1
|
Li Y, Duan M, Liu G, Liang L, Liu X, Zhang J, Wen C, Xu X. Effect of Sinapine on Microstructure and Anti-Digestion Properties of Dual-Protein-Based Hydrogels. Foods 2024; 13:3237. [PMID: 39456299 PMCID: PMC11507368 DOI: 10.3390/foods13203237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Sinapine is a natural polyphenol from the cruciferous plant family that has anti-aging effects but is low in bioavailability. To improve the bioavailability and therapeutic effect of sinapine, sinapine-crosslinked dual-protein-based hydrogels were prepared using soy protein isolate as a cross-linking agent. The preparation conditions were optimized by single-factor experiments, and the optimal ratios were obtained as follows: the concentration of sinapine was 300 μg/mL; the water-oil ratio was 1:3. The encapsulation rate was greater than 95%, and the drug loading capacity was 3.5 mg/g. In vitro, digestion experiments showed that the dual-protein-based hydrogels as a drug carrier stabilized the release of sinapine and improved the bioavailability of sinapine by 19.3%. The IC50 of DPPH antioxidants was 25 μg/mL as determined by in vitro digestion, and the antioxidant capacity of ABTS was about 20% higher than that of glutaraldehyde control. This is due to the addition of sinapine to enhance the antioxidant properties of the system. It can be seen that the developed hydrogels have potential applications in related fields, such as food nutrition fortification and drug delivery.
Collapse
Affiliation(s)
- Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (M.D.); (G.L.); (L.L.); (J.Z.); (C.W.)
| | - Mengxin Duan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (M.D.); (G.L.); (L.L.); (J.Z.); (C.W.)
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (M.D.); (G.L.); (L.L.); (J.Z.); (C.W.)
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (M.D.); (G.L.); (L.L.); (J.Z.); (C.W.)
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China;
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (M.D.); (G.L.); (L.L.); (J.Z.); (C.W.)
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (M.D.); (G.L.); (L.L.); (J.Z.); (C.W.)
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (M.D.); (G.L.); (L.L.); (J.Z.); (C.W.)
| |
Collapse
|
2
|
KhaliliJafarabad N, Behnamghader A, Khorasani MT, Mozafari M. Synthesis and characterization of an engineered dual crosslinked hydrogel system based on hyaluronic acid, chondroitin sulfate, and carboxymethyl chitosan with platelet‐rich plasma. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nadieh KhaliliJafarabad
- Department of Biomedical Engineering, Science and Research Branch Azad University Tehran Iran
| | - Aliasghar Behnamghader
- Department of Nanotechnology and Advanced Materials Materials and Energy Research Center Tehran Iran
| | | | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
3
|
The regulating effect of trace elements Si, Zn and Sr on mineralization of gelatin-hydroxyapatite electrospun fiber. Colloids Surf B Biointerfaces 2021; 204:111822. [PMID: 33984616 DOI: 10.1016/j.colsurfb.2021.111822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/10/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022]
Abstract
Biomineralization approaches have been increasingly adopted to synthesizing advanced materials with superior properties. Nevertheless, the potential influence of inorganic trace elements on the mineralization process of collagen has been rarely reported, despite of the significant progress achieved on exploiting the critical roles of organic polymers in regulating the collagen mineralization. To this aim, the potential roles of Si, Zn and Sr in regulating the mineralization of gelatin-hydroxyapatite (HA) composite fibers have been examined in this study. The results indicated that the incorporation of trace elements not only promoted the biomineralization of gelatin, but also led to drastic change in the mineralization behavior. In particular, the gelatin-SiHA sample showed uniform mineralization predominantly inside the fibers, with nucleation and growth directions along the c-axis of the gelatin fibers. On the contrary, the gelatin-HA sample showed nucleation outside the fibers and spherical mineral crystals on top of fibers, typical structure for heterogeneous nucleation. As the mineralization process proceeded, the gelatin-ZnHA and gelatin-SrHA samples evolved into having similar structure as the gelatin-SiHA sample, despite of showing totally different mineralization behaviors at early time. Overall, the incorporation of trace elements seemed to lower the nucleation barriers, led to a more homogeneous mineralization mode within the fiber region and formation of mineralized structures closer to those in natural bone. Moreover, mineralized samples with trace elements demonstrated improved adhesion and cytoskeleton organization of osteoblastic cells. Such finding would provide important insight for understanding the mineralization process and the optimal design of advanced biological materials.
Collapse
|
4
|
KhaliliJafarabad N, Behnamghader A, Khorasani MT, Mozafari M. Platelet-rich plasma-hyaluronic acid/chondrotin sulfate/carboxymethyl chitosan hydrogel for cartilage regeneration. Biotechnol Appl Biochem 2021; 69:534-547. [PMID: 33608921 DOI: 10.1002/bab.2130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 02/07/2021] [Indexed: 12/30/2022]
Abstract
In this study, the chondrogenic potential of hyaluronic acid/chondrotin sulfate/carboxymethyl chitosan hydrogels with adipose-derived mesenchymal stem cells (ADMSCs) was evaluated. Here, hyaluronic acid, chondrotin sulfate, and carboxymethyl chitosan were used as the substrate for cartilage tissue engineering in which the hydrogel is formed due to electrostatic and hydrogen bonds through mixing the polymers. Because of the instability of this hydrogel in the biological environment, 1-ethyl-3-(3-dimethylaminopropyl-carbodiimide hydrochloride/N-hydroxy-succinimide was used as a crosslinker to increase the hydrogel stability. The hydrogels showed reasonable stability due to the combined effect of self-crosslinking and chemical crosslinking. The cells were treated with the prepared hydrogel samples for 14 and 21 days in nondifferentiation medium for evaluation of the cellular behavior of ADMSCs. Gene expression evaluation was performed, and expression of specific genes involved in differentiation was shown in the crosslinked hydrogel with platelet-rich plasma (PRP) (H-EN-P) had increased the gene expression levels. Quantification of immunofluorescence intensity indicated the high level of expression of SOX9 in H-EN-P hydrogel. Based on the results, we confirmed that the presence of PRP and the similarity of the hydrogel constituents to the cartilage extracellular matrix could have positive effects on the differentiation of the cells, which is favorable for cartilage tissue engineering approaches.
Collapse
Affiliation(s)
- Nadieh KhaliliJafarabad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aliasghar Behnamghader
- Departments of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Tehran, Iran
| | | | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Oliver JD, Jia S, Halpern LR, Graham EM, Turner EC, Colombo JS, Grainger DW, D'Souza RN. Innovative Molecular and Cellular Therapeutics in Cleft Palate Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:215-237. [PMID: 32873216 DOI: 10.1089/ten.teb.2020.0181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clefts of the lip and/or palate are the most prevalent orofacial birth defects occurring in about 1:700 live human births worldwide. Early postnatal surgical interventions are extensive and staged to bring about optimal growth and fusion of palatal shelves. Severe cleft defects pose a challenge to correct with surgery alone, resulting in complications and sequelae requiring life-long, multidisciplinary care. Advances made in materials science innovation, including scaffold-based delivery systems for precision tissue engineering, now offer new avenues for stimulating bone formation at the site of surgical correction for palatal clefts. In this study, we review the present scientific literature on key developmental events that can go awry in palate development and the common surgical practices and challenges faced in correcting cleft defects. How key osteoinductive pathways implicated in palatogenesis inform the design and optimization of constructs for cleft palate correction is discussed within the context of translation to humans. Finally, we highlight new osteogenic agents and innovative delivery systems with the potential to be adopted in engineering-based therapeutic approaches for the correction of palatal defects. Impact statement Tissue-engineered scaffolds supplemented with osteogenic growth factors have attractive, largely unexplored possibilities to modulate molecular signaling networks relevant to driving palatogenesis in the context of congenital anomalies (e.g., cleft palate). Constructs that address this need may obviate current use of autologous bone grafts, thereby avoiding donor-site morbidity and other regenerative challenges in patients afflicted with palatal clefts. Combinations of biomaterials and drug delivery of diverse regenerative cues and biologics are currently transforming strategies exploited by engineers, scientists, and clinicians for palatal cleft repair.
Collapse
Affiliation(s)
- Jeremie D Oliver
- School of Dentistry, University of Utah Health Sciences, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Shihai Jia
- School of Dentistry, University of Utah Health Sciences, Salt Lake City, Utah, USA
| | - Leslie R Halpern
- School of Dentistry, University of Utah Health Sciences, Salt Lake City, Utah, USA
| | - Emily M Graham
- School of Medicine, University of Utah Health Sciences, Salt Lake City, Utah, USA
| | - Emma C Turner
- University of Western Australia Dental School, Perth, Western Australia
| | - John S Colombo
- University of Las Vegas at Nevada School of Dental Medicine, Las Vegas, Nevada, USA
| | - David W Grainger
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah Health Sciences, Salt Lake City, Utah, USA
| | - Rena N D'Souza
- School of Dentistry, University of Utah Health Sciences, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,School of Medicine, University of Utah Health Sciences, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
S. N, Easwaramoorthi S, Rao JR, Thanikaivelan P. Probing visible light induced photochemical stabilization of collagen in green solvent medium. Int J Biol Macromol 2019; 131:779-786. [DOI: 10.1016/j.ijbiomac.2019.03.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/22/2019] [Accepted: 03/18/2019] [Indexed: 11/28/2022]
|
7
|
UV-mediated solid-state cross-linking of electrospinning nanofibers of modified collagen. Int J Biol Macromol 2018; 120:2086-2093. [DOI: 10.1016/j.ijbiomac.2018.09.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 11/23/2022]
|
8
|
Meng Q, Shen C. Construction of low contracted 3D skin equivalents by genipin cross-linking. Exp Dermatol 2018; 27:1098-1103. [PMID: 29957867 DOI: 10.1111/exd.13725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/14/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Continuous contraction of 3D skin equivalents in construction and use restricts their applications in clinical and pharmaceutical practices. So far, no effective method has been developed to inhibit such contraction. Hence, low cytotoxic cross-linkers, 1-ethyl-3-3-dimethylaminopropylcarbodiimide hydrochloride (EDC) and genipin, are investigated to reduce the contraction in this study. As found, both genipin and EDC at 0.2 and 0.4 mmol/L are nontoxic to collagen-entrapped fibroblasts and upregulate the extracellular matrix expression of fibroblasts in cross-linked collagen. Particularly, collagen cross-linking by intermediate concentrations of genipin, specifically 0.4 mmol/L, greatly reduces the contraction of 3D skin equivalents from 87% to 28% (n = 9, P < 0.05), while the collagen after EDC cross-linking at 0.4 mmol/L still presented severe contraction of 64% over a 21-day follow-up period. The inhibited contraction might relate to the increased gel stiffness and slowed collagen degradation. Moreover, the genipin cross-linking does not impair the formation of epidermal layers and improves the epidermal-dermal junction of skin equivalents as well. In this regard, genipin cross-linking might facilitate the applications of 3D skin equivalents in clinical practices and pharmacology testing.
Collapse
Affiliation(s)
- Qin Meng
- Key Laboratory of Biomass Chemical Engineering, Zhejiang University, Hangzhou, China.,College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Chong Shen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Zhao Y, Sun Z. Effects of gelatin-polyphenol and gelatin–genipin cross-linking on the structure of gelatin hydrogels. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1381111] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yuanyuan Zhao
- College of Life Sciences, Shandong Agricultural University, Tai’an, PR China
| | - Zhongtao Sun
- College of Life Sciences, Shandong Agricultural University, Tai’an, PR China
| |
Collapse
|
10
|
Preparation, characterization, antibacterial properties, and hemostatic evaluation of ibuprofen-loaded chitosan/gelatin composite films. J Appl Polym Sci 2017. [DOI: 10.1002/app.45441] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Carson D, Hnilova M, Yang X, Nemeth CL, Tsui JH, Smith AS, Jiao A, Regnier M, Murry CE, Tamerler C, Kim DH. Nanotopography-Induced Structural Anisotropy and Sarcomere Development in Human Cardiomyocytes Derived from Induced Pluripotent Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21923-32. [PMID: 26866596 PMCID: PMC5681855 DOI: 10.1021/acsami.5b11671] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Understanding the phenotypic development of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is a prerequisite to advancing regenerative cardiac therapy, disease modeling, and drug screening applications. Lack of consistent hiPSC-CM in vitro data can be largely attributed to the inability of conventional culture methods to mimic the structural, biochemical, and mechanical aspects of the myocardial niche accurately. Here, we present a nanogrid culture array comprised of nanogrooved topographies, with groove widths ranging from 350 to 2000 nm, to study the effect of different nanoscale structures on the structural development of hiPSC-CMs in vitro. Nanotopographies were designed to have a biomimetic interface, based on observations of the oriented myocardial extracellular matrix (ECM) fibers found in vivo. Nanotopographic substrates were integrated with a self-assembling chimeric peptide containing the Arg-Gly-Asp (RGD) cell adhesion motif. Using this platform, cell adhesion to peptide-coated substrates was found to be comparable to that of conventional fibronectin-coated surfaces. Cardiomyocyte organization and structural development were found to be dependent on the nanotopographical feature size in a biphasic manner, with improved development achieved on grooves in the 700-1000 nm range. These findings highlight the capability of surface-functionalized, bioinspired substrates to influence cardiomyocyte development, and the capacity for such platforms to serve as a versatile assay for investigating the role of topographical guidance cues on cell behavior. Such substrates could potentially create more physiologically relevant in vitro cardiac tissues for future drug screening and disease modeling studies.
Collapse
Affiliation(s)
- Daniel Carson
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Marketa Hnilova
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Xiulan Yang
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Cameron L. Nemeth
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan H. Tsui
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Alec S.T. Smith
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Alex Jiao
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Charles E. Murry
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Candan Tamerler
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Mechanical Engineering and Bioengineering Research Center, University of Kansas, Lawrence, Kansas 66045, United States
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
- Corresponding Author: . Phone: 1-206-616-1133. Fax: 1-206-685-3300
| |
Collapse
|
12
|
Tavakolinejad S, Ebrahimzadeh Bidskan A, Ashraf H, Hamidi Alamdari D. A glance at methods for cleft palate repair. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e15393. [PMID: 25593724 PMCID: PMC4270645 DOI: 10.5812/ircmj.15393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 01/17/2023]
Abstract
Context: Cleft palate is the second most common birth defect and is considered as a challenge for pediatric plastic surgeons. There is still a general lack of a standard protocol and patients often require multiple surgical interventions during their lifetime along with disappointing results. Evidence Acquisition: PubMed search was undertaken using search terms including 'cleft palate repair', 'palatal cleft closure', 'cleft palate + stem cells', 'cleft palate + plasma rich platelet', 'cleft palate + scaffold', 'palatal tissue engineering', and 'bone tissue engineering'. The found articles were included if they defined a therapeutic strategy and/or assessed a new technique. Results: We reported a summary of the key-points concerning cleft palate development, the genes involving this defect, current therapeutic strategies, recently novel aspects, and future advances in treatments for easy and fast understanding of the concepts, rather than a systematic review. In addition, the results were integrated with our recent experience. Conclusions: Tissue engineering may open a new window in cleft palate reconstruction. Stem cells and growth factors play key roles in this field.
Collapse
Affiliation(s)
- Sima Tavakolinejad
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Alireza Ebrahimzadeh Bidskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Hami Ashraf
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Daryoush Hamidi Alamdari
- Biochemistry and Nutrition Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
- Corresponding Author: Daryoush Hamidi Alamdari, Biochemistry and Nutrition Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran. Tel: +98-9151017650, E-mail:
| |
Collapse
|
13
|
Farshi Azhar F, Olad A, Salehi R. Fabrication and characterization of chitosan–gelatin/nanohydroxyapatite–polyaniline composite with potential application in tissue engineering scaffolds. Des Monomers Polym 2014. [DOI: 10.1080/15685551.2014.907621] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Fahimeh Farshi Azhar
- Faculty of Chemistry, Polymer Composite Research Laboratory, Department of Applied Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Olad
- Faculty of Chemistry, Polymer Composite Research Laboratory, Department of Applied Chemistry, University of Tabriz, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Walters BD, Stegemann JP. Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales. Acta Biomater 2014; 10:1488-501. [PMID: 24012608 PMCID: PMC3947739 DOI: 10.1016/j.actbio.2013.08.038] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/17/2013] [Accepted: 08/28/2013] [Indexed: 12/16/2022]
Abstract
Collagen type I is a widely used natural biomaterial that has found utility in a variety of biological and medical applications. Its well-characterized structure and role as an extracellular matrix protein make it a highly relevant material for controlling cell function and mimicking tissue properties. Collagen type I is abundant in a number of tissues, and can be isolated as a purified protein. This review focuses on hydrogel biomaterials made by reconstituting collagen type I from a solubilized form, with an emphasis on in vitro studies in which collagen structure can be controlled. The hierarchical structure of collagen from the nanoscale to the macroscale is described, with an emphasis on how structure is related to function across scales. Methods of reconstituting collagen into hydrogel materials are presented, including molding of macroscopic constructs, creation of microscale modules and electrospinning of nanoscale fibers. The modification of collagen biomaterials to achieve the desired structures and functions is also addressed, with particular emphasis on mechanical control of collagen structure, creation of collagen composite materials and crosslinking of collagenous matrices. Biomaterials scientists have made remarkable progress in rationally designing collagen-based biomaterials and in applying them both to the study of biology and for therapeutic benefit. This broad review illustrates recent examples of techniques used to control collagen structure and thereby to direct its biological and mechanical functions.
Collapse
Affiliation(s)
- B D Walters
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - J P Stegemann
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
MITRA TAPAS, SAILAKSHMI G, GNANAMANI A. Could glutaric acid (GA) replace glutaraldehyde in the preparation of biocompatible biopolymers with high mechanical and thermal properties? J CHEM SCI 2014. [DOI: 10.1007/s12039-013-0543-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Krishnamoorthy G, Selvakumar R, Sastry TP, Mandal AB, Doble M. Effect of d-amino acids on collagen fibrillar assembly and stability: Experimental and modelling studies. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Krishnamoorthy G, Sehgal PK, Mandal AB, Sadulla S. Development of D-lysine-assisted 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide-initiated cross linking of collagen matrix for design of scaffold. J Biomed Mater Res A 2012; 101:1173-83. [PMID: 23090865 DOI: 10.1002/jbm.a.34411] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/16/2012] [Indexed: 11/08/2022]
Abstract
This work discusses the preparation and characterization of collagen scaffold with presence of D-Lysine (Coll-D-Lys)-assisted 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/N-hydroxysuccinimide (NHS)-initiated cross linking. The mechanical strength, thermal and structural stability, resistance to biodegradation and cell viability of this scaffold was investigated. The results of the Coll-D-Lys-EDC/NHS scaffold also indicate an increase in the tensile strength (T(S)), percentage of elongation (% E), denaturation temperature (T(d)), and decrease the decomposition rate. Scanning electron microscopic (SEM) and atomic force microscopic (AFM) analyses revealed a well ordered with properly oriented and well-aligned structure of scaffold. The D-Lys stabilizes the scaffold against degradation by collagenase than L-Lys. The cell assay showed more than 98 ± 2% fibroblast viability (NIH 3T3) after 72 h of culture Coll-D-Lys-scaffold when compared with native Coll and Coll-L-Lys-scaffold. The proteolytic machinery is not well equipped to deal with Coll-D-Lys-scaffold than Coll-L-Lys-scaffold. Incorporating D-Lys in scaffold design has the potential to improve existing collagen stability and create new topologies inaccessible to homochiral molecules. This method may assist in the functionalization of the scaffold for regenerative applications.
Collapse
Affiliation(s)
- Ganesan Krishnamoorthy
- Bioproducts Laboratory-Biomaterial Development Division, Central Leather Research Institute, Council of Scientific & Industrial Research (CSIR), Adyar, Chennai, Tamil Nadu, India
| | | | | | | |
Collapse
|