1
|
Narra F, Piragine E, Benedetti G, Ceccanti C, Florio M, Spezzini J, Troisi F, Giovannoni R, Martelli A, Guidi L. Impact of thermal processing on polyphenols, carotenoids, glucosinolates, and ascorbic acid in fruit and vegetables and their cardiovascular benefits. Compr Rev Food Sci Food Saf 2024; 23:e13426. [PMID: 39169551 PMCID: PMC11605278 DOI: 10.1111/1541-4337.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024]
Abstract
Bioactive compounds in fruit and vegetables have a positive impact on human health by reducing oxidative stress, inflammation, and the risk of chronic diseases such as cancer, cardiovascular (CV) diseases, and metabolic disorders. However, some fruit and vegetables must be heated before consumption and thermal processes can modify the amount of nutraceuticals, that is, polyphenols, carotenoids, glucosinolates, and ascorbic acid, that can increase or decrease in relation to different factors such as type of processing, temperature, and time but also the plant part (e.g., flower, leaf, tuber, and root) utilized as food. Another important aspect is related to the bioaccessibility and bioavailability of nutraceuticals. Indeed, the key stage of nutraceutical bioefficiency is oral bioavailability, which involves the release of nutraceuticals from fruit and vegetables in gastrointestinal fluids, the solubilization of nutraceuticals and their interaction with other components of gastrointestinal fluids, the absorption of nutraceuticals by the epithelial layer, and the chemical and biochemical transformations into epithelial cells. Several studies have shown that thermal processing can enhance the absorption of nutraceuticals from fruit and vegetable. Once absorbed, they reach the blood vessels and promote multiple biological effects (e.g., antioxidant, anti-inflammatory, antihypertensive, vasoprotective, and cardioprotective). In this review, we described the impact of different thermal processes (such as boiling, steaming and superheated steaming, blanching, and microwaving) on the retention/degradation of bioactive compounds and their health-promoting effects after the intake. We then summarized the impact of heating on the absorption of nutraceuticals and the biological effects promoted by natural compounds in the CV system to provide a comprehensive overview of the potential impact of thermal processing on the CV benefits of fruit and vegetables.
Collapse
Affiliation(s)
- Federica Narra
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Eugenia Piragine
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
- Department of PharmacyUniversity of PisaPisaItaly
| | | | - Costanza Ceccanti
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
| | - Marta Florio
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | | | | | - Roberto Giovannoni
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
- Department of BiologyUniversity of PisaPisaItaly
| | - Alma Martelli
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
- Department of PharmacyUniversity of PisaPisaItaly
| | - Lucia Guidi
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
| |
Collapse
|
2
|
Wang D, Du Z, Mighri F, Xu Z, Wang L, Zhang Z. Proanthocyanidins Promote Endothelial Cell Viability and Angiogenesis. J Cardiovasc Pharmacol 2022; 79:719-729. [PMID: 35170488 DOI: 10.1097/fjc.0000000000001231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Botanic drugs are reportedly effective in treating ischemic conditions by improving vascular circulation. However, it has been very rare for biomaterial researchers to look into the possibility of using such products in the context of tissue regeneration. This work studied 4 botanic drugs to explore their effects on vascular endothelial cell growth. Human umbilical endothelial cells were cultured in the presence of different doses of astragalus powder extract, astragalus injection, puerarin injection, and proanthocyanidin (PAC). Among the 4 drugs, PAC showed a potent effect on cell viability and stimulated cell growth in a dose-dependent manner. In particular, the PAC under test was able to maintain a high level of cell viability/proliferation comparable with the cells supplemented with the endothelial cell growth medium, at both low and normal serum conditions. Blocking either endothelial cell growth factor receptors or epithelial cell growth factor receptors was ineffective in reducing the stimulatory effect. The PAC released from polyvinyl alcohol cryogels stimulated HUVECs proliferation. The chick embryo chorioallantoic membrane model was further used to test the angiogenicity of PAC, showing that this botanic drug was potent in stimulating vasculature development. This work therefore demonstrates for the first time that PAC is capable of upregulating endothelial cell activity and growth in vitro in the absence of growth factors and that PAC can be loaded and released from drug carriers and can stimulate angiogenesis. These findings suggest the application of PAC in angiogenesis and tissue regeneration.
Collapse
Affiliation(s)
- Dingkun Wang
- Department of Chemical Engineering, Université Laval, Quebec, Quebec, Canada
- Department of Surgery, Université Laval, Quebec, Quebec, Canada
- Division of Regenerative Medicine, Research Centre of CHU-Université Laval, Quebec, Quebec, Canada
| | - Zhiyong Du
- Department of Surgery, Université Laval, Quebec, Quebec, Canada
- Division of Regenerative Medicine, Research Centre of CHU-Université Laval, Quebec, Quebec, Canada
| | - Frej Mighri
- Department of Chemical Engineering, Université Laval, Quebec, Quebec, Canada
| | - Zaipin Xu
- Department of Veterinary Medicine, Guizhou University, Guiyang, China; and
| | - Lu Wang
- Engineering Research Center of the Utilization for Characteristic Bio-pharmaceutical Resources in Southwest, Guizhou University, Guiyang, China
| | - Ze Zhang
- Department of Surgery, Université Laval, Quebec, Quebec, Canada
- Division of Regenerative Medicine, Research Centre of CHU-Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
3
|
Marcińczyk N, Gromotowicz-Popławska A, Tomczyk M, Chabielska E. Tannins as Hemostasis Modulators. Front Pharmacol 2022; 12:806891. [PMID: 35095516 PMCID: PMC8793672 DOI: 10.3389/fphar.2021.806891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
The hemostasis system is often affected by complications associated with cardiovascular diseases, which results in thromboembolic events. Compounds of plant origin and plant extracts are considered as a promising source of substances that could modulate the functioning of the hemostasis system and thus reduce the risk of thromboembolism. Among them, tannins, which are plant-origin compounds with potential effects in hemostasis, deserve a special mention. This paper describes the hemostasis-modifying ability of three groups of tannins, namely ellagitannins, gallotannins, and procyanidins. The review highlights the desirable as well as undesirable influence of tannins on specific components of hemostasis, namely platelets, coagulation system, fibrinolysis system, and endothelium, and the multidirectional effect of these compounds on the thrombotic process. Studies performed under normal and pathological conditions such as diabetes or hypercoagulation are described, and the pathophysiology-dependent action of tannins is also highlighted. Most of the studies presented in the paper were performed in vitro, and due to the low bioavailability of tannins more studies should be conducted in the future to understand their actual activity in vivo.
Collapse
Affiliation(s)
- Natalia Marcińczyk
- Department of Biopharmacy, Medical University of Białystok, Białystok, Poland
| | | | - Michał Tomczyk
- Department of Pharmacognosy, Medical University of Białystok, Białystok, Poland
| | - Ewa Chabielska
- Department of Biopharmacy, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
4
|
Chang X, Tian M, Zhang Q, Liu F, Gao J, Li S, Liu H, Hou X, Li L, Li C, Sun Y. Grape seed proanthocyanidin extract ameliorates cisplatin-induced testicular apoptosis via PI3K/Akt/mTOR and endoplasmic reticulum stress pathways in rats. J Food Biochem 2021; 45:e13825. [PMID: 34152018 DOI: 10.1111/jfbc.13825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 05/29/2021] [Indexed: 12/14/2022]
Abstract
Testicular toxicity is an adverse reaction of the effective chemotherapy drug cisplatin (CIS). Our previous study found that grape seed proanthocyanidin extract (GSPE) had a protective effect on CIS-induced testicular toxicity. However, the protective mechanism of GSPE against CIS-induced testicular toxicity remains unknown. In this study, we aimed to investigate whether GSPE can reduce CIS-induced testicular toxicity and its potential mechanism in rats. The results showed that GSPE ameliorated CIS-induced the apoptosis of testicular cells and inhibited the protein levels of Bad, Cyt c, caspase-9, caspase-3, caspase-12, GRP78, CHOP, IRE1α, p-IRE1α, XBP-1S, PERK, p-PERK, eIF2α, and p-eIF2α. Besides, GSPE reversed the downregulation of PI3K, p-PI3K, Akt, p-Akt, mTOR, and p-mTOR protein expression induced by CIS. These results indicated that GSPE can improve CIS-induced testicular cells apoptosis via activating PI3K/Akt/mTOR and inhibiting Bad/Cyt c/caspase-9/caspase-3 pathways. And GSPE relieved endoplasmic reticulum stress-mediated apoptosis via inhibiting PREK/eIF2α and IRE1α/XBP-1S/caspase-12 pathways. In conclusion, the evidence suggested that GSPE can act as a protective agent against testicular toxicity induced by CIS. PRACTICAL APPLICATIONS: Testicular toxicity was a well-known adverse effect of cisplatin (CIS) in cancer treatment. Grape seed proanthocyanidin extract (GSPE) has been reported to serve as one of the most therapeutic potentials agents. In present study, we explored the regulatory effects of GSPE on the apoptosis induced by CIS, which involved testicular apoptosis mechanisms in rats. Our results indicated that CIS caused testicular toxicity via PI3K/AKT/mTOR and ERS mediated apoptosis pathway in rats. This toxicity was attenuated by GSPE treatment via activated PI3K/Akt/mTOR pathway, and inhibiting Bad/CytC/caspase-9/caspase-3 as well as PREK/eIF2α, IRE1α/XBP-1S/caspase-12 pathways. Our findings suggest that GSPE may be a novel protective agent against testicular toxicity induced by CIS.
Collapse
Affiliation(s)
- Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Minmin Tian
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qiong Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Fangfang Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jinxia Gao
- Department of Occupational Diseases, Lanzhou Municipal Center for Disease Control, Lanzhou, China
| | - Sheng Li
- Department of Public Health, The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiangbo Hou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Lei Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Di Pietro N, Baldassarre MPA, Cichelli A, Pandolfi A, Formoso G, Pipino C. Role of Polyphenols and Carotenoids in Endothelial Dysfunction: An Overview from Classic to Innovative Biomarkers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6381380. [PMID: 33133348 PMCID: PMC7593735 DOI: 10.1155/2020/6381380] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Nowadays, the dramatically increased prevalence of metabolic diseases, such as obesity and diabetes mellitus and their related complications, including endothelial dysfunction and cardiovascular disease, represents one of the leading causes of death worldwide. Dietary nutrients together with healthy lifestyles have a crucial role in the endothelium health-promoting effects. From a growing body of evidence, active natural compounds from food, including polyphenols and carotenoids, have attracted particular attention as a complementary therapy on atherosclerosis and cardiovascular disease, as well as preventive approaches through the attenuation of inflammation and oxidative stress. They mainly act as radical scavengers by promoting a variety of biological mechanisms, such as improvements in endothelial function, blood pressure, platelet activity, and insulin sensitivity, and by modulating various known biomarkers. The present review highlights the role of polyphenols and carotenoids in early endothelial dysfunction with attention to their beneficial effect in modulating both classical and recent technologically generated emerging biomarkers. These, alone or in combination, can play an important role in the prediction, diagnosis, and evolution of cardiovascular disease. However, a main challenge is to speed up early and prompt new interventions in order to prevent or slow down disease progression, even with an adequate intake of bioactive compounds. Hence, there is an urgent need of new more validated, appropriate, and reliable diagnostic and therapeutic biomarkers useful to diagnose endothelial dysfunction at an earlier stage.
Collapse
Affiliation(s)
- Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Pompea Antonia Baldassarre
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Angelo Cichelli
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Gloria Formoso
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Caterina Pipino
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
6
|
Zeng YX, Wang S, Wei L, Cui YY, Chen YH. Proanthocyanidins: Components, Pharmacokinetics and Biomedical Properties. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:813-869. [PMID: 32536248 DOI: 10.1142/s0192415x2050041x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Proanthocyanidins (PAs) are a group of polyphenols enriched in plant and human food. In recent decades, epidemiological studies have upheld the direct relationship between PA consumption and health benefits; therefore, studies on PAs have become a research hotspot. Although the oral bioavailability of PAs is quite low, pharmacokinetics data revealed that some small molecules and colonic microbial metabolites of PAs could be absorbed and exert their health beneficial effects. The pharmacological effects of PAs mainly include anti-oxidant, anticancer, anti-inflammation, antimicrobial, cardiovascular protection, neuroprotection, and metabolism-regulation behaviors. Moreover, current toxicological studies show that PAs have no observable toxicity to humans. This review summarizes the resources, extraction, structures, pharmacokinetics, pharmacology, and toxicology of PAs and discusses the limitations of current studies. Areas for further research are also proposed.
Collapse
Affiliation(s)
- Yan-Xi Zeng
- Department of Cell Biology, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Sen Wang
- Department of Cell Biology, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Lu Wei
- Department of Cell Biology, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Ying-Yu Cui
- Key Laboratory of Arrhythmias, Ministry of Education (Tongji University), Shanghai 200120, P. R. China.,Heart Health Centre, Tongji University School of Medicine, Shanghai 200120, P. R. China.,Institute of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, P. R. China.,Department of Cell Biology, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Yi-Han Chen
- Key Laboratory of Arrhythmias, Ministry of Education (Tongji University), Shanghai 200120, P. R. China.,Heart Health Centre, Tongji University School of Medicine, Shanghai 200120, P. R. China.,Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China.,Institute of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, P. R. China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, P. R. China
| |
Collapse
|
7
|
Hu Y, Wei M, Niu Q, Ma R, Li Y, Wang X, Feng G, Li S, Pang L. Grape seed proanthocyanidin extract alleviates arsenic-induced lung damage through NF-κB signaling. Exp Biol Med (Maywood) 2020; 244:213-226. [PMID: 30869553 DOI: 10.1177/1535370219829881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
IMPACT STATEMENT Arsenic-induced respiratory inflammatory damage is an important occupational hazard in many areas of the world, particularly in underdeveloped and developing countries. Effective treatments are lacking and expensive. Therefore, the aim of the study was to examine the anti-inflammatory effects of proanthocyanidin (PC) and the molecular mechanisms in vivo and in vitro. The present study showed that PC extracted from grape seed could attenuate the lung damage in a mouse model of arsenic poisoning. The effects were observed at the level of lung histology and inflammasome expression. This study suggests that a natural compound is effective in mitigating the toxic effects of arsenic in the lungs, providing an inexpensive and more readily accessible method for treating arsenic exposure in some parts of the world.
Collapse
Affiliation(s)
- Yunhua Hu
- 1 Department of Public Health, Shihezi University School of Medicine, Shihezi 832003, China
| | - Meng Wei
- 1 Department of Public Health, Shihezi University School of Medicine, Shihezi 832003, China.,2 Department of Outpatient, The First Affiliated Hospital, Xinjiang Medical University, Xinjiang 830054, China
| | - Qiang Niu
- 1 Department of Public Health, Shihezi University School of Medicine, Shihezi 832003, China
| | - Rulin Ma
- 1 Department of Public Health, Shihezi University School of Medicine, Shihezi 832003, China
| | - Yu Li
- 1 Department of Public Health, Shihezi University School of Medicine, Shihezi 832003, China
| | - Xianhua Wang
- 3 Department of Quality Control of Changji Hui Autonomous Prefecture Center for Disease Control and Prevention in the Xinjiang Uygur Autonomous Region, Changji, Xinjiang 831100, China
| | - Gangling Feng
- 1 Department of Public Health, Shihezi University School of Medicine, Shihezi 832003, China
| | - Shugang Li
- 1 Department of Public Health, Shihezi University School of Medicine, Shihezi 832003, China
| | - Lijuan Pang
- 1 Department of Public Health, Shihezi University School of Medicine, Shihezi 832003, China
| |
Collapse
|
8
|
Zhang Z, Chen W, Wang Y, Xiong T, Zhou C, Yao X, Lin B. Antioxidant and anti-inflammatory effects of DHK-medicated serum on high glucose-induced injury in endothelial cells. Mol Med Rep 2017; 16:7745-7751. [DOI: 10.3892/mmr.2017.7571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 07/18/2017] [Indexed: 11/05/2022] Open
|
9
|
Long M, Yang SH, Han JX, Li P, Zhang Y, Dong S, Chen X, Guo J, Wang J, He JB. The Protective Effect of Grape-Seed Proanthocyanidin Extract on Oxidative Damage Induced by Zearalenone in Kunming Mice Liver. Int J Mol Sci 2016; 17:ijms17060808. [PMID: 27231898 PMCID: PMC4926342 DOI: 10.3390/ijms17060808] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 04/30/2016] [Accepted: 05/11/2016] [Indexed: 01/14/2023] Open
Abstract
Although grape-seed proanthocyanidin extract (GSPE) demonstrates strong anti-oxidant activity, little research has been done to clearly reveal the protective effects on the hepatotoxicity caused by zearalenone (ZEN). This study is to explore the protective effect of GSPE on ZEN-induced oxidative damage of liver in Kunming mice and the possible protective molecular mechanism of GSPE. The results indicated that GSPE could greatly reduce the ZEN-induced increase of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities. GSPE also significantly decreased the content of MDA but enhanced the activities of antioxidant enzymes SOD and GSH-Px. The analysis indicated that ZEN decreased both mRNA expression levels and protein expression levels of nuclear erythroid2-related factor2 (Nrf2). Nrf2 is considered to be an essential antioxidative transcription factor, as downstream GSH-Px, γ-glutamyl cysteine synthetase (γ-GCS), hemeoxygenase-1 (HO-1), and quinone oxidoreductase 1 (NQO1) decreased simultaneously, whereas the pre-administration of GSPE groups was shown to elevate these expressions. The results indicated that GSPE exerted a protective effect on ZEN-induced hepatic injury and the mechanism might be related to the activation of the Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shu-Hua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jian-Xin Han
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shuang Dong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xinliang Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jiayi Guo
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jun Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Jian-Bin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|