1
|
Tao X, Su M, Chen P, Yan M, Wang D, Xia L, Rao L, Xia Z, Fu Q. Zirconium(IV) coordination-mediated rapid and versatile post-modification of polydopamine coating as stationary phase for open-tubular capillary electrochromatography. J Chromatogr A 2024; 1736:465415. [PMID: 39378618 DOI: 10.1016/j.chroma.2024.465415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
In recent years, mussel-inspired polydopamine (PDA)-based materials have attracted significant attention in the field of open-tubular capillary electrochromatography (OT-CEC) owing to their diverse and appealing properties. However, previously established functionalized PDA coating-based CEC stationary phases predominantly relied on the latent reactivity of PDA with amine/thiol-containing molecules, limiting the types of applicable modifiers and requiring time-consuming reaction processes. Herein, we presented a versatile and efficient method for the facile and rapid fabrication of diverse functionalized PDA coatings as OT-CEC stationary phases through a Zr(IV) coordination-mediated post-modification strategy. Different kinds of modifiers, including octadecylamine (ODA), lauric acid (LA), and perfluorooctanoic acid (PFOA), were rapidly and robustly grafted onto the PDA coating, verified through multiple characterization techniques. The influences of preparation parameters on the grafting efficiency of the functionalized PDA coating were systematically investigated. Utilizing the Zr(IV)-mediated ODA-, LA- and PFOA-functionalized PDA-based OT-CEC columns, we achieved high-efficiency baseline separation of a series of neutral analytes with excellent repeatability, good stability, and long lifetime. Given the strong universality of the Zr(IV) coordination-mediated post-modification approach, our study provides an effective pathway for advancing the development of a wider range of functional PDA-based chromatographic stationary phases.
Collapse
Affiliation(s)
- Xueping Tao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Mengting Su
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Panpan Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Meiting Yan
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Dan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Lan Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Li Rao
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China.
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Dhellemmes L, Leclercq L, Frick H, Höchsmann A, Schaschke N, Neusüß C, Cottet H. Investigating cationic and zwitterionic successive multiple ionic-polymer layer coatings for protein separation by capillary electrophoresis. J Chromatogr A 2024; 1720:464802. [PMID: 38507871 DOI: 10.1016/j.chroma.2024.464802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Successive multiple ionic-polymer layers (SMILs) have long since proved their worth in capillary electrophoresis as they ensure stable electroosmotic flow (EOF) and relatively high separation efficiency. Recently, we demonstrated that plotting the plate height (H) against the solute migration velocity (u) enabled a reliable quantitative evaluation of the coating performances in terms of separation efficiency. In this work, various physicochemical and chemical parameters of the SMIL coating were studied and optimized in order to decrease the slope of the ascending part of the H vs u curve, which is known to be controlled by the homogeneity in charge of the coating surface and by the possible residual solute adsorption onto the coating surface. SMILs based on poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium styrene sulfonate) (PSS) were formed and the effect of each polyelectrolyte molar mass and of the number of polyelectrolyte layers (up to 21 layers) was studied. The use of polyethylene imine as an anchoring first layer was considered. More polyelectrolyte couples based on PDADMAC, polybrene, PSS, poly(vinyl sulfate), and poly(acrylic acid) were tested. Finally, zwitterionic polymers based on the poly(α-l-lysine) scaffold were synthesized and used as the last layer of SMILs, illustrating their ability to finetune the EOF, while maintaining good separation efficiency.
Collapse
Affiliation(s)
- Laura Dhellemmes
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Henry Frick
- Faculty of Chemistry, Aalen University, Aalen, Germany
| | | | | | | | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
3
|
Zhang P, Rajabzadeh S, Istirokhatun T, Shen Q, Jia Y, Yao X, Venault A, Chang Y, Matsuyama H. A novel method to immobilize zwitterionic copolymers onto PVDF hollow fiber membrane surface to obtain antifouling membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Deval P, Lin CH, Tsai WB. Fabrication of Polysulfobetaine Gradient Coating via Oxidation Polymerization of Pyrogallol To Modulate Biointerfaces. ACS OMEGA 2022; 7:7125-7133. [PMID: 35252703 PMCID: PMC8892856 DOI: 10.1021/acsomega.1c06798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
A surface with a gradient physical or chemical feature, such as roughness, hardness, wettability, and chemistry, serves as a powerful platform for high-throughput investigation of cell responses to a biointerface. In this work, we developed a continuous antifouling gradient surface using pyrogallol (PG) chemistry. A copolymer of a zwitterionic monomer, sulfobetaine methacrylate, and an amino monomer, aminoethyl methacrylate, were synthesized (pSBAE) and deposited on glass slides via the deposition of self-polymerized PG. A gradient of pSBAE was fabricated on glass slides in 7 min in the presence of an oxidant, ammonium persulfate, by withdrawing the reaction solution. The modified glass slide showed a wettability gradient, determined by measuring the water contact angle. Cell adhesion and protein adsorption were well correlated with surface wettability. We expect that this simple and faster method for the fabrication of a continuous chemical gradient is applicable for high-throughput screening of surface properties to modulate biointerfaces.
Collapse
Affiliation(s)
- Piyush Deval
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Chia-Hsuan Lin
- Department
of Material Science and Engineering, National
Taiwan University, Taipei 10617, Taiwan
| | - Wei-Bor Tsai
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Chen PJ, Chen HY, Tsai WB. Fabrication of Low-Fouling Surfaces on Alkyne-Functionalized Poly-(p-xylylenes) Using Click Chemistry. Polymers (Basel) 2022; 14:polym14020225. [PMID: 35054631 PMCID: PMC8780154 DOI: 10.3390/polym14020225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
A facial, versatile, and universal method that breaks the substrate limits is desirable for antifouling treatment. Thin films of functional poly-p-xylylenes (PPX) that are deposited using chemical vapor deposition (CVD) provide a powerful platform for surface immobilization of molecules. In this study, we prepared an alkyne-functionalized PPX coating on which poly (sulfobetaine methacrylate-co-Az) could be conjugated via click chemistry. We found that the conjugated polymers were very stable and inhibited cell adhesion and protein adsorption effectively. The same conjugation strategy could also be applied to conjugate azide-containing poly (ethylene glycol) and poly (NIPAAm). The results indicate that our method provides a simple and robust tool for fabricating antifouling surfaces on a wide range of substrates using CVD technology of functionalized poly (p-xylylenes) for biosensor, diagnostics, immunoassay, and other biomaterial applications.
Collapse
|
6
|
Asha AB, Chen Y, Narain R. Bioinspired dopamine and zwitterionic polymers for non-fouling surface engineering. Chem Soc Rev 2021; 50:11668-11683. [PMID: 34477190 DOI: 10.1039/d1cs00658d] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biofouling is a serious problem in the medical, marine, and all other industrial fields as it poses significant health risks and financial losses. Therefore, there is a great demand for endowing surfaces with antifouling properties to mitigate biofouling. Zwitterionic polymers (containing an equimolar number of homogeneously distributed anionic and cationic groups on the polymer chains) have been used extensively as one of the best antifouling materials for surface modification. Being a superhydrophilic polymer, zwitterionic polymers need a strong binding agent to continue to remain attached to the surface for long-term applications. The use of a mussel-inspired dopamine adhesive functional layer is one of the most widely exploited approaches for the attachment of a zwitterion layer on the surface via thiol and amine chemistry. Based on recent studies, we have categorized this dopamine and zwitterion conjugation into four different approaches: (1) conjugation of dopamine with zwitterions by direct modification of zwitterions with the dopamine functional moiety; (2) co-deposition of dopamine with zwitterionic polymers; (3) zwitterionic post modification of the polydopamine (PDA) coated surface; and (4) surface-initiated polymerization of zwitterionic polymers using dopamine modified initiators. In this review, we have briefly discussed about all the possible conjugation mechanisms and reactions for this promising dopamine and zwitterion conjugation and how this conjugated system significantly contributes to the development of non-fouling surfaces along with the other applications.
Collapse
Affiliation(s)
- Anika Benozir Asha
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada.
| | - Yangjun Chen
- School of Optometry & Ophthalmology, Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada.
| |
Collapse
|
7
|
Failure of sulfobetaine methacrylate as antifouling material for steam-sterilized membranes and a potential alternative. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Cui M, Shen M, Zhou L, Luo Z, Zhou H, Yang X, Hu H. Enhancing antifouling property of PVA membrane by grafting zwitterionic polymer via SI-ATRP method. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1852-1868. [PMID: 32532173 DOI: 10.1080/09205063.2020.1780681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Poly(zwitterions) polymer brushes were fabricated by surface-initiated atom transfer radical polymerization (SI-ATRP) on PVA substrate. The results of XPS and FTIR proved the successful graft of CBMA and SBMA to PVA. The surface of the PVA films would be rougher after the functionalization. Its hydrophilicity increased dramatically and the water contact angle decreased from 45.2° to 7.2°. The visible light transmittance was above 88%. Mechanical properties decreased slightly after grafting, the tensile strength and tensile strain at break were in 1.23-1.85 MPa and 361.7-471.1%, respectively. The anti-protein adsorption performance of the modified PVA film was significantly enhanced and the lowest adsorption amount was up to 2.25 μg/cm2. The cytotoxicity grade of modified PVA film was 0-1, which indicated the modified film possessed no cytotoxicity. Additionally, the surface of zwitterion-grafted PVA film had strongly resistance to cell adhesion. All the results confirmed that the zwitterions modified PVA was a promising anti-fouling material for the further biomedical use.
Collapse
Affiliation(s)
- Mengmeng Cui
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Mingcheng Shen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Li Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Zhongkuan Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Haohao Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Xinlin Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Huiyuan Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Liao TY, Easton CD, Thissen H, Tsai WB. Aminomalononitrile-Assisted Multifunctional Antibacterial Coatings. ACS Biomater Sci Eng 2020; 6:3349-3360. [PMID: 33463165 DOI: 10.1021/acsbiomaterials.0c00148] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Medical device associated infections remain a significant problem for all classes of devices at this point in time. Here, we have developed a surface modification technique to fabricate multifunctional coatings that combine antifouling and antimicrobial properties. Zwitterionic polymers providing antifouling properties and quaternary ammonium containing polymers providing antimicrobial properties were combined in these coatings. Throughout this study, aminomalononitrile (AMN) was used to achieve one-step coatings incorporating different polymers. The characterization of coatings was carried out using static water contact angle (WCA) measurements, X-ray photoelectron spectroscopy (XPS), profilometry, and scanning electron microscopy (SEM), whereas the biological response in vitro was analyzed using Staphylococcus epidermidis and Escherichia coli as well as L929 fibroblast cells. Zwitterionic polymers synthesized from sulfobetaine methacrylate and 2-aminoethyl methacrylate were demonstrated to reduce bacterial attachment when incorporated in AMN assisted coatings. However, bacteria in suspension were not affected by this approach. On the other hand, alkylated polyethylenimine polymers, synthesized to provide quaternary ammonium groups, were demonstrated to have contact killing properties when incorporated in AMN assisted coatings. However, the high bacterial attachment observed on these surfaces may be detrimental in applications requiring longer-term bactericidal activity. Therefore, AMN-assisted coatings containing both quaternary and zwitterionic polymers were fabricated. These multifunctional coatings were demonstrated to significantly reduce the number of live bacteria not only on the modified surfaces, but also in suspension. This approach is expected to be of interest in a range of biomedical device applications.
Collapse
Affiliation(s)
- Tzu-Ying Liao
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.,CSIRO Manufacturing, Research Way, Clayton 3168, Victoria, Australia
| | | | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton 3168, Victoria, Australia
| | - Wei-Bor Tsai
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.,Advanced Research Center for Green Materials Science and Technology, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 10617, Taiwan
| |
Collapse
|
10
|
Yan YH, Atif M, Liu RY, Zhu HK, Chen LJ. Design of comb-like poly(2-methyl-2-oxazoline) and its rapid co-deposition with dopamine for the study of antifouling properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:423-438. [PMID: 31791188 DOI: 10.1080/09205063.2019.1697169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this work, the comb-like poly(2-methyl-2-oxazoline) copolymer, poly(2-aminoethyl methacrylate-random-poly(2-methyl-2-oxazoline) (PMOXA-r-AEMA, PMA) is synthesized, and the CuSO4/H2O2-triggered dopamine/PMA co-deposition process is investigated. Ellipsometry, water contact angle (WCA), and X-ray photoelectron spectroscopy (XPS) are used to characterize the thickness, hydrophilicity, and surface composition of PMA-based coatings. PMA is facilely anchored to substrates within 60 min with the assistance of dopamine/polydopamine triggered by CuSO4/H2O2, and the coating thickness can achieve about 13 nm. Anti-protein adsorption and anti-blood platelet adhesion measurements are also studied to verify their antifouling properties. The adsorption capacity of FITC-BSA can be reduced to 5% of the original surface, and PMA-based coatings present excellent protein-resistant properties (∼95% reduction relative to gold surface) according to surface plasmon resonance (SPR) measurement, and it can resist adhesion of almost all blood platelets. Moreover, it is applied to a capillary inner wall for surface modification. An alkaline protein mixture and egg white proteins are successfully separated, and present excellent stability. The relative standard deviation (RSD) of migration time is lower than 0.71%. The practicability of this promising PMA-based coatings with this preparation strategy can be used for further proteomics analysis.
Collapse
Affiliation(s)
- Ye Han Yan
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, China
| | - Muhammad Atif
- School of Chemistry and Materials Science, University of Sciences and Technology of China, Hefei, China
| | - Ren Yong Liu
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, China
| | - Hai Kun Zhu
- School of Chemistry and Materials Science, University of Sciences and Technology of China, Hefei, China
| | - Li Juan Chen
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, China
| |
Collapse
|
11
|
Chen WH, Liao TY, Thissen H, Tsai WB. One-Step Aminomalononitrile-Based Coatings Containing Zwitterionic Copolymers for the Reduction of Biofouling and the Foreign Body Response. ACS Biomater Sci Eng 2019; 5:6454-6462. [DOI: 10.1021/acsbiomaterials.9b00871] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wen-Hsuan Chen
- Department of Chemical Engineering, and Advanced Research Center for Green Materials Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Tzu-Ying Liao
- Department of Chemical Engineering, and Advanced Research Center for Green Materials Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
- CSIRO Manufacturing, Research Way, Clayton 3168, Victoria, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton 3168, Victoria, Australia
| | - Wei-Bor Tsai
- Department of Chemical Engineering, and Advanced Research Center for Green Materials Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| |
Collapse
|
12
|
Engineering silver-zwitterionic composite nanofiber membrane for bacterial fouling resistance. J Appl Polym Sci 2019. [DOI: 10.1002/app.47580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Cui X, Xu S, Jin C, Ji Y. Recent advances in the preparation and application of mussel-inspired polydopamine-coated capillary tubes in microextraction and miniaturized chromatography systems. Anal Chim Acta 2018; 1033:35-48. [DOI: 10.1016/j.aca.2018.04.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/13/2022]
|
14
|
Zhang H, Yang FQ. Applications of polydopamine modifications in capillary electrophoretic analysis. J Sep Sci 2018; 42:342-359. [DOI: 10.1002/jssc.201800755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Hao Zhang
- School of Chemistry and Chemical Engineering; Chongqing University; Chongqing P. R. China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering; Chongqing University; Chongqing P. R. China
| |
Collapse
|
15
|
Han G, Liu JT, Lu KJ, Chung TS. Advanced Anti-Fouling Membranes for Osmotic Power Generation from Wastewater via Pressure Retarded Osmosis (PRO). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6686-6694. [PMID: 29741369 DOI: 10.1021/acs.est.7b05933] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A facile and versatile approach was demonstrated for the fabrication of low-fouling pressure retarded osmosis (PRO) membranes for osmotic power generation from highly polluted wastewater. A water-soluble zwitterionic random copolymer with superior hydrophilicity and unique chemistry was molecularly designed and synthesized via a single-step free-radical polymerization between 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-aminoethyl methacrylate hydrochloride (AEMA). The P[MPC- co-AEMA] copolymer was then chemically grafted onto the surface of PES/Torlon hollow fibers via amino groups coupling of poly(AEMA) with the polyimide structures of Torlon, leaving the zwitterions of poly(MPC) in the feed solution. Because of the outstanding hydrophilicity, unique cationic and anionic groups, and electrical neutrality of the zwitterionic brush, the newly developed membrane showed great resistances to both inorganic scaling and organic fouling in PRO operations. When using a real wastewater brine comprising multifoulants as the feed, the P[MPC- co-AEMA] modified membrane exhibits a much lower flux decline of 37% at Δ P = 0 bar after 24-h tests and a smaller power density decrease of 28% at Δ P = 15 bar within 12-h tests, compared to 61% and 42% respectively for the unmodified one. In addition to the low fouling tendency, the modified membrane shows outstanding performance stability and fouling reversibility, where the flux is almost fully recovered by physical backwash of water at 15 bar for 0.5 h. This study provides valuable insights and strategies for the design and fabrication of effective antifouling materials and membranes for PRO osmotic power generation.
Collapse
Affiliation(s)
- Gang Han
- Department of Chemical and Biomolecular Engineering , National University of Singapore , Singapore 117585
| | - Jiang Tao Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , Singapore 117585
| | - Kang Jia Lu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , Singapore 117585
| | - Tai-Shung Chung
- Department of Chemical and Biomolecular Engineering , National University of Singapore , Singapore 117585
| |
Collapse
|
16
|
Münch AS, Wölk M, Malanin M, Eichhorn KJ, Simon F, Uhlmann P. Smart functional polymer coatings for paper with anti-fouling properties. J Mater Chem B 2018; 6:830-843. [DOI: 10.1039/c7tb02886e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preparation of functionalized cellulose films on SiO2 to introduce protein repellent properties evaluated by spectroscopic in situ ellipsometry.
Collapse
Affiliation(s)
| | - Michele Wölk
- Leibniz-Institut für Polymerforschung Dresden e.V
- D-01069 Dresden
- Germany
| | - Mikhail Malanin
- Leibniz-Institut für Polymerforschung Dresden e.V
- D-01069 Dresden
- Germany
| | | | - Frank Simon
- Leibniz-Institut für Polymerforschung Dresden e.V
- D-01069 Dresden
- Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V
- D-01069 Dresden
- Germany
- Department of Chemistry
- Hamilton Hall
| |
Collapse
|
17
|
Štěpánová S, Kašička V. Recent applications of capillary electromigration methods to separation and analysis of proteins. Anal Chim Acta 2016; 933:23-42. [DOI: 10.1016/j.aca.2016.06.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
|
18
|
Yan S, Song L, Li Z, Luan S, Shi H, Xin Z, Li S, Yang Y, Yin J. Hierarchical polymer coating for optimizing the antifouling and bactericidal efficacies. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1397-412. [DOI: 10.1080/09205063.2016.1207491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shunjie Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
| | - Zhihong Li
- The Thoracic Department of The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
| | - Zhirong Xin
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, People’s Republic of China
| | - Shenghai Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
| | - Yuming Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
| |
Collapse
|
19
|
Duša F, Witos J, Karjalainen E, Viitala T, Tenhu H, Wiedmer SK. Novel cationic polyelectrolyte coatings for capillary electrophoresis. Electrophoresis 2015; 37:363-71. [DOI: 10.1002/elps.201500275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 09/17/2015] [Accepted: 10/05/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Filip Duša
- Department of Chemistry; University of Helsinki; Helsinki Finland
| | - Joanna Witos
- Department of Chemistry; University of Helsinki; Helsinki Finland
| | - Erno Karjalainen
- Laboratory of Polymer chemistry, Department of Chemistry; University of Helsinki; Helsinki Finland
| | - Tapani Viitala
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy; University of Helsinki; Helsinki Finland
| | - Heikki Tenhu
- Laboratory of Polymer chemistry, Department of Chemistry; University of Helsinki; Helsinki Finland
| | | |
Collapse
|
20
|
Chen L, Zhang Y, Tan L, Liu S, Wang Y. Assembly of poly(dopamine)/poly(acrylamide) mixed coatings by a single-step surface modification strategy and its application to the separation of proteins using capillary electrophoresis. J Sep Sci 2015; 38:2915-23. [DOI: 10.1002/jssc.201500346] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Lijuan Chen
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering, University of Science and Technology of China; Hefei 230026 P. R. China
| | - Yalin Zhang
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering, University of Science and Technology of China; Hefei 230026 P. R. China
| | - Lin Tan
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering, University of Science and Technology of China; Hefei 230026 P. R. China
| | - Songtao Liu
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering, University of Science and Technology of China; Hefei 230026 P. R. China
| | - Yanmei Wang
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering, University of Science and Technology of China; Hefei 230026 P. R. China
| |
Collapse
|
21
|
Chen L, Liu G, Liu S, Bai L, Wang Y. Preparation and characterization of brush-like PEGMA-graft-PDA coating and its application for protein separation by CE. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1306-27. [DOI: 10.1080/09205063.2014.932267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Bai L, Tan L, Chen L, Liu S, Wang Y. Preparation and characterizations of poly(2-methyl-2-oxazoline) based antifouling coating by thermally induced immobilization. J Mater Chem B 2014; 2:7785-7794. [DOI: 10.1039/c4tb01383b] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Poly[(2-methyl-2-oxazoline)-random-glycidylmethacrylate] was immobilized on a silicon/glass surface via a simple annealing procedure to obtain a covalent and cross-linked antifouling coating.
Collapse
Affiliation(s)
- Longchao Bai
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026, P. R. China
| | - Lin Tan
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026, P. R. China
| | - Lijuan Chen
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026, P. R. China
| | - Songtao Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026, P. R. China
| | - Yanmei Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026, P. R. China
| |
Collapse
|