1
|
Waidyanatha S, Collins BJ, Cristy T, Embry M, Gafner S, Johnson H, Kellogg J, Krzykwa J, Li S, Mitchell CA, Mutlu E, Pickett S, You H, Van Breemen R, Baker TR. Advancing botanical safety: A strategy for selecting, sourcing, and characterizing botanicals for developing toxicological tools. Food Chem Toxicol 2024; 186:114537. [PMID: 38417538 PMCID: PMC11238631 DOI: 10.1016/j.fct.2024.114537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
Increases in botanical use, encompassing herbal medicines and dietary supplements, have underlined a critical need for an advancement in safety assessment methodologies. However, botanicals present unique challenges for safety assessment due to their complex and variable composition arising from diverse growing conditions, processing methods, and plant varieties. Historically, botanicals have been largely evaluated based on their history of use information, based primarily on traditional use or dietary history. However, this presumption lacks comprehensive toxicological evaluation, demanding innovative and consistent assessment strategies. To address these challenges, the Botanical Safety Consortium (BSC) was formed as an international, cross-sector forum of experts to identify fit-for purpose assays that can be used to evaluate botanical safety. This global effort aims to assess botanical safety assessment methodologies, merging traditional knowledge with modern in vitro and in silico assays. The ultimate goal is to champion the development of toxicity tools for botanicals. This manuscript highlights: 1) BSC's strategy for botanical selection, sourcing, and preparation of extracts to be used in in vitro assays, and 2) the approach utilized to characterize botanical extracts, using green tea and Asian ginseng as examples, to build confidence for use in biological assays.
Collapse
Affiliation(s)
- Suramya Waidyanatha
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Bradley J Collins
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Michelle Embry
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | - Holly Johnson
- American Herbal Products Association, Silver Spring, MD, USA
| | - Josh Kellogg
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Julie Krzykwa
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | | | - Esra Mutlu
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Hong You
- Eurofins Botanical Testing US, Inc., Brea, CA, USA
| | | | | |
Collapse
|
2
|
Park J, Kim D, Lee M, Park GD, Kim SR, Jiang Y, Jun W, Kim OK, Lee J. Unripe Pear Extract Suppresses UVB-Induced Skin Photoaging in Hairless Mice and Keratinocytes. J Med Food 2023; 26:902-910. [PMID: 38010847 DOI: 10.1089/jmf.2023.k.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Our study aimed to investigate whether unripe pear extract (UP) could provide protection against UVB-induced damage to both mouse skin and keratinocytes. We observed that UVB exposure, a common contributor to skin photoaging, led to wrinkle formation, skin dryness, and inflammation in mice. Nevertheless, these effects were mitigated in the groups of UVB-irradiated mice treated with UP. Moreover, UP treatment at 400 μg/mL increased the antioxidant enzyme activities (sodium dodecyl sulfate, 2.22-fold higher; catalase, 2.91-fold higher; GPx, 1.96-fold higher) along with sphingomyelin (1.58-fold higher) and hyaluronic acid (1.31-fold higher) levels in UVB-irradiated keratinocytes. In the keratinocytes irradiated with UVB, UP 400 μg/mL resulted in reduced cytokine production (TNF-α, 33.2%; IL-1β, 45.3%; IL-6, 33.4%) and the expression of inflammatory pathway-related proteins. The findings indicate that UP has a direct protective effect on UVB-irradiated keratinocytes and is also able to shield against photoaging induced by UVB. Hence, it is suggested that UP could contribute to improved skin health by averting skin photoaging.
Collapse
Affiliation(s)
- Jeongjin Park
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| | - Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | | | - Soo Ro Kim
- Suheung Research Center, Seongnam, Korea
| | | | - Woojin Jun
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| |
Collapse
|
3
|
Jiang H, Wu F, Jiang X, Pu YF, Shen LR, Wu CY, Bai HJ. Antioxidative, cytoprotective and whitening activities of fragrant pear fruits at different growth stages. Front Nutr 2022; 9:1020855. [PMID: 36245497 PMCID: PMC9562439 DOI: 10.3389/fnut.2022.1020855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/13/2022] [Indexed: 11/14/2022] Open
Abstract
Pear is one of the most popular fruits in the world. With the fruit ripening, a series of physiological changes have taken place in fragrant pear, but up to now, the research on the metabolism and biological activity of phenolic compounds in different growth stages of fragrant pear is still lacking. In this study, four kinds of Xinjiang pears were selected as research objects, and the changes of phenolic content, antioxidant capacity, cell protection and whitening activity during fruit development were analyzed. The results showed that the phenolic content and antioxidant capacity of four pear varieties presented a decreasing trend throughout the developmental stages. The phenolic content and antioxidant activity of the four pears in the young fruit stage were the highest, and the active ingredients of the Nanguo pear were higher than the other three pear fruits. Pear extract could protect cells by eliminating excessive ROS in cells, especially in young fruit stage. The western blot results showed that the extract of fragrant pear in the young fruit stage could inhibit the expression of TYR, TYR1 and MITF in B16 cells, and it was speculated that the extract of fragrant pear in the young fruit stage might have good whitening activity. Therefore, the findings suggest that young pear display a good antioxidant potential and could have a good application prospect in food preservation and health product industry.
Collapse
Affiliation(s)
- Hui Jiang
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, Tarim University, Alar, China
| | - Fei Wu
- College of Life Sciences, Tarim University, Alar, China
| | - Xi Jiang
- The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, Tarim University, Alar, China
| | - Yun-Feng Pu
- College of Food Science and Engineering, Tarim University, Alar, China
| | - Li-Rong Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Cui-Yun Wu
- The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, Tarim University, Alar, China
- *Correspondence: Cui-Yun Wu,
| | - Hong-Jin Bai
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, Tarim University, Alar, China
- Hong-Jin Bai,
| |
Collapse
|
4
|
A Comparative Study of Ten Pear ( Pyrus communis L.) Cultivars in Relation to the Content of Sugars, Organic Acids, and Polyphenol Compounds. Foods 2022; 11:foods11193031. [PMID: 36230107 PMCID: PMC9563278 DOI: 10.3390/foods11193031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Traditional pear cultivars are increasingly in demand by consumers because of their excellent taste, the possibility of use in sustainable food production systems, convenience as raw materials for obtaining products of high nutritional quality, and perceived health benefits. In this study, individual sugars, organic acids, and polyphenols in the fruits of nine traditional and one commercial pear cultivar during two growing seasons were determined by HPLC. A significant influence of cultivars, growing years, and their interaction on the content of analyzed primary and secondary metabolites was determined. The commercial pear cultivar 'Président Drouard' and traditional cultivars 'Dolokrahan', 'Budaljača', and 'Krakača' had a lower content of all analyzed sugars. Overall, traditional pear cultivars had higher total polyphenols in the peel and pulp than 'Président Drouard', with the exception 'Takiša' and 'Ahmetova'. High polyphenol content detected in 'Budaljača', 'Dolokrahan', and 'Krakača' shows the utilization value of traditional pear germplasm. The obtained data can serve as practical supporting data for the use of traditional pears in the neutraceutical, pharmaceutical, and food industries.
Collapse
|
5
|
Wen H, Wang W, Jiang X, Wu M, Bai H, Wu C, Shen L. Transcriptome analysis to identify candidate genes related to chlorogenic acid biosynthesis during development of Korla fragrant pear in Xinjiang. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Hong SY, Lansky E, Kang SS, Yang M. A review of pears (Pyrus spp.), ancient functional food for modern times. BMC Complement Med Ther 2021; 21:219. [PMID: 34470625 PMCID: PMC8409479 DOI: 10.1186/s12906-021-03392-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pears have been world-widely used as a sweet and nutritious food and a folk medicine for more than two millennia. METHODS We conducted a review from ancient literatures to current reports to extract evidence-based functions of pears. RESULTS We found that pears have many active compounds, e.g., flavonoids, triterpenoids, and phenolic acids including arbutin, chlorogenic acid, malaxinic acid, etc. Most of researchers agree that the beneficial compounds are concentrated in the peels. From various in vitro, in vivo, and human studies, the medicinal functions of pears can be summarized as anti-diabetic,-obese, -hyperlipidemic, -inflammatory, -mutagenic, and -carcinogenic effects, detoxification of xenobiotics, respiratory and cardio-protective effects, and skin whitening effects. Therefore, pears seem to be even effective for prevention from Covid-19 or PM2.5 among high susceptible people with multiple underlying diseases. CONCLUSION For the current or post Covid-19 era, pears have potential for functional food or medicine for both of communicable and non-communicable disease.
Collapse
Affiliation(s)
- Sung-Yong Hong
- College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | | | - Sam-Sog Kang
- Pear Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Naju, South Korea
| | - Mihi Yang
- College of Pharmacy, Sookmyung Women's University, Seoul, South Korea.
| |
Collapse
|
7
|
Sun H, Wang X, Cao X, Liu C, Liu S, Lyu D, Du G. Chemical composition and biological activities of peels and flesh from ten pear cultivars (Pyrus ussuriensis). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Truong XT, Nguyen TTP, Kang MJ, Jung CH, Lee S, Moon C, Moon JH, Jeon TI. Pear Extract and Malaxinic Acid Reverse Obesity, Adipose Tissue Inflammation, and Hepatosteatosis in Mice. Mol Nutr Food Res 2019; 63:e1801347. [PMID: 31034714 DOI: 10.1002/mnfr.201801347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/30/2019] [Indexed: 12/31/2022]
Abstract
SCOPE Obesity and diabetes are major public health problems and are emerging as pandemics. Considerable evidence suggests that pear fruit consumption is associated with a lower risk of obesity-related complications. Thus, the present study is conducted to investigate the therapeutic potential of pear extract (PE) for reversing obesity and associated metabolic complications in high-fat diet-induced obese mice. METHODS AND RESULTS Obesity is induced in male C57BL/6 mice fed a high-fat diet for 11 weeks. After the first 6 weeks on the diet, obese mice are administered vehicle or PE for 5 weeks. PE treatment decreases body weight gain, expands white adipose tissue (WAT), and causes hepatic steatosis in obese mice, as well as inhibits adipogenesis and lipogenesis. Impaired glucose tolerance and insulin resistance are improved by PE. In addition, PE reduces macrophage infiltration and expression of pro-inflammatory genes and deactivates mitogen-activated protein kinases in WAT. Finally, malaxinic acid is identified as an active component responsible for the anti-obesity effects of PE in mice. CONCLUSION The results demonstrate that PE supplementation ameliorates diet-induced obesity and associated metabolic complications and suggest the health-beneficial effects of both pear fruits and malaxinic acid in counteracting these diseases.
Collapse
Affiliation(s)
- Xuan T Truong
- Department of Animal Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Thuy T P Nguyen
- Department of Animal Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Man-Jong Kang
- Department of Animal Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chang Hwa Jung
- Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Sueun Lee
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae-Hak Moon
- Department of Food Science and Technology and Functional Food Research Center, Chonnam National University, BK21 Plus Program, Gwangju, 61186, Republic of Korea
| | - Tae-Il Jeon
- Department of Animal Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
9
|
Sun L, Tao S, Zhang S. Characterization and Quantification of Polyphenols and Triterpenoids in Thinned Young Fruits of Ten Pear Varieties by UPLC-Q TRAP-MS/MS. Molecules 2019; 24:molecules24010159. [PMID: 30609827 PMCID: PMC6337724 DOI: 10.3390/molecules24010159] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 02/01/2023] Open
Abstract
Large quantities of thinned young pears, a natural source of bioactive compounds, are abandoned as agricultural by-products in many orchards. Hence, ten thinned young pear varieties were systematically investigated in terms of their chemical composition and antioxidant potential. Through ultra-performance liquid chromatography coupled with electrospray ionization triple quadrupole mass spectrometry (UPLC-Q TRAP-MS/MS), 102 polyphenols and 16 triterpenoids were identified and individually quantified within a short time using multiple reaction monitoring (MRM). Subsequently, the antioxidant capacities of these pears were determined with DPPH assays, and the correlation between total antioxidant activity and each component was analyzed. The results indicated that the bioactive compound content and antioxidant capacity in thinned pears were considerably high. Regarding chemical composition, chlorogenic acid, quinic acid and arbutin were the primary polyphenols and ursolic acid was the predominant triterpenoid, whereas 27 polyphenolic compounds, especially chlorogenic acid and most of the flavan-3-ols, were the main antioxidants in young pears. These findings should provide a scientific basis for the further use of pear fruit by-products.
Collapse
Affiliation(s)
- Liqiong Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shutian Tao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Lee HJ, Jeong HY, Jin MR, Lee HJ, Cho JY, Moon JH. Metabolism and antioxidant effect of malaxinic acid and its corresponding aglycone in rat blood plasma. Free Radic Biol Med 2017; 110:399-407. [PMID: 28669626 DOI: 10.1016/j.freeradbiomed.2017.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/01/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
Malaxinic acid (MA) is a phenolic acid compound, found mainly in pear fruits (Pyrus pyrifolia N.), that is isoprenylated on the C-3 position of benzoic acid. Recently, the effects of prenylated phenolics on health have received much interest owing to their reported potent beneficial biological effects. We conducted a comparative study in rats to determine the metabolism, pharmacokinetics, and antioxidative activities of MA and its corresponding aglycone (MAA). MA and MAA were orally administered to rats (Sprague-Dawley, male, 6 weeks old) and their metabolites in plasma were analyzed. In addition, the MA metabolites in plasma were separated and the structures were confirmed via NMR and HR-MS analyses. The antioxidative activities of MA and MAA were evaluated by measuring their inhibitory effects on the 2,2'-azobis(2-amidinopropane)dihydrochloride- or copper ion-induced lipid peroxidation of rat plasma. MA was not absorbed in the intact form (the glucoside); both MA and MAA were absorbed as MAA and its metabolite form (glucuronide or sulfate). Moreover, the observed metabolite was the glucuronate of MAA rather than the glucuronide or sulfate. Concentrations of the free form of aglycone (MA administration, 4.6 ± 2.2μM; MAA administration, 7.2 ± 2.3μM) and total MAA (MA administration, 19.6 ± 4.4μM; MAA administration, 21.7 ± 3.3μM) in plasma reached a maximum at 15min after the oral administration of MA and MAA, respectively. The relative inhibitory effects on the formation of cholesteryl ester hydroperoxides in plasma collected at 15min after the oral administration of MA, MAA, and p-hydroxybenzoic acid (p-HBA) were as follows: MAA > MA ≥ p-HBA > control. Although the majority of MA and MAA is metabolized to conjugates, the compounds may contribute to the antioxidant defenses in the blood circulation owing to the presence of a phenolic hydroxyl group in the free form.
Collapse
Affiliation(s)
- Hyun Joo Lee
- Department of Food Science and Technology, BK21 Plus Program, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Hang Yeon Jeong
- Department of Food Science and Technology, BK21 Plus Program, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Mi Rim Jin
- Department of Food Science and Technology, BK21 Plus Program, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Hyoung Jae Lee
- Department of Food Science and Technology, BK21 Plus Program, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Jeong-Yong Cho
- Department of Food Science and Technology, BK21 Plus Program, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Jae-Hak Moon
- Department of Food Science and Technology, BK21 Plus Program, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea.
| |
Collapse
|
11
|
Lee SW, Cho JY, Jeong HY, Na TW, Lee SH, Moon JH. Enhancement of antioxidative and antimicrobial activities of immature pear ( Pyrus pyrifolia cv. Niitaka) fruits by fermentation with Leuconostoc mesenteroides. Food Sci Biotechnol 2016; 25:1719-1726. [PMID: 30263467 DOI: 10.1007/s10068-016-0263-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/07/2016] [Accepted: 10/25/2016] [Indexed: 02/01/2023] Open
Abstract
Immature pear (Pyrus pyrifolia cv. Niitaka) fruits were fermented with Leuconostoc mesenteroides and Aspergillus oryzae, which are commonly used as starters for manufacturing fermented foods. Fermented immature pear fruit extracts (FIPF) by L. mesenteroides showed significantly higher radical-scavenging activity using DPPH, ABTS, superoxide anion, and hydroxyl radicals and reducing power capacity than unfermented immature pear fruit extracts. L. mesenteroides-FIPF more effectively inhibited the formation of cholesteryl ester hydroperoxide in copper ion-induced rat blood plasma. In addition, the L. mesenteroides-FIPF strongly inhibited tyrosinase activity and the growth of pathogenic skin bacteria. In contrast, enhanced antioxidative and antibacterial activities were not apparent in A. oryzae-FIPF. The antioxidative and antimicrobial activities of the fermented and unfermented immature pear fruits were correlated with the flavonoid contents. These results indicate that fermentation enhances antioxidative and antimicrobial activities of immature pear fruits.
Collapse
Affiliation(s)
- Sang Won Lee
- Department of Food Science and Technology, Functional Food Research Center, and BK21 Plus Program, Gwangju, 61186 Korea
| | - Jeong-Yong Cho
- Department of Food Science and Technology, Functional Food Research Center, and BK21 Plus Program, Gwangju, 61186 Korea
| | - Hang Yeon Jeong
- Department of Food Science and Technology, Functional Food Research Center, and BK21 Plus Program, Gwangju, 61186 Korea
| | - Tae-Woong Na
- Jeonnam Bio Control Center, Gokseong, Jeonnam, 57510 Korea
| | - Sang-Hyun Lee
- 3Korea Pear Research Organization, Chonnam National University, Gwangju, 61186 Korea
- 4Department of Horticulture, Chonnam National University, Gwangju, 61186 Korea
| | - Jae-Hak Moon
- Department of Food Science and Technology, Functional Food Research Center, and BK21 Plus Program, Gwangju, 61186 Korea
| |
Collapse
|
12
|
Nieman DC, Gillitt ND, Sha W, Meaney MP, John C, Pappan KL, Kinchen JM. Metabolomics-Based Analysis of Banana and Pear Ingestion on Exercise Performance and Recovery. J Proteome Res 2015; 14:5367-77. [PMID: 26561314 DOI: 10.1021/acs.jproteome.5b00909] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bananas and pears vary in sugar and phenolic profiles, and metabolomics was utilized to measure their influence on exercise performance and recovery. Male athletes (N = 20) cycled for 75 km while consuming water (WATER), bananas (BAN), or pears (PEAR) (0.6 g carbohydrate/kg each hour) in randomized order. UPLC-MS/MS and the library of purified standards maintained by Metabolon (Durham, NC) were used to analyze metabolite shifts in pre- and postexercise (0-h, 1.5-h, 21-h) blood samples. Performance times were 5.0% and 3.3% faster during BAN and PEAR versus WATER (P = 0.018 and P = 0.091, respectively), with reductions in cortisol, IL-10, and total leukocytes, and increases in blood glucose, insulin, and FRAP. Partial Least Square Discriminant Analysis (PLS-DA) showed a distinct separation between trials immediately (R(2)Y = 0.877, Q(2)Y = 0.457) and 1.5-h postexercise (R(2)Y = 0.773, Q(2)Y = 0.441). A total of 107 metabolites (primarily lipid-related) increased more than 2-fold during WATER, with a 48% and 52% reduction in magnitude during BAN and PEAR recovery (P < 0.001). Increases in metabolites unique to BAN and PEAR included fructose and fruit constituents, and sulfated phenolics that were related to elevated FRAP. These data indicate that BAN and PEAR ingestion improves 75-km cycling performance, attenuates fatty acid utilization and oxidation, and contributes unique phenolics that augment antioxidant capacity.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Nicholas D Gillitt
- Dole Nutrition Research Laboratory , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Wei Sha
- Bioinformatics Services Division, University of North Carolina at Charlotte , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Mary Pat Meaney
- Human Performance Laboratory, Appalachian State University , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Casey John
- Human Performance Laboratory, Appalachian State University , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Kirk L Pappan
- Metabolon, Inc., Durham, North Carolina 27713, United States
| | - Jason M Kinchen
- Metabolon, Inc., Durham, North Carolina 27713, United States
| |
Collapse
|
13
|
Jang YK, Jung ES, Lee HA, Choi D, Lee CH. Metabolomic Characterization of Hot Pepper (Capsicum annuum "CM334") during Fruit Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9452-60. [PMID: 26465673 DOI: 10.1021/acs.jafc.5b03873] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Non-targeted metabolomic analysis of hot pepper (Capsicum annuum "CM334") was performed at six development stages [16, 25, 36, 38, 43, and 48 days post-anthesis (DPA)] to analyze biochemical changes. Distinct distribution patterns were observed in the changes of metabolites, gene expressions, and antioxidant activities by early (16-25 DPA), breaker (36-38 DPA), and later (43-48 DPA) stages. In the early stages, glycosides of luteolin, apigenin, and quercetin, shikimic acid, γ-aminobutyric acid (GABA), and putrescine were highly distributed but gradually decreased over the breaker stage. At later stages, leucine, isoleucine, proline, phenylalanine, capsaicin, dihydrocapsaicin, and kaempferol glycosides were significantly increased. Pathway analysis revealed metabolite-gene interactions in the biosynthesis of amino acids, capsaicinoids, fatty acid chains, and flavonoids. The changes in antioxidant activity were highly reflective of alterations in metabolites. The present study could provide useful information about nutrient content at each stage of pepper cultivation.
Collapse
Affiliation(s)
- Yu Kyung Jang
- Department of Bioscience and Biotechnology, Konkuk University , 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Eun Sung Jung
- Department of Bioscience and Biotechnology, Konkuk University , 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun-Ah Lee
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Korea
| | - Doil Choi
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University , 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|