1
|
Jones DR, Everson J, Leeds TD, Wiens GD, Wargo AR. The Impact of Exposure Dosage and Host Genetics on the Shedding Kinetics of Flavobacterium psychrophilum in Rainbow Trout. JOURNAL OF FISH DISEASES 2024:e14026. [PMID: 39380420 DOI: 10.1111/jfd.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Flavobacterium psychrophilum, the causative agent of bacterial cold water disease (BCWD), is one of the leading pathogens in rainbow trout (Oncorhynchus mykiss) aquaculture. To date, there is little knowledge of the transmission kinetics of F. psychrophilum over the course of infection. In particular, how transmission is affected by host genotype and pathogen exposure dosage are not well studied. In order to fill in these knowledge gaps, we exposed two divergently selected lines of rainbow trout (ARS-Fp-R and ARS-Fp-S) to a range of dosages of F. psychrophilum (strain CSF117-10). We then measured mortality and bacterial shedding to estimate transmission risk at multiple time points since initial infection. As dosage increased, the number of fish shedding and the amount of bacteria shed increased ranging from 0% to 100% and 103 to 108 cells fish-1 h-1, respectively. In addition, we found that disease resistance (survival) was not correlated with transmission risk blocking, in that 67% of fish which shed bacteria experienced no clinical disease. In general, fish mortality began on Day 3, peaked between Days 5-7 and was higher in the ARS-Fp-R line. Results from this study could be used to develop epidemiological models and improve disease management, particularly in the context of aquaculture and selective breeding.
Collapse
Affiliation(s)
- Darbi R Jones
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA
| | - Jeremy Everson
- National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia, USA
| | - Timothy D Leeds
- National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia, USA
| | - Gregory D Wiens
- National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia, USA
| | - Andrew R Wargo
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA
| |
Collapse
|
2
|
Jarau M, MacInnes JI, Lumsden JS. Erythromycin and florfenicol treatment of rainbow trout Oncorhynchus mykiss (Walbaum) experimentally infected with Flavobacterium psychrophilum. JOURNAL OF FISH DISEASES 2019; 42:325-334. [PMID: 30632170 DOI: 10.1111/jfd.12944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 06/09/2023]
Abstract
Flavobacterium psychrophilum is responsible for significant economic losses in rainbow trout aquaculture. Antimicrobial treatment remains the primary means of control; however, there are limited choices available for use. The objectives of the study were therefore to determine the minimum inhibitory concentrations for erythromycin and florfenicol in selected F. psychrophilum isolates and to evaluate their clinical treatment efficacy in experimentally infected rainbow trout. All isolates tested had moderate susceptibility to florfenicol and erythromycin except one isolate, which had low susceptibility to erythromycin. Two isolates (one with moderate and one with low susceptibility to erythromycin) were used in an experimental infection trial. Rainbow trout juveniles were injected intraperitoneally with 108 cfu/fish and after mortality had begun, fish were given erythromycin- and florfenicol-medicated feed at a rate of 75 mg kg- 1 day- 1 and 10 mg kg- 1 day- 1 fish body weight, respectively, for 10 consecutive days. The splenic F. psychrophilum load was determined using an rpoC quantitative PCR throughout the 30-day trial. Relative to antibiotic-free controls, erythromycin treatment significantly (p < 0.05) reduced mortality of rainbow trout juveniles infected with FPG101, even when treatment was initiated after clinical signs developed.
Collapse
Affiliation(s)
- Maureen Jarau
- Fish Pathology Laboratory, University of Guelph, Guelph, Ontario, Canada
| | - Janet I MacInnes
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - John S Lumsden
- Fish Pathology Laboratory, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
|
4
|
de Bruijn I, Liu Y, Wiegertjes GF, Raaijmakers JM. Exploring fish microbial communities to mitigate emerging diseases in aquaculture. FEMS Microbiol Ecol 2017; 94:4675208. [DOI: 10.1093/femsec/fix161] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Irene de Bruijn
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, The Netherlands
| | - Yiying Liu
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen 6708WD, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, The Netherlands
- Institute of Biology (IBL), Leiden University, Sylviusweg 72, Leiden 2333 BE, Leiden, The Netherlands
| |
Collapse
|
5
|
Van Vliet D, Loch TP, Smith P, Faisal M. Antimicrobial Susceptibilities of Flavobacterium psychrophilum Isolates from the Great Lakes Basin, Michigan. Microb Drug Resist 2017; 23:791-798. [DOI: 10.1089/mdr.2016.0103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Danielle Van Vliet
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan
| | - Thomas P. Loch
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Peter Smith
- Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Mohamed Faisal
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| |
Collapse
|
6
|
Loch TP, Faisal M. Gamete-associated flavobacteria of the oviparous Chinook salmon (Oncorhynchus tshawytscha) in lakes Michigan and Huron, North America. J Microbiol 2016; 54:477-86. [PMID: 27350613 DOI: 10.1007/s12275-016-5629-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 11/29/2022]
Abstract
Flavobacterial diseases, caused by multiple members of the Family Flavobacteriaceae, elicit serious losses in wild and farmed fish around the world. Flavobacteria are known to be transmitted horizontally; however, vertical transmission has been suspected but proven only for one fish-pathogenic flavobacterial species (e.g., Flavobacterium psychrophilum). Herein, we report on the isolation and molecular identification of multiple Flavobacterium and Chryseobacterium taxa from the ovarian fluid and eggs of feral Great Lakes Chinook salmon (Oncorhynchus tshawytscha). Identified egg- and ovarian fluid-associated flavobacteria were either well-known flavobacterial fish pathogens (e.g., F. psychrophilum and F. columnare), most similar to emerging fish-associated flavobacteria (e.g., F. spartansii, F. tructae, F. piscis, C. piscium, C. scophthalmum), or were distinct from all other described Chryseobacterium and Flavobacterium spp., as determined by phylogenetic analyses using neighbor-joining, Bayesian, and Maximum Likelihood methodologies. The gamete-associated flavobacteria fell into three groups (e.g., those that were recovered from the ovarian fluid but not eggs; those that were recovered from the ovarian fluid and eggs; and those that were recovered from eggs but not ovarian fluid), a portion of which were recovered from eggs that were surface disinfected with iodophor at the commonly used dose and duration for egg disinfection. Some gamete-associated flavobacteria were also found in renal, splenic, and neurological tissues. Systemic polymicrobial infections comprised of F. psychrophilum and F. columnare were also detected at nearly an 11% prevalence. This study highlights the potential role that sexual products of female Great Lakes Chinook salmon may play in the transmission of fish-associated flavobacteria.
Collapse
Affiliation(s)
- Thomas P Loch
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Mohamed Faisal
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA.,Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
7
|
Apablaza P, Brevik ØJ, Mjøs S, Valdebenito S, Ilardi P, Battaglia J, Dalsgaard I, Nylund A. Variable Number of Tandem Repeats (VNTR) analysis of Flavobacterium psychrophilum from salmonids in Chile and Norway. BMC Vet Res 2015; 11:150. [PMID: 26168788 PMCID: PMC4501049 DOI: 10.1186/s12917-015-0469-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022] Open
Abstract
Background Flavobacterium psychrophilum causes serious fish diseases such RTFS and BCWD, affecting the aquaculture industry worldwide. Commercial vaccines are not available and control of the disease depends on the use of antibiotics. Reliable methods for detection and identification of different isolates of this bacterium could play an important role in the development of good management strategies. The aim of this study was to identify genetic markers for discrimination between isolates. A selection of eight VNTRs from 53 F. psychrophilum isolates from Norway, Chile, Denmark and Scotland were analyzed. The results were compared with previous work on the same pathogen using MLST for genetic differentiation. Results The VNTR analysis gave a separation between the F. psychrophilum isolates supporting the results of previous MLST work. A higher diversity was found among the Chilean isolates compared to those from Norway, which suggests a more homogenous reservoir in Norway. Transgenerational transmission of F. psychrophilum from other countries, exporting salmon embryos to Chile, may explain the differences in diversity. The same transmission mechanisms could also explain the wide geographical distribution of identical isolates in Norway. But, this could also be a result of movement of smolts and embryos. The selected VNTRs are stable genetic markers and no variation was observed after several passages on agar plates at different temperatures. Conclusions These VNTRs are important additions for genotyping of F. psychrophilum isolates. Future studies on VNTRs of F. psychrophilum should include isolates from more host species from a wider geographical area. To get a more robust genotyping the VNTRs should be used in concert with MLST. Future studies of isolates with high and low virulence should focus on identifying virulence markers using VTNRs and MLST. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0469-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia Apablaza
- Fish Diseases Research Group, Department of Biology, University of Bergen, P.O. 7803, N-5020, Bergen, Norway.
| | - Øyvind J Brevik
- Fish Diseases Research Group, Department of Biology, University of Bergen, P.O. 7803, N-5020, Bergen, Norway.
| | - Svein Mjøs
- Nofima, Kjerreidviken 16, 5141, Fyllingsdalen, Bergen, Norway.
| | | | - Pedro Ilardi
- Veterquímica, Camino Melipilla 5641, Cerrillos, Santiago, Chile.
| | - Juan Battaglia
- Veterquímica, Camino Melipilla 5641, Cerrillos, Santiago, Chile.
| | - Inger Dalsgaard
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark.
| | - Are Nylund
- Fish Diseases Research Group, Department of Biology, University of Bergen, P.O. 7803, N-5020, Bergen, Norway.
| |
Collapse
|