1
|
Ishikawa K, Yamamura C, Miyamoto K, Kanda Y, Inoue H, Okada K, Kamakura T, Mori M. Rice transcription factor DPF regulates stress-induced biosynthesis of diterpenoid phytoalexins. Biosci Biotechnol Biochem 2024; 88:1344-1348. [PMID: 39227176 DOI: 10.1093/bbb/zbae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Diterpenoid Phytoalexin Factor (DPF) is a key transcription factor involved in diterpenoid phytoalexin (DP) biosynthesis under non-stressed conditions in rice (Oryza sativa L.). Using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9, DPF knockout rice lines were generated. Treatments with abiotic stresses (copper chloride, ultraviolet light, and jasmonic acid) and biotic stress (blast fungus infection) to the knockout lines revealed that the DPF positively regulates stress-induced DP biosynthesis.
Collapse
Affiliation(s)
- Kazuki Ishikawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Chihiro Yamamura
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Koji Miyamoto
- Department of Biosciences, Teikyo University, Utsunomiya, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Japan
| | - Yasukazu Kanda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Haruhiko Inoue
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Kazunori Okada
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Kamakura
- Graduate School of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Masaki Mori
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Science and Technology, Tokyo University of Science, Noda, Japan
| |
Collapse
|
2
|
Mascarenhas MS, Nascimento FDS, Rocha ADJ, Ferreira MDS, Oliveira WDDS, Morais Lino LS, Mendes TADO, Ferreira CF, dos Santos-Serejo JA, Amorim EP. Use of CRISPR Technology in Gene Editing for Tolerance to Biotic Factors in Plants: A Systematic Review. Curr Issues Mol Biol 2024; 46:11086-11123. [PMID: 39451539 PMCID: PMC11505962 DOI: 10.3390/cimb46100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
The objective of this systematic review (SR) was to select studies on the use of gene editing by CRISPR technology related to plant resistance to biotic stresses. We sought to evaluate articles deposited in six electronic databases, using pre-defined inclusion and exclusion criteria. This SR demonstrates that countries such as China and the United States of America stand out in studies with CRISPR/Cas. Among the most studied crops are rice, tomatoes and the model plant Arabidopsis thaliana. The most cited biotic agents include the genera, Xanthomonas, Manaporthe, Pseudomonas and Phytophthora. This SR also identifies several CRISPR/Cas-edited genes and demonstrates that plant responses to stressors are mediated by many complex signaling pathways. The Cas9 enzyme is used in most articles and Cas12 and 13 are used as additional editing tools. Furthermore, the quality of the articles included in this SR was validated by a risk of bias analysis. The information collected in this SR helps to understand the state of the art of CRISPR/Cas aimed at improving resistance to diseases and pests to understand the mechanisms involved in most host-pathogen relationships. This SR shows that the CRISPR/Cas system provides a straightforward method for rapid gene targeting, providing useful information for plant breeding programs.
Collapse
Affiliation(s)
- Marcelly Santana Mascarenhas
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil; (M.S.M.); (W.D.d.S.O.)
| | - Fernanda dos Santos Nascimento
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Anelita de Jesus Rocha
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Mileide dos Santos Ferreira
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | | | - Lucymeire Souza Morais Lino
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | | | - Claudia Fortes Ferreira
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Janay Almeida dos Santos-Serejo
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Edson Perito Amorim
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| |
Collapse
|
3
|
Meresa BK, Ayimut KM, Weldemichael MY, Geberemedhin KH, Kassegn HH, Geberemikael BA, Egigu EM. Carbohydrate elicitor-induced plant immunity: Advances and prospects. Heliyon 2024; 10:e34871. [PMID: 39157329 PMCID: PMC11327524 DOI: 10.1016/j.heliyon.2024.e34871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
The perceived negative impacts of synthetic agrochemicals gave way to alternative, biological plant protection strategies. The deployment of induced resistance, comprising boosting the natural defense responses of plants, is one of those. Plants developed multi-component defense mechanisms to defend themselves against biotic and abiotic stresses. These are activated upon recognition of stress signatures via membrane-localized receptors. The induced immune responses enable plants to tolerate and limit the impact of stresses. A systemic cascade of signals enables plants to prime un-damaged tissues, which is crucial during secondary encounters with stress. Comparable stress tolerance mechanisms can be induced in plants by the application of carbohydrate elicitors such as chitin/chitosan, β-1,3-glucans, oligogalacturonides, cellodextrins, xyloglucans, alginates, ulvans, and carrageenans. Treating plants with carbohydrate-derived elicitors enable the plants to develop resistance appliances against diverse stresses. Some carbohydrates are also known to have been involved in promoting symbiotic signaling. Here, we review recent progresses on plant resistance elicitation effect of various carbohydrate elicitors and the molecular mechanisms of plant cell perception, cascade signals, and responses to cascaded cues. Besides, the molecular mechanisms used by plants to distinguish carbohydrate-induced immunity signals from symbiotic signals are discussed. The structure-activity relationships of the carbohydrate elicitors are also described. Furthermore, we forwarded future research outlooks that might increase the utilization of carbohydrate elicitors in agriculture in order to improve the efficacy of plant protection strategies.
Collapse
Affiliation(s)
- Birhanu Kahsay Meresa
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kiros-Meles Ayimut
- Department of Crop and Horticultural Sciences, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Micheale Yifter Weldemichael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kalayou Hiluf Geberemedhin
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Hagos Hailu Kassegn
- Department of Food Science and Postharvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Bruh Asmelash Geberemikael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Etsay Mesele Egigu
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| |
Collapse
|
4
|
Wen Y, Wang F, Wang H, Bi Y, Yan Y, Noman M, Li D, Song F. Melon CmRLCK VII-8 kinase genes CmRLCK27, CmRLCK30 and CmRLCK34 modulate resistance against bacterial and fungal diseases in Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14456. [PMID: 39072778 DOI: 10.1111/ppl.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Receptor-like cytoplasmic kinases (RLCKs) represent a distinct class of receptor-like kinases crucial for various aspects of plant biology, including growth, development, and stress responses. This study delves into the characterization of RLCK VII-8 members within cucurbits, particularly in melon, examining both structural features and the phylogenetic relationships of these genes/proteins. The investigation extends to their potential involvement in disease resistance by employing ectopic overexpression in Arabidopsis. The promoters of CmRLCK VII-8 genes harbor multiple phytohormone- and stress-responsive cis-acting elements, with the majority (excluding CmRLCK39) displaying upregulated expression in response to defense hormones and fungal infection. Subcellular localization studies reveal that CmRLCK VII-8 proteins predominantly reside on the plasma membrane, with CmRLCK29 and CmRLCK30 exhibiting additional nuclear distribution. Notably, Arabidopsis plants overexpressing CmRLCK30 manifest dwarfing and delayed flowering phenotypes. Overexpression of CmRLCK27, CmRLCK30, and CmRLCK34 in Arabidopsis imparts enhanced resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000, concomitant with the strengthened expression of defense genes and reactive oxygen species accumulation. The CmRLCK VII-8 members actively participate in chitin- and flg22-triggered immune responses. Furthermore, CmRLCK30 interacts with CmMAPKKK1 and CmARFGAP, adding a layer of complexity to the regulatory network. In summary, this functional characterization underscores the regulatory roles of CmRLCK27, CmRLCK30, and CmRLCK34 in immune responses by influencing pathogen-induced defense gene expression and ROS accumulation.
Collapse
Affiliation(s)
- Ya Wen
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fahao Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Bi
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuqing Yan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Muhammad Noman
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dayong Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fengming Song
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Maeda S, Goto S, Inoue H, Suwazono H, Takatsuji H, Mori M. Improvement of Broad-Spectrum Disease-Resistant Rice by the Overexpression of BSR1 via a Moderate-Strength Constitutive Promoter and a Pathogen-Inducible Promoter. PLANTS (BASEL, SWITZERLAND) 2024; 13:1138. [PMID: 38674547 PMCID: PMC11054640 DOI: 10.3390/plants13081138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Conferring crops with resistance to multiple diseases is crucial for stable food production. Genetic engineering is an effective means of achieving this. The rice receptor-like cytoplasmic kinase BSR1 mediates microbe-associated molecular pattern-induced immunity. In our previous study, we demonstrated that rice lines overexpressing BSR1 under the control of the maize ubiquitin promoter exhibited broad-spectrum resistance to rice blast, brown spot, leaf blight, and bacterial seedling rot. However, unfavorable phenotypes were observed, such as a decreased seed germination rate and a partial darkening of husked rice. Herein, we present a strategy to address these unfavorable phenotypes using an OsUbi7 constitutive promoter with moderate expression levels and a pathogen-inducible PR1b promoter. Rice lines expressing BSR1 under the influence of both promoters maintained broad-spectrum disease resistance. The seed germination rate and coloration of husked rice were similar to those of the wild-type rice.
Collapse
Affiliation(s)
- Satoru Maeda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8634, Japan; (S.G.); (H.I.); (M.M.)
| | - Shingo Goto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8634, Japan; (S.G.); (H.I.); (M.M.)
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Shizuoka 424-0292, Japan
| | - Haruhiko Inoue
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8634, Japan; (S.G.); (H.I.); (M.M.)
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan
| | - Haruka Suwazono
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8634, Japan; (S.G.); (H.I.); (M.M.)
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan
| | - Hiroshi Takatsuji
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8634, Japan; (S.G.); (H.I.); (M.M.)
| | - Masaki Mori
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8634, Japan; (S.G.); (H.I.); (M.M.)
| |
Collapse
|
6
|
Jalilian A, Bagheri A, Chalvon V, Meusnier I, Kroj T, Kakhki AM. The RLCK subfamily VII-4 controls pattern-triggered immunity and basal resistance to bacterial and fungal pathogens in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1345-1356. [PMID: 37248636 DOI: 10.1111/tpj.16323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Receptor-like cytoplasmic kinases (RLCKs) mediate the intracellular signaling downstream of pattern-recognition receptors (PRRs). Several RLCKs from subfamily VII of rice (Oryza sativa) have important roles in plant immunity, but the role of RLCK VII-4 in pattern-triggered immune (PTI) signaling and resistance to pathogens has not yet been investigated. Here, we generated by multiplex clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated genome editing rice sextuple mutant lines where the entire RLCK VII-4 subfamily is inactivated and then analyzed the resulting lines for their response to chitin and flg22 and for their immunity to Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae. Analysis of the rlckvii-4 mutants revealed that they have an impaired reactive oxygen system burst and reduced defense gene expression in response to flg22 and chitin. This indicates that members of the rice RLCK VII-4 subfamily are required for immune signaling downstream of multiple PRRs. Furthermore, we found that the rice RLCK VII-4 subfamily is important for chitin-induced callose deposition and mitogen-activated protein kinase activation and that it is crucial for basal resistance against Xoo and M. oryzae pathogens. This establishes that the RLCK VII-4 subfamily has critical functions in the regulation of multiple PTI pathways in rice and opens the way for deciphering the precise role of its members in the control of rice PTI.
Collapse
Affiliation(s)
- Ahmad Jalilian
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdolreza Bagheri
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Véronique Chalvon
- PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institute Agro, IRD, Montpellier, France
| | - Isabelle Meusnier
- PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institute Agro, IRD, Montpellier, France
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institute Agro, IRD, Montpellier, France
| | - Amin Mirshamsi Kakhki
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
7
|
Kanda Y, Shinya T, Maeda S, Mujiono K, Hojo Y, Tomita K, Okada K, Kamakura T, Galis I, Mori M. BSR1, a Rice Receptor-like Cytoplasmic Kinase, Positively Regulates Defense Responses to Herbivory. Int J Mol Sci 2023; 24:10395. [PMID: 37373546 DOI: 10.3390/ijms241210395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Crops experience herbivory by arthropods and microbial infections. In the interaction between plants and chewing herbivores, lepidopteran larval oral secretions (OS) and plant-derived damage-associated molecular patterns (DAMPs) trigger plant defense responses. However, the mechanisms underlying anti-herbivore defense, especially in monocots, have not been elucidated. The receptor-like cytoplasmic kinase Broad-Spectrum Resistance 1 (BSR1) of Oryza sativa L. (rice) mediates cytoplasmic defense signaling in response to microbial pathogens and enhances disease resistance when overexpressed. Here, we investigated whether BSR1 contributes to anti-herbivore defense responses. BSR1 knockout suppressed rice responses triggered by OS from the chewing herbivore Mythimna loreyi Duponchel (Lepidoptera: Noctuidae) and peptidic DAMPs OsPeps, including the activation of genes required for biosynthesis of diterpenoid phytoalexins (DPs). BSR1-overexpressing rice plants exhibited hyperactivation of DP accumulation and ethylene signaling after treatment with simulated herbivory and acquired enhanced resistance to larval feeding. As the biological significance of herbivory-induced accumulation of rice DPs remains unexplained, their physiological activities in M. loreyi were analyzed. The addition of momilactone B, a rice DP, to the artificial diet suppressed the growth of M. loreyi larvae. Altogether, this study revealed that BSR1 and herbivory-induced rice DPs are involved in the defense against chewing insects, in addition to pathogens.
Collapse
Affiliation(s)
- Yasukazu Kanda
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba 305-8634, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Satoru Maeda
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba 305-8634, Japan
| | - Kadis Mujiono
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
- Faculty of Agriculture, Mulawarman University, Samarinda 75119, Indonesia
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Keisuke Tomita
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazunori Okada
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takashi Kamakura
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Masaki Mori
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba 305-8634, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| |
Collapse
|
8
|
Pei M, Xie X, Peng B, Chen X, Chen Y, Li Y, Wang Z, Lu G. Identification and Expression Analysis of Phosphatidylinositol Transfer Proteins Genes in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112122. [PMID: 37299101 DOI: 10.3390/plants12112122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The family of phosphatidylinositol transfer proteins (PITPs) is able to bind specific lipids to carry out various biological functions throughout different stages of plant life. But the function of PITPs in rice plant is unclear. In this study, 30 PITPs were identified from rice genome, which showed differences in physicochemical properties, gene structure, conservation domains, and subcellular localization. The promoter region of the OsPITPs genes included at least one type of hormone response element, such as methyl jasmonate (Me JA) and salicylic acid (SA). Furthermore, the expression level of OsML-1, OsSEC14-3, OsSEC14-4, OsSEC14-15, and OsSEC14-19 genes were significantly affected by infection of rice blast fungus Magnaporthe oryzae. Based on these findings, it is possible that OsPITPs may be involved in rice innate immunity in response to M. oryzae infection through the Me JA and SA pathway.
Collapse
Affiliation(s)
- Mengtian Pei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuze Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baoyi Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinchi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yixuan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ya Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Maeda S, Ackley W, Yokotani N, Sasaki K, Ohtsubo N, Oda K, Mori M. Enhanced Resistance to Fungal and Bacterial Diseases Due to Overexpression of BSR1, a Rice RLCK, in Sugarcane, Tomato, and Torenia. Int J Mol Sci 2023; 24:ijms24043644. [PMID: 36835053 PMCID: PMC9965303 DOI: 10.3390/ijms24043644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Sugarcane smut caused by Sporisorium scitamineum is one of the most devastating sugarcane diseases. Furthermore, Rhizoctonia solani causes severe diseases in various crops including rice, tomato, potato, sugar beet, tobacco, and torenia. However, effective disease-resistant genes against these pathogens have not been identified in target crops. Therefore, the transgenic approach can be used since conventional cross-breeding is not applicable. Herein, the overexpression of BROAD-SPECTRUM RESISTANCE 1 (BSR1), a rice receptor-like cytoplasmic kinase, was conducted in sugarcane, tomato and torenia. BSR1-overexpressing tomatoes exhibited resistance to the bacteria Pseudomonas syringae pv. tomato DC3000 and the fungus R. solani, whereas BSR1-overexpressing torenia showed resistance to R. solani in the growth room. Additionally, BSR1 overexpression conferred resistance to sugarcane smut in the greenhouse. These three BSR1-overexpressing crops exhibited normal growth and morphologies except in the case of exceedingly high levels of overexpression. These results indicate that BSR1 overexpression is a simple and effective tool for conferring broad-spectrum disease resistance to many crops.
Collapse
Affiliation(s)
- Satoru Maeda
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba 305-8634, Japan
| | - Wataru Ackley
- Institute of Livestock and Grassland Science, NARO (NILGS), Nasushiobara 329-2793, Japan
| | - Naoki Yokotani
- Research Institute for Biological Sciences, Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Okayama 716-1241, Japan
| | - Katsutomo Sasaki
- Institute of Vegetable and Floriculture Science, NARO (NIVFS), Tsukuba 305-0852, Japan
| | - Norihiro Ohtsubo
- Institute of Vegetable and Floriculture Science, NARO (NIVFS), Tsukuba 305-0852, Japan
| | - Kenji Oda
- Research Institute for Biological Sciences, Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Okayama 716-1241, Japan
| | - Masaki Mori
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba 305-8634, Japan
- Correspondence: ; Tel.: +81-(29)-8387008
| |
Collapse
|
10
|
Liang X, Zhang J. Regulation of plant responses to biotic and abiotic stress by receptor-like cytoplasmic kinases. STRESS BIOLOGY 2022; 2:25. [PMID: 37676353 PMCID: PMC10441961 DOI: 10.1007/s44154-022-00045-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/09/2022] [Indexed: 09/08/2023]
Abstract
As sessile organisms, plants have to cope with environmental change and numerous biotic and abiotic stress. Upon perceiving environmental cues and stress signals using different types of receptors, plant cells initiate immediate and complicated signaling to regulate cellular processes and respond to stress. Receptor-like cytoplasmic kinases (RLCKs) transduce signals from receptors to cellular components and play roles in diverse biological processes. Recent studies have revealed the hubbing roles of RLCKs in plant responses to biotic stress. Emerging evidence indicates the important regulatory roles of RLCKs in plant responses to abiotic stress, growth, and development. As a pivot of cellular signaling, the activity and stability of RLCKs are dynamically and tightly controlled. Here, we summarize the current understanding of how RLCKs regulate plant responses to biotic and abiotic stress.
Collapse
Affiliation(s)
- Xiangxiu Liang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
DeFalco TA, Zipfel C. Molecular mechanisms of early plant pattern-triggered immune signaling. Mol Cell 2021; 81:3449-3467. [PMID: 34403694 DOI: 10.1016/j.molcel.2021.07.029] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
All eukaryotic organisms have evolved sophisticated immune systems to appropriately respond to biotic stresses. In plants and animals, a key part of this immune system is pattern recognition receptors (PRRs). Plant PRRs are cell-surface-localized receptor kinases (RKs) or receptor proteins (RPs) that sense microbe- or self-derived molecular patterns to regulate pattern-triggered immunity (PTI), a robust form of antimicrobial immunity. Remarkable progress has been made in understanding how PRRs perceive their ligands, form active protein complexes, initiate cell signaling, and ultimately coordinate the cellular reprogramming that leads to PTI. Here, we discuss the critical roles of PRR complex formation and phosphorylation in activating PTI signaling, as well as the emerging paradigm in which receptor-like cytoplasmic kinases (RLCKs) act as executors of signaling downstream of PRR activation.
Collapse
Affiliation(s)
- Thomas A DeFalco
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland; The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
12
|
Steinbrenner AD. The evolving landscape of cell surface pattern recognition across plant immune networks. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:135-146. [PMID: 32615401 DOI: 10.1016/j.pbi.2020.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
To recognize diverse threats, plants monitor extracellular molecular patterns and transduce intracellular immune signaling through receptor complexes at the plasma membrane. Pattern recognition occurs through a prototypical network of interacting proteins, comprising A) receptors that recognize inputs associated with a growing number of pest and pathogen classes (bacteria, fungi, oomycetes, caterpillars), B) co-receptor kinases that participate in binding and signaling, and C) cytoplasmic kinases that mediate first stages of immune output. While this framework has been elucidated in reference accessions of model organisms, network components are part of gene families with widespread variation, potentially tuning immunocompetence for specific contexts. Most dramatically, variation in receptor repertoires determines the range of ligands acting as immunogenic inputs for a given plant. Diversification of receptor kinase (RK) and related receptor-like protein (RLP) repertoires may tune responses even within a species. Comparative genomics at pangenome scale will reveal patterns and features of immune network variation.
Collapse
Affiliation(s)
- Adam D Steinbrenner
- Department of Biology, University of Washington, Seattle WA 98195, USA; Washington Research Foundation, Seattle, WA 98102, USA.
| |
Collapse
|
13
|
Kanda Y, Nishizawa Y, Kamakura T, Mori M. Overexpressed BSR1-Mediated Enhancement of Disease Resistance Depends on the MAMP-Recognition System. Int J Mol Sci 2020; 21:ijms21155397. [PMID: 32751339 PMCID: PMC7432911 DOI: 10.3390/ijms21155397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 11/16/2022] Open
Abstract
Plant plasma membrane-localized receptors recognize microbe-associated molecular patterns (MAMPs) and activate immune responses via various signaling pathways. Receptor-like cytoplasmic kinases (RLCKs) are considered key signaling factors in plant immunity. BROAD-SPECTRUM RESISTANCE 1 (BSR1), a rice RLCK, plays a significant role in disease resistance. Overexpression of BSR1 confers strong resistance against fungal and bacterial pathogens. Our recent study revealed that MAMP-triggered immune responses are mediated by BSR1 in wild-type rice and are hyperactivated in BSR1-overexpressing rice. It was suggested that hyperactivated immune responses were responsible for the enhancement of broad-spectrum disease resistance; however, this remained to be experimentally validated. In this study, we verified the above hypothesis by disrupting the MAMP-recognition system in BSR1-overexpressing rice. To this end, we knocked out OsCERK1, which encodes a well-characterized MAMP-receptor-like protein kinase. In the background of BSR1 overaccumulation, the knockout of OsCERK1 nearly abolished the enhancement of blast resistance. This finding indicates that overexpressed BSR1-mediated enhancement of disease resistance depends on the MAMP-triggered immune system, corroborating our previously suggested model.
Collapse
Affiliation(s)
- Yasukazu Kanda
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba 305-8602, Japan; (Y.K.); (Y.N.)
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan;
| | - Yoko Nishizawa
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba 305-8602, Japan; (Y.K.); (Y.N.)
| | - Takashi Kamakura
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan;
| | - Masaki Mori
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba 305-8602, Japan; (Y.K.); (Y.N.)
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan;
- Correspondence: ; Tel.: +81-29-838-7008
| |
Collapse
|
14
|
Marchev AS, Yordanova ZP, Georgiev MI. Green (cell) factories for advanced production of plant secondary metabolites. Crit Rev Biotechnol 2020; 40:443-458. [PMID: 32178548 DOI: 10.1080/07388551.2020.1731414] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For centuries plants have been intensively utilized as reliable sources of food, flavoring, agrochemical and pharmaceutical ingredients. However, plant natural habitats are being rapidly lost due to climate change and agriculture. Plant biotechnology offers a sustainable method for the bioproduction of plant secondary metabolites using plant in vitro systems. The unique structural features of plant-derived secondary metabolites, such as their safety profile, multi-target spectrum and "metabolite likeness," have led to the establishment of many plant-derived drugs, comprising approximately a quarter of all drugs approved by the Food and Drug Administration and/or European Medicinal Agency. However, there are still many challenges to overcome to enhance the production of these metabolites from plant in vitro systems and establish a sustainable large-scale biotechnological process. These challenges are due to the peculiarities of plant cell metabolism, the complexity of plant secondary metabolite pathways, and the correct selection of bioreactor systems and bioprocess optimization. In this review, we present an integrated overview of the possible avenues for enhancing the biosynthesis of high-value marketable molecules produced by plant in vitro systems. These include metabolic engineering and CRISPR/Cas9 technology for the regulation of plant metabolism through overexpression/repression of single or multiple structural genes or transcriptional factors. The use of NMR-based metabolomics for monitoring metabolite concentrations and additionally as a tool to study the dynamics of plant cell metabolism and nutritional management is discussed here. Different types of bioreactor systems, their modification and optimal process parameters for the lab- or industrial-scale production of plant secondary metabolites are specified.
Collapse
Affiliation(s)
- Andrey S Marchev
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| | - Zhenya P Yordanova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Milen I Georgiev
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| |
Collapse
|
15
|
Kanda Y, Nakagawa H, Nishizawa Y, Kamakura T, Mori M. Broad-Spectrum Disease Resistance Conferred by the Overexpression of Rice RLCK BSR1 Results from an Enhanced Immune Response to Multiple MAMPs. Int J Mol Sci 2019; 20:ijms20225523. [PMID: 31698708 PMCID: PMC6888047 DOI: 10.3390/ijms20225523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Plants activate their immune system through intracellular signaling pathways after perceiving microbe-associated molecular patterns (MAMPs). Receptor-like cytoplasmic kinases mediate the intracellular signaling downstream of pattern-recognition receptors. BROAD-SPECTRUM RESISTANCE 1 (BSR1), a rice (Oryza sativa) receptor-like cytoplasmic kinase subfamily-VII protein, contributes to chitin-triggered immune responses. It is valuable for agriculture because its overexpression confers strong disease resistance to fungal and bacterial pathogens. However, it remains unclear how overexpressed BSR1 reinforces plant immunity. Here we analyzed immune responses using rice suspension-cultured cells and sliced leaf blades overexpressing BSR1. BSR1 overexpression enhances MAMP-triggered production of hydrogen peroxide (H2O2) and transcriptional activation of the defense-related gene in cultured cells and leaf strips. Furthermore, the co-cultivation of leaves with conidia of the blast fungus revealed that BSR1 overexpression allowed host plants to produce detectable oxidative bursts against compatible pathogens. BSR1 was also involved in the immune responses triggered by peptidoglycan and lipopolysaccharide. Thus, we concluded that the hyperactivation of MAMP-triggered immune responses confers BSR1-mediated robust resistance to broad-spectrum pathogens.
Collapse
Affiliation(s)
- Yasukazu Kanda
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba 305-8602, Japan; (Y.K.); (H.N.); (Y.N.)
- Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan;
| | - Hitoshi Nakagawa
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba 305-8602, Japan; (Y.K.); (H.N.); (Y.N.)
| | - Yoko Nishizawa
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba 305-8602, Japan; (Y.K.); (H.N.); (Y.N.)
| | - Takashi Kamakura
- Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan;
| | - Masaki Mori
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba 305-8602, Japan; (Y.K.); (H.N.); (Y.N.)
- Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan;
- Correspondence: ; Tel.: +81-29-838-7008
| |
Collapse
|
16
|
Nazarian-Firouzabadi F, Joshi S, Xue H, Kushalappa AC. Genome-wide in silico identification of LysM-RLK genes in potato (Solanum tuberosum L.). Mol Biol Rep 2019; 46:5005-5017. [PMID: 31317454 DOI: 10.1007/s11033-019-04951-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/27/2019] [Indexed: 01/22/2023]
Abstract
The receptor like kinases (RLKs) belong to the RLK/Pelle superfamily, one of the largest gene families in plants. RLKs play an important role in plant development, as well as in response to biotic and abiotic stresses. The lysine motif receptor like kinases (LysM-RLKs) are a subfamily of RLKs containing at least one lysine motif (LysM) that are involved in the perception of elicitors or pathogen-associated molecular patterns (PAMPs). In the present study, 77 putative RLKs genes and three receptor like proteins were identified in potato (Solanum tuberosum) genome, following a genome-wide search. The 77 potato RLK proteins are classified into two major phylogenetic groups based on their kinase domain amino acid sequence similarities. Out of 77 RLKs, 10 proteins had at least one LysM. Among them three RLP proteins were found in potato genome with either 2 or three tandem LysM but these lacked a cytoplasmic kinase domain. Expression analyses of a potato LysM-RLKs (StLysM-RLK05) was carried out by a Real time RT-PCR, following inoculation of potato leaves and immature tubers with late blight and common scab pathogens, respectively. The expression was significantly higher in resistant than in susceptible following S. scabies inoculation. The StLysM-RLK05 sequence was verified and it was polymorphic in scab susceptible cultivar. The present study provides an overview of the StLysM-RLKs gene family in potato genome. This information is helpful for future functional analysis of such an important protein family, in Solanaceae species.
Collapse
Affiliation(s)
- Farhad Nazarian-Firouzabadi
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X3V9, Canada.,Agronomy and Plant Breeding Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Sripad Joshi
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Huali Xue
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X3V9, Canada.,College of Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Ajjamada C Kushalappa
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X3V9, Canada.
| |
Collapse
|
17
|
Zhang Y, Liu Q, Zhang Y, Chen Y, Yu N, Cao Y, Zhan X, Cheng S, Cao L. LMM24 Encodes Receptor-Like Cytoplasmic Kinase 109, Which Regulates Cell Death and Defense Responses in Rice. Int J Mol Sci 2019; 20:ijms20133243. [PMID: 31269643 PMCID: PMC6651581 DOI: 10.3390/ijms20133243] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 11/16/2022] Open
Abstract
Lesion mimic mutants are excellent models for research on molecular mechanisms of cell death and defense responses in rice. We identified a new rice lesion mimic mutant lmm24 from a mutant pool of indica rice cultivar “ZhongHui8015”. The LMM24 gene was identified by MutMap, and LMM24 was confirmed as a receptor-like cytoplasmic kinase 109 by amino acid sequence analysis. The lmm24 mutant displayed dark brown lesions in leaves and growth retardation that were not observed in wild-type ZH8015. The results of histochemical staining and TUNEL assays showed enhanced ROS accumulation and cell death in lmm24. Chloroplast degradation was observed in lmm24 leaves, with decreased expression of photosynthesis-related genes and increased expression of the senescence-induced STAYGREEN (SGR) gene and other senescence-associated genes. Furthermore, lmm24 exhibited enhanced resistance to rice blast fungus Magnaporthe oryzae (M. oryzae) and up-regulation of defense response genes. Our data demonstrate that LMM24 regulates cell death and defense responses in rice.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Qunen Liu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yuyu Chen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Ning Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yongrun Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiaodeng Zhan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
18
|
Hameed A, Shan-E-Ali Zaidi S, Sattar MN, Iqbal Z, Tahir MN. CRISPR technology to combat plant RNA viruses: A theoretical model for Potato virus Y (PVY) resistance. Microb Pathog 2019; 133:103551. [PMID: 31125685 DOI: 10.1016/j.micpath.2019.103551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/17/2019] [Indexed: 12/26/2022]
Abstract
RNA viruses are the most diverse phytopathogens which cause severe epidemics in important agricultural crops and threaten the global food security. Being obligatory intracellular pathogens, these viruses have developed fine-tuned evading mechanisms and are non-responsive to most of the prophylactic treatments. Additionally, their sprint ability to overcome host defense demands a broad-spectrum and durable mechanism of resistance. In context of CRISPR-Cas discoveries, some variants of Cas effectors have been characterized as programmable RNA-guided RNases in the microbial genomes and could be reprogramed in mammalian and plant cells with guided RNase activity. Recently, the RNA variants of CRISPR-Cas systems have been successfully employed in plants to engineer resistance against RNA viruses. Some variants of CRISPR-Cas9 have been tamed either for directly targeting plant RNA viruses' genome or through targeting the host genes/factors assisting in viral proliferation. The new frontiers in CRISPR-Cas discoveries, and more importantly shifting towards RNA targeting will pyramid the opportunities in plant virus research. The current review highlights the probable implications of CRISPR-Cas system to confer the pathogen-derived or host-mediated resistance against phytopathogenic RNA viruses. Furthermore, a multiplexed CRISPR-Cas13a methodology is proposed here to combat Potato virus Y (PVY); a globally diverse phytopathogen infecting multiple crops.
Collapse
Affiliation(s)
- Amir Hameed
- Akhuwat Faisalabad Institute of Research Science and Technology, Faisalabad, Pakistan; Department of Bioinformatics & Biotechnology, Government College University, Allama Iqbal Road, Faisalabad, Pakistan.
| | | | - Muhammad Naeem Sattar
- Department of Biotechnology, College of Agriculture and Food Science, King Faisal University, Box 400, Al-Ahsa, 3192, Saudi Arabia
| | - Zafar Iqbal
- Department of Plant Pathology, University of Florida, Gainesville, 32611, FL, USA
| | | |
Collapse
|
19
|
Jiang X, Bao H, Merzendorfer H, Yang Q. Immune Responses of Mammals and Plants to Chitin-Containing Pathogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:61-81. [PMID: 31102242 DOI: 10.1007/978-981-13-7318-3_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chitin-containing organisms, such as fungi and arthropods, use chitin as a structural component to protect themselves from harsh environmental conditions. Hosts such as mammals and plants, however, sense chitin to initiate innate and adaptive immunity and exclude chitin-containing organisms. A number of protein factors are then expressed, and several signaling pathways are triggered. In this chapter, we focus on the responses and signal transduction pathways that are activated in mammals and plants upon invasion by chitin-containing organisms. As host chitinases play important roles in the glycolytic processing of chitin, which is then recognized by pattern-recognition receptors, we also pay special attention to the chitinases that are involved in immune recognition.
Collapse
Affiliation(s)
- Xi Jiang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116023, China
| | - Han Bao
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116023, China
| | - Hans Merzendorfer
- Department of Chemistry and Biology - Molecular Biology, University of Siegen, 57076, Siegen, Germany
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116023, China. .,State Laboratory of Biology for Plant Diseases and Insect Pests, Institute of Plant Protection at Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
20
|
Sugano S, Maeda S, Hayashi N, Kajiwara H, Inoue H, Jiang CJ, Takatsuji H, Mori M. Tyrosine phosphorylation of a receptor-like cytoplasmic kinase, BSR1, plays a crucial role in resistance to multiple pathogens in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1137-1147. [PMID: 30222251 DOI: 10.1111/tpj.14093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Plants have evolved many receptor-like cytoplasmic kinases (RLCKs) to modulate their growth, development, and innate immunity. Broad-Spectrum Resistance 1 (BSR1) encodes a rice RLCK, whose overexpression confers resistance to multiple diseases, including fungal rice blast and bacterial leaf blight. However, the mechanisms underlying resistance remain largely unknown. In the present study, we report that BSR1 is a functional protein kinase that autophosphorylates and transphosphorylates an artificial substrate in vitro. Although BSR1 is classified as a serine/threonine kinase, it was shown to autophosphorylate on tyrosine as well as on serine/threonine residues when expressed in bacteria, demonstrating that it is a dual-specificity kinase. Protein kinase activity was found to be indispensable for resistance to rice blast and leaf blight in BSR1-overexpressing plants. Importantly, tyrosine phosphorylation of BSR1 was critical for proper localization of BSR1 in rice cells and played a crucial role in BSR1-mediated resistance to multiple diseases, as evidenced by compromised disease resistance in transgenic plants overexpressing a mutant BSR1 in which Tyr-63 was substituted with Ala. Overall, our data indicate that BSR1 is a non-receptor dual-specificity kinase and that both tyrosine and serine/threonine kinase activities are critical for the normal functioning of BSR1 in the resistance to multiple pathogens. Our results support the notion that tyrosine phosphorylation plays a major regulatory role in the transduction of defense signals from cell-surface receptor complexes to downstream signaling components in plants.
Collapse
Affiliation(s)
- Shoji Sugano
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Satoru Maeda
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Nagao Hayashi
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hideyuki Kajiwara
- Advanced Analysis Center (NAAC), NARO, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Haruhiko Inoue
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Chang-Jie Jiang
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hiroshi Takatsuji
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Masaki Mori
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
21
|
Liang X, Zhou JM. Receptor-Like Cytoplasmic Kinases: Central Players in Plant Receptor Kinase-Mediated Signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:267-299. [PMID: 29719165 DOI: 10.1146/annurev-arplant-042817-040540] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Receptor kinases (RKs) are of paramount importance in transmembrane signaling that governs plant reproduction, growth, development, and adaptation to diverse environmental conditions. Receptor-like cytoplasmic kinases (RLCKs), which lack extracellular ligand-binding domains, have emerged as a major class of signaling proteins that regulate plant cellular activities in response to biotic/abiotic stresses and endogenous extracellular signaling molecules. By associating with immune RKs, RLCKs regulate multiple downstream signaling nodes to orchestrate a complex array of defense responses against microbial pathogens. RLCKs also associate with RKs that perceive brassinosteroids and signaling peptides to coordinate growth, pollen tube guidance, embryonic and stomatal patterning, floral organ abscission, and abiotic stress responses. The activity and stability of RLCKs are dynamically regulated not only by RKs but also by other RLCK-associated proteins. Analyses of RLCK-associated components and substrates have suggested phosphorylation relays as a major mechanism underlying RK-mediated signaling.
Collapse
Affiliation(s)
- Xiangxiu Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, 100101 Beijing, China;
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, 100101 Beijing, China;
| |
Collapse
|
22
|
Kawasaki T, Yamada K, Yoshimura S, Yamaguchi K. Chitin receptor-mediated activation of MAP kinases and ROS production in rice and Arabidopsis. PLANT SIGNALING & BEHAVIOR 2017; 12:e1361076. [PMID: 28805500 PMCID: PMC5640189 DOI: 10.1080/15592324.2017.1361076] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 05/22/2023]
Abstract
Rapid induction of plant immune responses is essential to inhibit colonization and invasion by pathogens. Plants can recognize pathogen-associated molecular patterns (PAMPs) including fungal chitin and bacterial flagellin using pattern-recognition receptors (PRRs), which trigger the intracellular activation of mitogen-activated protein kinase (MAPK) cascades and the production of reactive oxygen species (ROS). MAPK activation and ROS production play pivotal roles in the induction of robust immune responses. Recent investigation of chitin- and flagellin-induced immune signaling revealed that receptor-like cytoplasmic kinases (RLCKs) connect PRR-mediated pathogen recognition to MAPK activation and ROS production. In addition, although the MAPK cascade is mediated by 3 sequentially activated protein kinases, MAPK kinase kinase (MAPKKK), MAPK kinase (MAPKK), and MAPK, how MAPKKKs are activated downstream of PRRs in plants has not been identified until recently. In this review, we summarize recent findings of RLCK-mediated MAPK activation and ROS production in rice and Arabidopsis.
Collapse
Affiliation(s)
- Tsutomu Kawasaki
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara, Japan
- CONTACT Tsutomu Kawasaki Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Kenta Yamada
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara, Japan
| | - Satomi Yoshimura
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara, Japan
| | - Koji Yamaguchi
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara, Japan
| |
Collapse
|
23
|
Sattar MN, Iqbal Z, Tahir MN, Shahid MS, Khurshid M, Al-Khateeb AA, Al-Khateeb SA. CRISPR/Cas9: A Practical Approach in Date Palm Genome Editing. FRONTIERS IN PLANT SCIENCE 2017; 8:1469. [PMID: 28878801 PMCID: PMC5572371 DOI: 10.3389/fpls.2017.01469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/07/2017] [Indexed: 05/22/2023]
Abstract
The genetic modifications through breeding of crop plants have long been used to improve the yield and quality. However, precise genome editing (GE) could be a very useful supplementary tool for improvement of crop plants by targeted genome modifications. Various GE techniques including ZFNs (zinc finger nucleases), TALENs (transcription activator-like effector nucleases), and most recently clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 (CRISPR-associated protein 9)-based approaches have been successfully employed for various crop plants including fruit trees. CRISPR/Cas9-based approaches hold great potential in GE due to their simplicity, competency, and versatility over other GE techniques. However, to the best of our knowledge no such genetic improvement has ever been developed in date palm-an important fruit crop in Oasis agriculture. The applications of CRISPR/Cas9 can be a challenging task in date palm GE due to its large and complex genome, high rate of heterozygosity and outcrossing, in vitro regeneration and screening of mutants, high frequency of single-nucleotide polymorphism in the genome and ultimately genetic instability. In this review, we addressed the potential application of CRISPR/Cas9-based approaches in date palm GE to improve the sustainable date palm production. The availability of the date palm whole genome sequence has made it feasible to use CRISPR/Cas9 GE approach for genetic improvement in this species. Moreover, the future prospects of GE application in date palm are also addressed in this review.
Collapse
Affiliation(s)
- Muhammad N. Sattar
- Department of Environment and Natural Resources, Faculty of Agriculture and Food Sciences, King Faisal UniversityAl-Ahsa, Saudi Arabia
| | - Zafar Iqbal
- Akhuwat-Faisalabad Institute of Research, Science and TechnologyFaisalabad, Pakistan
| | - Muhammad N. Tahir
- National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Muhammad S. Shahid
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos UniversityAl-Khoud, Oman
| | - Muhammad Khurshid
- Institute of Biochemistry and Biotechnology, University of the PunjabLahore, Pakistan
| | - Abdullatif A. Al-Khateeb
- Plant Biotechnology Department, Faculty of Agricultural and Food Sciences, King Faisal UniversityAl-Ahsa, Saudi Arabia
| | - Suliman A. Al-Khateeb
- Department of Environment and Natural Resources, Faculty of Agriculture and Food Sciences, King Faisal UniversityAl-Ahsa, Saudi Arabia
- Ministry of Environment, Water and AgricultureRiyadh, Saudi Arabia
| |
Collapse
|