1
|
Breinlinger S, Phillips TJ, Haram BN, Mareš J, Martínez Yerena JA, Hrouzek P, Sobotka R, Henderson WM, Schmieder P, Williams SM, Lauderdale JD, Wilde HD, Gerrin W, Kust A, Washington JW, Wagner C, Geier B, Liebeke M, Enke H, Niedermeyer THJ, Wilde SB. Hunting the eagle killer: A cyanobacterial neurotoxin causes vacuolar myelinopathy. Science 2021; 371:eaax9050. [PMID: 33766860 PMCID: PMC8318203 DOI: 10.1126/science.aax9050] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 12/30/2022]
Abstract
Vacuolar myelinopathy is a fatal neurological disease that was initially discovered during a mysterious mass mortality of bald eagles in Arkansas in the United States. The cause of this wildlife disease has eluded scientists for decades while its occurrence has continued to spread throughout freshwater reservoirs in the southeastern United States. Recent studies have demonstrated that vacuolar myelinopathy is induced by consumption of the epiphytic cyanobacterial species Aetokthonos hydrillicola growing on aquatic vegetation, primarily the invasive Hydrilla verticillata Here, we describe the identification, biosynthetic gene cluster, and biological activity of aetokthonotoxin, a pentabrominated biindole alkaloid that is produced by the cyanobacterium A. hydrillicola We identify this cyanobacterial neurotoxin as the causal agent of vacuolar myelinopathy and discuss environmental factors-especially bromide availability-that promote toxin production.
Collapse
Affiliation(s)
- Steffen Breinlinger
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Tabitha J Phillips
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Brigette N Haram
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Jan Mareš
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - José A Martínez Yerena
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavel Hrouzek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Roman Sobotka
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - W Matthew Henderson
- Office of Research and Development, Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Athens, GA, USA
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Susan M Williams
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - H Dayton Wilde
- Horticulture Department, University of Georgia, Athens, GA, USA
| | - Wesley Gerrin
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Andreja Kust
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | - John W Washington
- Office of Research and Development, Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Athens, GA, USA
| | - Christoph Wagner
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Benedikt Geier
- Max Planck Institute for Marine Microbiology (MPIMM), Bremen, Germany
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology (MPIMM), Bremen, Germany
| | | | - Timo H J Niedermeyer
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| | - Susan B Wilde
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA.
| |
Collapse
|
3
|
Maerz JC, Wilde SB, Terrell VK, Haram B, Trimmer RC, Nunez C, Cork E, Pessier A, Lannoo S, Lannoo MJ, Diamond SL. Seasonal and plant specific vulnerability of amphibian tadpoles to the invasion of a novel cyanobacteria. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1861-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
ALTERNATE FOOD-CHAIN TRANSFER OF THE TOXIN LINKED TO AVIAN VACUOLAR MYELINOPATHY AND IMPLICATIONS FOR THE ENDANGERED FLORIDA SNAIL KITE (ROSTRHAMUS SOCIABILIS). J Wildl Dis 2016; 52:335-44. [PMID: 26981686 DOI: 10.7589/2015-03-061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Avian vacuolar myelinopathy (AVM) is a neurologic disease causing recurrent mortality of Bald Eagles ( Haliaeetus leucocephalus ) and American Coots ( Fulica americana ) at reservoirs and small impoundments in the southern US. Since 1994, AVM is considered the cause of death for over 170 Bald Eagles and thousands of American Coots and other species of wild birds. Previous studies link the disease to an uncharacterized toxin produced by a recently described cyanobacterium, Aetokthonos hydrillicola gen. et sp. nov. that grows epiphytically on submerged aquatic vegetation (SAV). The toxin accumulates, likely in the gastrointestinal tract of waterbirds that consume SAV, and birds of prey are exposed when feeding on the moribund waterbirds. Aetokthonos hydrillicola has been identified in all reservoirs where AVM deaths have occurred and was identified growing abundantly on an exotic SAV hydrilla ( Hydrilla verticillata ) in Lake Tohopekaliga (Toho) in central Florida. Toho supports a breeding population of a federally endangered raptor, the Florida Snail Kite ( Rostrhamus sociabilis ) and a dense infestation of an exotic herbivorous aquatic snail, the island applesnail ( Pomacea maculata ), a primary source of food for resident Snail Kites. We investigated the potential for transmission in a new food chain and, in laboratory feeding trials, confirmed that the AVM toxin was present in the hydrilla/A. hydrillicola matrix collected from Toho. Additionally, laboratory birds that were fed apple snails feeding on hydrilla/A. hydrillicola material from a confirmed AVM site displayed clinical signs (3/5), and all five developed brain lesions unique to AVM. This documentation of AVM toxin in central Florida and the demonstration of AVM toxin transfer through invertebrates indicate a significant risk to the already diminished population of endangered Snail Kites.
Collapse
|
5
|
Mercurio AD, Hernandez SM, Maerz JC, Yabsley MJ, Ellis AE, Coleman AL, Shelnutt LM, Fischer JR, Wilde SB. Experimental feeding of Hydrilla verticillata colonized by stigonematales cyanobacteria induces vacuolar myelinopathy in painted turtles (Chrysemys picta). PLoS One 2014; 9:e93295. [PMID: 24695109 PMCID: PMC3973599 DOI: 10.1371/journal.pone.0093295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/03/2014] [Indexed: 11/18/2022] Open
Abstract
Vacuolar myelinopathy (VM) is a neurologic disease primarily found in birds that occurs when wildlife ingest submerged aquatic vegetation colonized by an uncharacterized toxin-producing cyanobacterium (hereafter “UCB” for “uncharacterized cyanobacterium”). Turtles are among the closest extant relatives of birds and many species directly and/or indirectly consume aquatic vegetation. However, it is unknown whether turtles can develop VM. We conducted a feeding trial to determine whether painted turtles (Chrysemys picta) would develop VM after feeding on Hydrilla (Hydrilla verticillata), colonized by the UCB (Hydrilla is the most common “host” of UCB). We hypothesized turtles fed Hydrilla colonized by the UCB would exhibit neurologic impairment and vacuolation of nervous tissues, whereas turtles fed Hydrilla free of the UCB would not. The ability of Hydrilla colonized by the UCB to cause VM (hereafter, “toxicity”) was verified by feeding it to domestic chickens (Gallus gallus domesticus) or necropsy of field collected American coots (Fulica americana) captured at the site of Hydrilla collections. We randomly assigned ten wild-caught turtles into toxic or non-toxic Hydrilla feeding groups and delivered the diets for up to 97 days. Between days 82 and 89, all turtles fed toxic Hydrilla displayed physical and/or neurologic impairment. Histologic examination of the brain and spinal cord revealed vacuolations in all treatment turtles. None of the control turtles exhibited neurologic impairment or had detectable brain or spinal cord vacuolations. This is the first evidence that freshwater turtles can become neurologically impaired and develop vacuolations after consuming toxic Hydrilla colonized with the UCB. The southeastern United States, where outbreaks of VM occur regularly and where vegetation colonized by the UCB is common, is also a global hotspot of freshwater turtle diversity. Our results suggest that further investigations into the effect of the putative UCB toxin on wild turtles in situ are warranted.
Collapse
Affiliation(s)
- Albert D. Mercurio
- D. B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
- Southeastern Cooperative Wildlife Disease Study (SCWDS), Department of Population Health, Wildlife Health Building, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| | - Sonia M. Hernandez
- D. B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
- Southeastern Cooperative Wildlife Disease Study (SCWDS), Department of Population Health, Wildlife Health Building, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - John C. Maerz
- D. B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
| | - Michael J. Yabsley
- D. B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
- Southeastern Cooperative Wildlife Disease Study (SCWDS), Department of Population Health, Wildlife Health Building, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Angela E. Ellis
- The Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Amanda L. Coleman
- D. B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
| | - Leslie M. Shelnutt
- The University of Georgia College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - John R. Fischer
- Southeastern Cooperative Wildlife Disease Study (SCWDS), Department of Population Health, Wildlife Health Building, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Susan B. Wilde
- D. B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|