1
|
Li BW, Gao S, Yang ZM, Song JB. The F-box E3 ubiquitin ligase AtSDR is involved in salt and drought stress responses in Arabidopsis. Gene 2022; 809:146011. [PMID: 34655724 DOI: 10.1016/j.gene.2021.146011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 11/04/2022]
Abstract
F-box protein genes have been shown to play vital roles in plant development and stress respones. In Arabidopsis, there are more than 600 F-box proteins, and most of their functions are unclear. The present study shows that the F-box (SKP1-Cullin/CDC53-F-box) gene At5g15710 (Salt and Drought Responsiveness, SDR) is involved in abiotic stress responses in Arabidopsis. SDR is expressed in all tissues of Arabidopsis and is upregulated by salt and heat stresses and ABA treatment but downregulated by drought stress. Subcellular localization analysis shows that the SDR protein colocalizes with the nucleus. 35S:AntiSDR plants are hypersensitive to salt stress, but 35S:SDR plants display a salt-tolerant phenotype. Furthermore, 35S:SDR plants are hypersensitive to drought stress, while 35S:AntiSDR plants are significantly more drought tolerant. Overall, our results suggest that SDR is involved in salt and drought stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Bo Wen Li
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou 213003 , PR China
| | - Shuai Gao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jian Bo Song
- College of Biological Sciences and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
2
|
Natarajan P, Murugesan AK, Govindan G, Gopalakrishnan A, Kumar R, Duraisamy P, Balaji R, Tanuja, Shyamli PS, Parida AK, Parani M. A reference-grade genome identifies salt-tolerance genes from the salt-secreting mangrove species Avicennia marina. Commun Biol 2021; 4:851. [PMID: 34239036 PMCID: PMC8266904 DOI: 10.1038/s42003-021-02384-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Water scarcity and salinity are major challenges facing agriculture today, which can be addressed by engineering plants to grow in the boundless seawater. Understanding the mangrove plants at the molecular level will be necessary for developing such highly salt-tolerant agricultural crops. With this objective, we sequenced the genome of a salt-secreting and extraordinarily salt-tolerant mangrove species, Avicennia marina, that grows optimally in 75% seawater and tolerates >250% seawater. Our reference-grade ~457 Mb genome contains 31 scaffolds corresponding to its chromosomes. We identified 31,477 protein-coding genes and a salinome consisting of 3246 salinity-responsive genes and homologs of 614 experimentally validated salinity tolerance genes. The salinome provides a strong foundation to understand the molecular mechanisms of salinity tolerance in plants and breeding crops suitable for seawater farming.
Collapse
Affiliation(s)
- Purushothaman Natarajan
- grid.412742.60000 0004 0635 5080Genomics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| | - Ashok Kumar Murugesan
- grid.412742.60000 0004 0635 5080Genomics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| | - Ganesan Govindan
- grid.412742.60000 0004 0635 5080Genomics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| | - Ayyaru Gopalakrishnan
- grid.411408.80000 0001 2369 7742Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu India
| | - Ravichandiran Kumar
- grid.412742.60000 0004 0635 5080Genomics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| | - Purushothaman Duraisamy
- grid.412742.60000 0004 0635 5080Genomics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| | - Raju Balaji
- grid.412742.60000 0004 0635 5080Genomics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| | - Tanuja
- grid.412742.60000 0004 0635 5080Genomics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| | - Puhan Sushree Shyamli
- grid.418782.00000 0004 0504 0781Institute of Life Sciences, NALCO Square, Bhubaneswar, India
| | - Ajay K. Parida
- grid.418782.00000 0004 0504 0781Institute of Life Sciences, NALCO Square, Bhubaneswar, India
| | - Madasamy Parani
- grid.412742.60000 0004 0635 5080Genomics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| |
Collapse
|
3
|
Dubey AK, Khatri K, Jha B, Rathore MS. The novel galactosyl transferase-like (SbGalT) gene from Salicornia brachiata maintains photosynthesis and enhances abiotic stress tolerance in transgenic tobacco. Gene 2021; 786:145597. [PMID: 33766708 DOI: 10.1016/j.gene.2021.145597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 11/25/2022]
Abstract
We hereby report in planta function characterization of a novel galactosyl transferase-like (SbGalT) gene from Salicornia brachiata for enhanced abiotic stress tolerance. The SbGalT gene had an open reading frame of 1563 bp. The ectopic expression of SbGalT gene in tobacco improved the seed germination, seedling growth, biomass accumulation and potassium/sodium ratio under salt and osmotic stress. The SbGalT over-expression delayed stress-induced senescence, pigment break-down and ion induced cytotoxicity in tobacco. Higher contents of organic solutes and potassium under stress maintained the osmotic homeostasis and relative water content in tobacco. Higher activity of antioxidant enzymes under stress in transgenic tobacco curtailed the accumulation of reactive oxygen species (ROS) and maintained the membrane integrity. The chlorophyll a fluorescence transient indicated no effects of the imposed strengths of stress on basal state of photosystem (PS) I in transgenic tobacco over-expressing the SbGalT gene. Due to improved membrane integrity, the transgenic tobacco exhibited improved photosynthesis, stomatal conductance, intercellular CO2, transpiration, maximum quantum yield and operating efficiency of PSII, electron transport, photochemical and non-photochemical quenching. In agreement with photosynthesis, physiological health, tolerance index and growth parameters, transgenic tobacco accumulated higher contents of sugar, starch, amino acid, polyphenol and proline under stress conditions. The multivariate data analysis exhibited significant statistical distinctions among osmotic adjustment, physiological health and growth, and photosynthetic responses in control and SbGalT transgenic tobacco under stress conditions. The results strongly indicated novel SbGalT gene as a potential candidate for developing the smart agriculture.
Collapse
Affiliation(s)
- Ashish K Dubey
- Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364001, India
| | - Kusum Khatri
- Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364001, India
| | - Bhavanath Jha
- Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364001, India
| | - Mangal S Rathore
- Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364001, India.
| |
Collapse
|
4
|
Proteomics of Homeobox7 Enhanced Salt Tolerance in Mesembryanthemum crystallinum. Int J Mol Sci 2021; 22:ijms22126390. [PMID: 34203768 PMCID: PMC8232686 DOI: 10.3390/ijms22126390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 11/17/2022] Open
Abstract
Mesembryanthemum crystallinum (common ice plant) is a halophyte species that has adapted to extreme conditions. In this study, we cloned a McHB7 transcription factor gene from the ice plant. The expression of McHB7 was significantly induced by 500 mM NaCl and it reached the peak under salt treatment for 7 days. The McHB7 protein was targeted to the nucleus. McHB7-overexpressing in ice plant leaves through Agrobacterium-mediated transformation led to 25 times more McHB7 transcripts than the non-transformed wild type (WT). After 500 mM NaCl treatment for 7 days, the activities of superoxide dismutase (SOD) and peroxidase (POD) and water content of the transgenic plants were higher than the WT, while malondialdehyde (MDA) was decreased in the transgenic plants. A total of 1082 and 1072 proteins were profiled by proteomics under control and salt treatment, respectively, with 22 and 11 proteins uniquely identified under control and salt stress, respectively. Among the 11 proteins, 7 were increased and 4 were decreased after salt treatment. Most of the proteins whose expression increased in the McHB7 overexpression (OE) ice plants under high salinity were involved in transport regulation, catalytic activities, biosynthesis of secondary metabolites, and response to stimulus. The results demonstrate that the McHB7 transcription factor plays a positive role in improving plant salt tolerance.
Collapse
|
5
|
Otsuka M, Kato H, Yamada S, Nakayama T, Sakaoka S, Morikami A, Tsukagoshi H. Root system architecture analysis in Mesembryanthemum crystallinum (ice plant) seedlings reveals characteristic root halotropic response. Biol Open 2021; 10:bio052142. [PMID: 32816696 PMCID: PMC8034872 DOI: 10.1242/bio.052142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/11/2020] [Indexed: 11/20/2022] Open
Abstract
One of the major environmental stress factors that affect root growth is salinity. Arabidopsis thaliana, a glycophyte, shows halotropism, whereby it alters the direction of root growth in a non-gravitropic pattern to evade high soil salinity. Asymmetric auxin distribution regulated by the relocation of auxin-efflux carrier proteins is a key cellular event in the halotropic response. However, there are no reports of halotropism in halophytes. Here, we investigated root growth traits in Mesembryanthemum crystallinum (ice plant), under high salinity conditions. We hypothesized that ice plant roots would show halotropic responses different from those of Arabidopsis Notably, similar to halotropism observed in Arabidopsis, ice plant roots showed continuous root bending under salinity stress. However, the root elongation rate did not change in ice plants. Expression analyses of several genes revealed that auxin transport might be partially involved in ice plant halotropism. This study enhances our understanding of halophyte root adaptation to high salinity stress.
Collapse
Affiliation(s)
- Mayuko Otsuka
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 464-8601, Japan
| | - Hikaru Kato
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 464-8601, Japan
| | - Shyota Yamada
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 464-8601, Japan
| | - Tatsuhiko Nakayama
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 464-8601, Japan
| | - Satomi Sakaoka
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 464-8601, Japan
| | - Atsushi Morikami
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 464-8601, Japan
| | - Hironaka Tsukagoshi
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
6
|
Yolcu S, Alavilli H, Lee BH. Natural Genetic Resources from Diverse Plants to Improve Abiotic Stress Tolerance in Plants. Int J Mol Sci 2020; 21:ijms21228567. [PMID: 33202909 PMCID: PMC7697984 DOI: 10.3390/ijms21228567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
The current agricultural system is biased for the yield increase at the cost of biodiversity. However, due to the loss of precious genetic diversity during domestication and artificial selection, modern cultivars have lost the adaptability to cope with unfavorable environments. There are many reports on variations such as single nucleotide polymorphisms (SNPs) and indels in the stress-tolerant gene alleles that are associated with higher stress tolerance in wild progenitors, natural accessions, and extremophiles in comparison with domesticated crops or model plants. Therefore, to gain a better understanding of stress-tolerant traits in naturally stress-resistant plants, more comparative studies between the modern crops/model plants and crop progenitors/natural accessions/extremophiles are required. In this review, we discussed and summarized recent progress on natural variations associated with enhanced abiotic stress tolerance in various plants. By applying the recent biotechniques such as the CRISPR/Cas9 gene editing tool, natural genetic resources (i.e., stress-tolerant gene alleles) from diverse plants could be introduced to the modern crop in a non-genetically modified way to improve stress-tolerant traits.
Collapse
Affiliation(s)
- Seher Yolcu
- Department of Life Science, Sogang University, Seoul 04107, Korea;
| | - Hemasundar Alavilli
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea;
| | - Byeong-ha Lee
- Department of Life Science, Sogang University, Seoul 04107, Korea;
- Correspondence:
| |
Collapse
|
7
|
Gao LW, Yang SL, Wei SW, Huang DF, Zhang YD. Supportive role of the Na + transporter CmHKT1;1 from Cucumis melo in transgenic Arabidopsis salt tolerance through improved K +/Na + balance. PLANT MOLECULAR BIOLOGY 2020; 103:561-580. [PMID: 32405802 DOI: 10.1007/s11103-020-01011-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/01/2020] [Indexed: 05/16/2023]
Abstract
KEY MESSAGE CmHKT1;1 selectively exports Na+ from plant cells. Upon NaCl stress, its expression increased in a salt-tolerant melon cultivar. Overexpression of CmHKT1;1 increased transgenic Arabidopsis salt tolerance through improved K+/Na+ balance. High-affinity K+ transporters (HKTs) are thought to be involved in reducing Na+ in plant shoots under salt stress and modulating salt tolerance, but their function in a moderately salt-tolerant species of melon (Cucumis melo L.) remains unclear. In this study, a Na+ transporter gene, CmHKT1;1 (GenBank accession number: MK986658), was isolated from melons based on genome data. The transcript of CmHKT1;1 was relatively more abundant in roots than in stems or leaves from melon seedlings. The tobacco transient expression system showed that CmHKT1;1 was plasma-membrane localized. Upon salt stress, CmHKT1;1 expression was more strongly upregulated in a salt-tolerant melon cultivar, 'Bingxuecui' (BXC) compared with a salt-sensitive cultivar, 'Yulu' (YL). Electrophysiological evidence demonstrated that CmHKT1;1 only transported Na+, rather than K+, when expressed in Xenopus laevis oocytes. Overexpression of CmHKT1;1 increased salt sensitivity in Saccharomyces cerevisiae and salt tolerance in Arabidopsis thaliana. Under NaCl treatments, transgenic Arabidopsis plants accumulated significantly lower concentrations of Na+ in shoots than wild type plants and showed a better K+/Na+ balance, leading to better Fv/Fm, root length, biomass, and enhanced plant growth. The CmHKT1;1 gene may serve as a useful candidate for improving crop salt tolerance.
Collapse
Affiliation(s)
- Li-Wei Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Sen-Lin Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shi-Wei Wei
- Shanghai Agrobiological Gene Center, Shanghai, 201106, People's Republic of China
| | - Dan-Feng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - Yi-Dong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China.
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
8
|
Hwang HH, Wang CH, Huang HW, Chiang CP, Chi SF, Huang FC, Yen HE. Functional analysis of McSnRK1 (SNF1-related protein kinase 1) in regulating Na/K homeostasis in transgenic cultured cells and roots of halophyte Mesembryanthemum crystallinum. PLANT CELL REPORTS 2019; 38:915-926. [PMID: 31037366 DOI: 10.1007/s00299-019-02412-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/15/2019] [Indexed: 05/05/2023]
Abstract
Transgenic callus and roots of ice plant with altered SnRK1 function were established using Agrobacterium-mediated transformation. The role of McSnRK1 in controlling Na+ influx and Na/K ratio was demonstrated. SnRK1 kinases (SNF1-related protein kinase1) control metabolic adaptation during energy deprivation and regulate protective mechanisms against environmental stress. Yeast SNF1 activates a P-type ATPase, the Na+ exclusion pump, under glucose starvation. The involvement of plant SnRK1 in salt stress response is largely unknown. We previously identified a salt-induced McSnRK1 in the halophyte ice plant (Mesembryanthemum crystallinum). In the current study, the function of McSnRK1 in salt tolerance was analyzed in transgenic cultured cells and roots of ice plant. Ice plant callus constitutively expressed a high level of McSnRK1 and introducing the full-length McSnRK1 did not alter the Na/K ratio at 24 h after 200 mM NaCl treatment. However, interfering with McSnRK1 activity by introducing a truncate McSnRK1 to produce a dominant-negative form of McSnRK1 increased cellular Na+ accumulation and Na/K ratio. As a result, the growth of cultured cells diminished under salt treatment. Hydroponically grown ice plants with roots expressing full-length McSnRK1 had better growth and lowered Na/K ratio compared to the wild-type or vector-only plants. Roots expressing a truncate McSnRK1 had reduced growth and high Na/K ratio under 400 mM NaCl treatment. The changes in Na/K ratio in transgenic cells and whole plants demonstrated the function of SnRK1 in controlling Na+ flux and maintaining Na/K homeostasis under salinity. The Agrobacterium-mediated transformation system could be a versatile tool for functional analysis of genes involved in salt tolerance in the ice plant.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chih-Hao Wang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
| | - Hsiao-Wei Huang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
| | - Chih-Pin Chiang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Shin-Fei Chi
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
| | - Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, 40227, Taiwan
| | - Hungchen E Yen
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan.
| |
Collapse
|
9
|
Sun J, Cao H, Cheng J, He X, Sohail H, Niu M, Huang Y, Bie Z. Pumpkin CmHKT1;1 Controls Shoot Na⁺ Accumulation via Limiting Na⁺ Transport from Rootstock to Scion in Grafted Cucumber. Int J Mol Sci 2018; 19:E2648. [PMID: 30200653 PMCID: PMC6165489 DOI: 10.3390/ijms19092648] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 01/09/2023] Open
Abstract
Soil salinity adversely affects the growth and yield of crops, including cucumber, one of the most important vegetables in the world. Grafting with salt-tolerant pumpkin as the rootstock effectively improves the growth of cucumber under different salt conditions by limiting Na⁺ transport from the pumpkin rootstock to the cucumber scion. High-affinity potassium transporters (HKTs) are crucial for the long distance transport of Na⁺ in plants, but the function of pumpkin HKTs in this process of grafted cucumber plants remains unclear. In this work, we have characterized CmHKT1;1 as a member of the HKT gene family in Cucurbita moschata and observed an obvious upregulation of CmHKT1;1 in roots under NaCl stress conditions. Heterologous expression analyses in yeast mutants indicated that CmHKT1;1 is a Na⁺-selective transporter. The transient expression in tobacco epidermal cells and in situ hybridization showed CmHKT1;1 localization at plasma membrane, and preferential expression in root stele. Moreover, ectopic expression of CmHKT1;1 in cucumber decreased the Na⁺ accumulation in the plants shoots. Finally, the CmHKT1;1 transgenic line as the rootstock decreased the Na⁺ content in the wild type shoots. These findings suggest that CmHKT1;1 plays a key role in the salt tolerance of grafted cucumber by limiting Na⁺ transport from the rootstock to the scion and can further be useful for engineering salt tolerance in cucurbit crops.
Collapse
Affiliation(s)
- Jingyu Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Haishun Cao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jintao Cheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaomeng He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hamza Sohail
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mengliang Niu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuan Huang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhilong Bie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|