variability. It is increasingly important that authors of publications describing work done using aquatic models characterize water quality and other environmental conditions of the animal environment so that the work can be repeated and understood in context of these important factors. It is clear that there are a great many extrinsic factors which may influence research outcomes in the aquatics model laboratory setting, and consequently, an increased level of funding will be essential to support continued research exploring these and other important husbandry conditions. References from a large body of literature on this subject are provided.
Collapse
Affiliation(s)
| | - Susan C Farmer
- Animal Resources Program, and Zebrafish Research Facility, University of Alabama, Birmingham, Alabama
| |
Collapse
|
11
|
Oh J, Kim DH, Kim GY, Park EJ, Ryu JH, Jung JW, Park SJ, Kim GW, Lee S. Hydrangeae Dulcis Folium Attenuates Physical Stress by Supressing ACTH-Induced Cortisol in Zebrafish. Chin J Integr Med 2019; 26:130-137. [DOI: 10.1007/s11655-019-3204-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
|
12
|
Lidster K, Readman GD, Prescott MJ, Owen SF. International survey on the use and welfare of zebrafish Danio rerio in research. JOURNAL OF FISH BIOLOGY 2017; 90:1891-1905. [PMID: 28220489 DOI: 10.1111/jfb.13278] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
A survey was conducted regarding zebrafish Danio rerio use for scientific research with a focus on: anaesthesia and euthanasia; housing and husbandry; breeding and production; refinement opportunities. A total of 98 survey responses were received from laboratories in 22 countries in Europe, North America, South America, Asia and Australia. There appears a clear and urgent need to identify the most humane methods of anaesthesia and euthanasia. Aversive responses to MS-222 were widely observed raising concerns about the use of this anaesthetic for D. rerio. The use of anaesthesia in fin clipping for genetic identification is widely practised and there appears to be an opportunity to further develop less invasive methods and refine this process. Optimization (and potentially standardization) of feeding is an area for further investigation. Given that diet and body condition can have such profound effects on results of experiments, differences in practice could have significant scientific implications. Further research into transition between dark and light phases in the laboratory appears to represent an opportunity to establish best practice. Plants and gravel were not considered practical by many laboratories. The true value and benefits need to be established and communicated. Overproduction is a concern both from ethical and financial viewpoints. There is an opportunity to further reduce wastage of D. rerio. There are clear concerns and opportunities for the scientific community to work together to further improve the welfare of these important laboratory models.
Collapse
Affiliation(s)
- K Lidster
- National Centre for Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London, NW1 2BE, U.K
| | - G D Readman
- University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, U.K
| | - M J Prescott
- National Centre for Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London, NW1 2BE, U.K
| | - S F Owen
- AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TF, U.K
| |
Collapse
|
13
|
Ribas L, Valdivieso A, Díaz N, Piferrer F. Appropriate rearing density in domesticated zebrafish to avoid masculinization: links with the stress response. ACTA ACUST UNITED AC 2017; 220:1056-1064. [PMID: 28082617 DOI: 10.1242/jeb.144980] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/29/2016] [Indexed: 02/02/2023]
Abstract
The zebrafish (Danio rerio) has become a well-established experimental model in many research fields but the loss of the primary sex-determining region during the process of domestication renders laboratory strains of zebrafish susceptible to the effects of environmental factors on sex ratios. Further, an essential husbandry aspect - the optimal rearing density to avoid stress-induced masculinization - is not known. We carried out two experiments: the first focusing on the effects of density on survival, growth and sex ratio by rearing zebrafish at different initial densities (9, 19, 37 and 74 fish per litre) for 3 months (6-90 days post-fertilization, dpf), and the second focusing on the effects of cortisol during the sex differentiation period (15-45 dpf) for zebrafish reared at low density. The results showed an increase in the number of males in groups subjected to the two highest initial rearing densities; we also observed a reduction of survival and growth in a density-dependent manner. Furthermore, zebrafish treated with cortisol during the sex differentiation period showed a complete masculinization of the population; treatment with the cortisol synthesis inhibitor metyrapone negated the effects of exogenous cortisol. Our results indicate that the process of sex differentiation in domesticated zebrafish can be perturbed by elevated stocking density and that this effect is likely to be mediated by an increase in cortisol through the stress response. However, the underlying mechanism needs further study.
Collapse
Affiliation(s)
- Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim, 37-49, Barcelona 08003, Spain
| | - Alejandro Valdivieso
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim, 37-49, Barcelona 08003, Spain
| | - Noelia Díaz
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim, 37-49, Barcelona 08003, Spain
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim, 37-49, Barcelona 08003, Spain
| |
Collapse
|
14
|
Celi M, Filiciotto F, Maricchiolo G, Genovese L, Quinci EM, Maccarrone V, Mazzola S, Vazzana M, Buscaino G. Vessel noise pollution as a human threat to fish: assessment of the stress response in gilthead sea bream (Sparus aurata, Linnaeus 1758). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:631-641. [PMID: 26581747 DOI: 10.1007/s10695-015-0165-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
This study examined the effects of boat noise pollution on the stress indices of gilthead sea bream (Sparus aurata, Linnaeus 1758). To assess the stress response in these fish, biometric values and plasma parameters such as ACTH, cortisol, glucose, lactate, haematocrit, Hsp70, total protein, cholesterol, triglycerides and osmolarity were analysed. After acclimatization of the animals, the experiment was carried out in a tank fitted with underwater speakers where the fish were exposed to sound treatments (in duplicate) consisting of: 10 days of no sound (control treatment; the animals were only exposed to the experimental tank's background noise) and 10 days of noise derived from original recordings of motor boats, including recreational boats, hydrofoil, fishing boat and ferry boat (vessel noise treatment). The exposure to noise produced significant variations in almost all the plasma parameters assessed, but no differences were observed in weights and fork lengths. A PERMANOVA analysis highlighted significantly increased values (p < 0.05) of ACTH, cortisol, glucose, lactate, haematocrit, Hsp70, cholesterol, triglycerides and osmolarity in the fish exposed to vessel noise for 10 days. This study clearly highlights that anthropogenic noise negatively affects fish, and they are valuable targets for detailed investigations into the effects of this global pollutant. Finally, these experimental studies could represent part of the science that is able to improve the quality of the policies related to management plans for maritime spaces (Marine Strategy Framework Directive 56/2008 CE) that are aimed at stemming this pollutant phenomenon.
Collapse
Affiliation(s)
- Monica Celi
- Istituto per l'Ambiente Marino Costiero U.O. di Capo Granitola - Consiglio Nazionale delle Ricerche, Via del mare no. 3, 91021, Torretta Granitola, TP, Italy
| | - Francesco Filiciotto
- Istituto per l'Ambiente Marino Costiero U.O. di Capo Granitola - Consiglio Nazionale delle Ricerche, Via del mare no. 3, 91021, Torretta Granitola, TP, Italy.
| | - Giulia Maricchiolo
- Istituto per l'Ambiente Marino Costiero U.O. di Messina - Consiglio Nazionale delle Ricerche, Spianata S. Raineri no. 86, 98122, Messina, ME, Italy
| | - Lucrezia Genovese
- Istituto per l'Ambiente Marino Costiero U.O. di Messina - Consiglio Nazionale delle Ricerche, Spianata S. Raineri no. 86, 98122, Messina, ME, Italy
| | - Enza Maria Quinci
- Istituto per l'Ambiente Marino Costiero U.O. di Capo Granitola - Consiglio Nazionale delle Ricerche, Via del mare no. 3, 91021, Torretta Granitola, TP, Italy
| | - Vincenzo Maccarrone
- Istituto per l'Ambiente Marino Costiero U.O. di Capo Granitola - Consiglio Nazionale delle Ricerche, Via del mare no. 3, 91021, Torretta Granitola, TP, Italy
| | - Salvatore Mazzola
- Istituto per l'Ambiente Marino Costiero U.O. di Capo Granitola - Consiglio Nazionale delle Ricerche, Via del mare no. 3, 91021, Torretta Granitola, TP, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, Edificio 16, Palermo, PA, Italy
| | - Giuseppa Buscaino
- Istituto per l'Ambiente Marino Costiero U.O. di Capo Granitola - Consiglio Nazionale delle Ricerche, Via del mare no. 3, 91021, Torretta Granitola, TP, Italy
| |
Collapse
|
15
|
|
16
|
|
17
|
Voellmy IK, Purser J, Simpson SD, Radford AN. Effects of Previous Acoustic Experience on Behavioral Responses to Experimental Sound Stimuli and Implications for Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 875:1191-6. [PMID: 26611086 DOI: 10.1007/978-1-4939-2981-8_149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ambient noise differs considerably between habitats. Increased ambient noise can affect the physiology and behavior in a variety of taxa. Previous acoustic experience can modify behavior and potentially affect research conclusions in natural and laboratory environments. Acoustic conditions should thus be accounted for, especially in experiments involving experimental sound stimuli. Methods sections should contain acoustic specifications, and a consensus should be achieved over which measurements to include for comparability between researchers. Further investigation of how previous and repeated exposure to sound affects behavior and research conclusions is needed to improve our knowledge of acoustic long-term effects in animal welfare and conservation.
Collapse
Affiliation(s)
- Irene K Voellmy
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK.
| | - Julia Purser
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK.
| | - Stephen D Simpson
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, EX4 4SB, UK.
| | - Andrew N Radford
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK.
| |
Collapse
|
18
|
Schets FM, van den Berg HH, de Zwaan R, van Soolingen D, de Roda Husman AM. The microbiological quality of water in fish spas with Garra rufa fish, the Netherlands, October to November 2012. Euro Surveill 2015. [DOI: 10.2807/1560-7917.es2015.20.19.21124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In fish spas, clients may submerge their hands, feet or whole body in basins with Garra rufa fish, for dead skin removal. Skin infections may result from using these spas, transmitted from fish to clients, through either fish or water, or from client to client. The microbiological water quality was determined in 24 fish spas in 16 companies in the Netherlands through analysis of a single water sample per fish spa. Water samples were tested for the presence of Aeromonas spp., Vibrio spp., Pseudomonas aeruginosa, nontuberculous mycobacteria, and faecal indicator bacteria by using standard culture methods. The majority of the examined fish spas contained Aeromonas spp. (n?=?24), P. aeruginosa (n?=?18), Vibrio spp. (n?=?16) including V. cholerae non-O1/O139 and V. vulnificus, and several rapid growing Mycobacterium spp. (n?=?23) including M. fortuitum, M. conceptionense, M. abscessus and M. chelonae. Faecal contamination of the fish spa water was low. Based on the detected concentrations of Aeromonas spp., Vibrio spp., and P. aeruginosa, the detected Mycobacterium spp., and the health implications of these bacteria, the health risk from using fish spas is considered limited for healthy people with an intact skin and no underlying disease.
Collapse
Affiliation(s)
- F M Schets
- National Institute for Public Health and the Environment, Centre for Zoonoses and Environmental Microbiology, Bilthoven, the Netherlands
| | - H H van den Berg
- National Institute for Public Health and the Environment, Centre for Zoonoses and Environmental Microbiology, Bilthoven, the Netherlands
| | - R de Zwaan
- Centre for Infectious Diseases and Perinatal Screening, Bilthoven, the Netherlands
| | - D van Soolingen
- Centre for Infectious Diseases and Perinatal Screening, Bilthoven, the Netherlands
| | - A M de Roda Husman
- National Institute for Public Health and the Environment, Centre for Zoonoses and Environmental Microbiology, Bilthoven, the Netherlands
| |
Collapse
|