1
|
Hessel E, Ghanta P, Winschel T, Melnyk L, Oyewumi MO. Fabrication of 3D-printed scaffolds loaded with gallium acetylacetonate for potential application in osteoclastic bone resorption. Pharm Dev Technol 2024; 29:339-352. [PMID: 38502579 DOI: 10.1080/10837450.2024.2332459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
We recently reported the potential of a new gallium compound, gallium acetylacetonate (GaAcAc) in combating osteoclastic bone resorption through inhibition of osteoclast differentiation and function. Herein, we focused on 3D-printed polylactic acid scaffolds that were loaded with GaAcAc and investigated the impact of scaffold pretreatment with polydopamine (PDA) or sodium hydroxide (NaOH). We observed a remarkable increase in scaffold hydrophilicity with PDA or NaOH pretreatment while biocompatibility and in vitro degradation were not affected. NaOH-pretreated scaffolds showed the highest amount of GaAcAc loading when compared to other scaffolds (p < 0.05). NaOH-pretreated scaffolds with GaAcAc loading showed effective reduction of osteoclast counts and size. The trend was supported by suppression of key osteoclast differentiation markers such as NFAT2, c-Fos, TRAF6, & TRAP. All GaAcAc-loaded scaffolds, regardless of surface pretreatment, were effective in inhibiting osteoclast function as evidenced by reduction in the number of resorptive pits in bovine cortical bone slices (p < 0.01). The suppression of osteoclast function according to the type of scaffold followed the ranking: GaAcAc loading without surface pretreatment > GaAcAc loading with NaOH pretreatment > GaAcAc loading with PDA pretreatment. Additional studies will be needed to fully elucidate the impact of surface pretreatment on the efficacy and safety of GaAcAc-loaded 3D-printed scaffolds.
Collapse
Affiliation(s)
- Evin Hessel
- Advanced Drug Delivery Laboratory, Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Pratyusha Ghanta
- Advanced Drug Delivery Laboratory, Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Timothy Winschel
- Advanced Drug Delivery Laboratory, Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Larissa Melnyk
- Advanced Drug Delivery Laboratory, Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Moses O Oyewumi
- Advanced Drug Delivery Laboratory, Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
2
|
Pinto MF, Quevedo BV, Asami J, Komatsu D, Hausen MDA, Duek EADR. Electrospun Membrane Based on Poly(L-co-D,L lactic acid) and Natural Rubber Containing Copaiba Oil Designed as a Dressing with Antimicrobial Properties. Antibiotics (Basel) 2023; 12:antibiotics12050898. [PMID: 37237801 DOI: 10.3390/antibiotics12050898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Drug delivery systems of natural antimicrobial compounds, such as copaiba oil (CO), have become relevant in the scientific community due to the recent prevalence of the public health complications related to antibiotic resistance. Electrospun devices act as an efficient drug delivery system for these bioactive compounds, reducing systemic side effects and increasing the effectiveness of the treatment. In this way, the present study aimed to evaluate the synergistic and antimicrobial effect of the direct incorporation of different concentrations of CO in a poly(L-co-D,L lactic acid) and natural rubber (NR) electrospun membrane. It was observed that CO showed bacteriostatic and antibacterial effects against S. aureus in antibiogram assays. The prevention of biofilm formation was confirmed via scanning electron microscopy. The test with crystal violet demonstrated strong bacteria inhibition in membranes with 75% CO. A decrease in hydrophilicity, observed in the swelling test, presented that the addition of CO promotes a safe environment for the recovery of injured tissue while acting as an antimicrobial agent. In this way, the study showed strong bacteriostatic effects of the CO incorporation in combination with electrospun membranes, a suitable feature desired in wound dressings in order to promote a physical barrier with prophylactic antimicrobial properties to avoid infections during tissue healing.
Collapse
Affiliation(s)
- Marcelo Formigoni Pinto
- Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), Campinas 13083-860, São Paulo, Brazil
| | - Bruna V Quevedo
- Post-Graduation Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba 18052-780, São Paulo, Brazil
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba 18030-070, São Paulo, Brazil
| | - Jessica Asami
- Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), Campinas 13083-860, São Paulo, Brazil
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba 18030-070, São Paulo, Brazil
| | - Daniel Komatsu
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba 18030-070, São Paulo, Brazil
| | - Moema de Alencar Hausen
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba 18030-070, São Paulo, Brazil
- Post-Graduation Program of Biomaterials and Regenerative Medicine, Surgery Department, FCMS, PUC-São Paulo, Sorocaba 18030-070, São Paulo, Brazil
| | - Eliana Aparecida de Rezende Duek
- Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), Campinas 13083-860, São Paulo, Brazil
- Post-Graduation Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba 18052-780, São Paulo, Brazil
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba 18030-070, São Paulo, Brazil
- Post-Graduation Program of Biomaterials and Regenerative Medicine, Surgery Department, FCMS, PUC-São Paulo, Sorocaba 18030-070, São Paulo, Brazil
| |
Collapse
|
3
|
El Yousfi R, Brahmi M, Dalli M, Achalhi N, Azougagh O, Tahani A, Touzani R, El Idrissi A. Recent Advances in Nanoparticle Development for Drug Delivery: A Comprehensive Review of Polycaprolactone-Based Multi-Arm Architectures. Polymers (Basel) 2023; 15:1835. [PMID: 37111982 PMCID: PMC10142392 DOI: 10.3390/polym15081835] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Controlled drug delivery is a crucial area of study for improving the targeted availability of drugs; several polymer systems have been applied for the formulation of drug delivery vehicles, including linear amphiphilic block copolymers, but with some limitations manifested in their ability to form only nanoaggregates such as polymersomes or vesicles within a narrow range of hydrophobic/hydrophilic balance, which can be problematic. For this, multi-arm architecture has emerged as an efficient alternative that overcame these challenges, with many interesting advantages such as reducing critical micellar concentrations, producing smaller particles, allowing for various functional compositions, and ensuring prolonged and continuous drug release. This review focuses on examining the key variables that influence the customization of multi-arm architecture assemblies based on polycaprolactone and their impact on drug loading and delivery. Specifically, this study focuses on the investigation of the structure-property relationships in these formulations, including the thermal properties presented by this architecture. Furthermore, this work will emphasize the importance of the type of architecture, chain topology, self-assembly parameters, and comparison between multi-arm structures and linear counterparts in relation to their impact on their performance as nanocarriers. By understanding these relationships, more effective multi-arm polymers can be designed with appropriate characteristics for their intended applications.
Collapse
Affiliation(s)
- Ridouan El Yousfi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, University Mohamed Premier, Oujda 60000, Morocco
| | - Mohamed Brahmi
- Physical Chemistry of Natural Substances and Process Team, Laboratory of Applied Chemistry and Environment (LCAE-CPSUNAP), Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda 60000, Morocco
| | - Mohammed Dalli
- Laboratory of Microbiology, Faculty of Medicine and Pharmacy, University Mohamed Premier, Oujda 60000, Morocco
| | - Nafea Achalhi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, University Mohamed Premier, Oujda 60000, Morocco
| | - Omar Azougagh
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, University Mohamed Premier, P. B. 300, Nador 62700, Morocco
| | - Abdesselam Tahani
- Physical Chemistry of Natural Substances and Process Team, Laboratory of Applied Chemistry and Environment (LCAE-CPSUNAP), Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda 60000, Morocco
| | - Rachid Touzani
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, University Mohamed Premier, Oujda 60000, Morocco
| | - Abderrahmane El Idrissi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, University Mohamed Premier, Oujda 60000, Morocco
| |
Collapse
|
4
|
Mansour A, Romani M, Acharya AB, Rahman B, Verron E, Badran Z. Drug Delivery Systems in Regenerative Medicine: An Updated Review. Pharmaceutics 2023; 15:pharmaceutics15020695. [PMID: 36840018 PMCID: PMC9967372 DOI: 10.3390/pharmaceutics15020695] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Modern drug discovery methods led to evolving new agents with significant therapeutic potential. However, their properties, such as solubility and administration-related challenges, may hinder their benefits. Moreover, advances in biotechnology resulted in the development of a new generation of molecules with a short half-life that necessitates frequent administration. In this context, controlled release systems are required to enhance treatment efficacy and improve patient compliance. Innovative drug delivery systems are promising tools that protect therapeutic proteins and peptides against proteolytic degradation where controlled delivery is achievable. The present review provides an overview of different approaches used for drug delivery.
Collapse
Affiliation(s)
- Alaa Mansour
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Maya Romani
- Department of Family Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | | | - Betul Rahman
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence:
| | - Elise Verron
- CNRS, CEISAM, UMR 6230, Nantes Université, F-44000 Nantes, France
| | - Zahi Badran
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
5
|
Gautam B, Huang MR, Ali SA, Yan AL, Yu HH, Chen JT. Smart Thermoresponsive Electrospun Nanofibers with On-Demand Release of Carbon Quantum Dots for Cellular Uptake. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40322-40330. [PMID: 35994422 DOI: 10.1021/acsami.2c10810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Developing a smart responsive surface for on-demand delivery of organic, inorganic, and biological cargo in vitro cellular uptake is always in constant demand. Herein, we present carbon quantum dot (CQD)-loaded (poly(N-isopropylacrylamide) (PNIPAAm)/poly(methyl methacrylate (PMMA)) blend nanofiber sheets having a thermoresponsive nature. As a model cargo, fluorescent CQDs are used for the demonstration of the on-demand delivery mechanism. In addition, a thermoresponsive nature is produced by the PNIPAAm polymer in the nanofiber matrix while the PMMA polymer provides extra stability and firmness to the nanofibers against the sudden dissolution of the nanofibers in aqueous media. The synthesis of CQDs and their loading into a blend nanofiber matrix are confirmed using fluorescence spectrophotometry, transmission electron microscopy, and fluorescence microscopy. The morphologies and diameters of the nanofibers are analyzed by scanning electron microscopy. Burst effect analysis proves that 30% (w/w) PNIPAAm-containing nanofibers possess the highest stability with the least dissolution in aqueous media. Thermoresponsiveness of the nanofibers is further confirmed through water contact angle measurements. Quantitative fluorescence results show that more than 80% of loaded CQDs can be released upon thermal stimulation. The fluorescence micrographs reveal that the blend nanofiber sheets can effectively improve the cellular uptake of CQDs by simply increasing the local concentrations via applying thermal stimulation as the released mechanism.
Collapse
Affiliation(s)
- Bhaskarchand Gautam
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Meng-Ru Huang
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Syed Atif Ali
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Smart Organic Material Laboratory, Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Taiwan International Graduate Program (TIGP), Sustainable Chemical Science and Technology (SCST), Academia Sinica, Taipei 115, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Ai-Ling Yan
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hsiao-Hua Yu
- Smart Organic Material Laboratory, Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Taiwan International Graduate Program (TIGP), Sustainable Chemical Science and Technology (SCST), Academia Sinica, Taipei 115, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
6
|
Luraghi A, Peri F, Moroni L. Electrospinning for drug delivery applications: A review. J Control Release 2021; 334:463-484. [PMID: 33781809 DOI: 10.1016/j.jconrel.2021.03.033] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022]
Abstract
Drug delivery devices are promising tools in the pharmaceutical field, as they are able to maximize the therapeutic effects of the delivered drug while minimizing the undesired side effects. In the past years, electrospun nanofibers attracted rising attention due to their unique features, like biocompatibility and broad flexibility. Incorporation of active principles in nanofibrous meshes proved to be an efficient method for in situ delivery of a wide range of drugs, expanding the possibility and applicability of those devices. In this review, the principle of electrospinning and different fields of applications are treated to give an overview of the recent literature, underlining the easy tuning and endless combination of this technique, that in the future could be the new frontier of personalized medicine.
Collapse
Affiliation(s)
- Andrea Luraghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milan, Italy
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milan, Italy
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ET Maastricht, the Netherlands.
| |
Collapse
|
7
|
Doostmohammadi M, Forootanfar H, Ramakrishna S. New Strategies for Safe Cancer Therapy Using Electrospun Nanofibers: A Short Review. Mini Rev Med Chem 2021; 20:1272-1286. [PMID: 32400330 DOI: 10.2174/1389557520666200513120924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/10/2019] [Accepted: 02/14/2020] [Indexed: 12/26/2022]
Abstract
Electrospun nanofibers regarding their special features, including high drug loading capacity, high surface to volume area, flexibility, and ease of production and operation, are of great interest for being used in tissue engineering, and drug delivery approaches. In this context, several studies have been done for the production of biodegradable and biocompatible scaffolds containing different anticancer agents for fighting with solid tumors. Surprisingly, these scaffolds are able to deliver different combinations of drugs and agents, such as nanoparticles and release them in a time dependent manner. Here in this review, we summarize the principles of electrospinning and their uses in entrapment of drugs and anti-proliferative agents suitable for cancer therapy. The latest studies performed on treating cancer using electrospinning are mentioned and their advantages and disadvantages over conventional treatment methods are discussed.
Collapse
Affiliation(s)
- Mohsen Doostmohammadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
8
|
Hamedani Y, Teixeira RB, Karbasiafshar C, Wipf P, Bhowmick S, Abid MR. Delivery of a mitochondria-targeted antioxidant from biocompatible, polymeric nanofibrous scaffolds. FEBS Open Bio 2020; 11:35-47. [PMID: 33179452 PMCID: PMC7780095 DOI: 10.1002/2211-5463.13032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease has been associated with increased levels of reactive oxygen species (ROS). Recently, we have shown that a critical balance between cytosolic ROS and mitochondrial ROS is crucial in cardiovascular health and that modulation of mitochondrial ROS helps prevent detrimental effects of cytosolic ROS on endothelial cells (EC) in transgenic animals. Here, we report the development of a controlled delivery system for a mitochondria‐targeted antioxidant, JP4‐039, from an electrospun scaffold made of FDA‐approved biocompatible polymeric nanofibers. We demonstrate that the active antioxidant moiety was preserved in released JP4‐039 for over 72 h using electron paramagnetic resonance. We also show that both the initial burst release of the drug within the first 20 min and the ensuing slow and sustained release that occurred over the next 24 h improved tube formation in human coronary artery ECs (HCAEC) in vitro. Taken together, these findings suggest that electrospinning methods can be used to upload mitochondrial antioxidant (JP4‐039) onto a biocompatible nanofibrous PLGA scaffold, and the uploaded drug (JP4‐039) retains nitroxide antioxidant properties upon release from the scaffold, which in turn can reduce mitochondrial ROS and improve EC function in vitro.
Collapse
Affiliation(s)
- Yasaman Hamedani
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Rayane Brinck Teixeira
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Catherine Karbasiafshar
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, PA, USA.,Department of Pharmaceutical Sciences, University of Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, PA, USA
| | - Sankha Bhowmick
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
9
|
Ehsani M, Soleymani J, Hasanzadeh M, Vaez-Gharamaleki Y, Khoubnasabjafari M, Jouyban A. Sensitive monitoring of doxorubicin in plasma of patients, MDA-MB-231 and 4T1 cell lysates using electroanalysis method. J Pharm Biomed Anal 2020; 192:113701. [PMID: 33120307 DOI: 10.1016/j.jpba.2020.113701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/25/2022]
Abstract
In the present work, an innovative electrochemical sensor was fabricated based on poly toluidine blue modified glassy carbon electrode (PTB-GCE). So, PTB-GCE was used for the detection and determination of doxorubicin hydrochloride (DOX) in cell lysate, and whole human plasma samples. PTB could enhance the rate of electrochemical reaction for the electro oxidation and detection of DOX in real samples. Cyclic voltammetry (CV) technique was used for the electro polymerization of toluidine blue on the surface of GCE with the applied potential ranging from -0.6 to 0.2 V. The sensor construction steps were approved by field emission scanning electron microscopy (FE-SEM), Energy dispersive X-ray spectroscopy (EDX) and electrochemical methods. Also, CV results indicated that the DOX is oxidized via two electrons and two protons process at the optimum pH of 6.5 using PTB modified GCE. Under optimized conditions, differential pulse voltammetry (DPV) technique response exhibited linear relationship between the oxidative peak current and concentration of DOX in the range of 17 nM - 8.6 μM with low limit of quantification (LLOQ) of 17 nM for untreated and treated human plasma samples. Also, determination of DOX in MDA-MB-231 and 4T1cell lysates were performed based on its direct electrochemical oxidation on PTB-GCE. Finally, analytical validation of DOX in human bio-fluids using FDA guideline were done successfully. Results suggested that the proposed electrochemical sensor can be used to the sensitive and selective determination of DOX in biological samples. The interaction results of DOX with cancer cells indicate the developed probe can easily detect candidate drug in cancer cells with high accuracy. To the best of our knowledge this is the first report of the determination of DOX based on the direct electrochemical oxidation on PTB-GCE and determination in MDA-MB-231 and 4T1 cell lysates. It is anticipated that this research open new horizons on the design of new class of electrochemical sensors for determination drugs, and therapeutic drug monitoring (TDM) in human bio-fluids.
Collapse
Affiliation(s)
- Maryam Ehsani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yosra Vaez-Gharamaleki
- Hematology-Oncology Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Li T, Wang L, Huang Y, Xin B, Liu S. BSA loaded bead-on-string nanofiber scaffold with core-shell structure applied in tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1223-1236. [PMID: 32268835 DOI: 10.1080/09205063.2020.1753932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Beaded nanofiber is a promising fibrous structure could act as drug delivery system with sustained drug release for regulating cell behaviors used in tissue engineering. Poly (L-lactic acid-co-ε-caprolactone) (PLCL) beaded nanofiber with core-shell structure (130 ± 30 nm) was fabricated and bovine serum albumin (BSA) was encapsulated into the inner layer. The surface morphology and characteristic were evaluated by scanning electron microscopy (SEM), inverted fluorescence microscopy and water contact angle test. Degradation analyses suggested that PLCL/BSA core-shell @ beaded nanofibers could maintain the fibrous framework during 3 weeks. The biocompatibility was investigated by in vitro cultivation of human mesenchymal stem cells (hMSCs) on the surface of PLCL/BSA core-shell @ beaded nanofibers. The proliferation of hMSCs was tested using alamar blue reagent and the spreading morphology of cells was observed by SEM. Corresponding results suggested that beaded nanofibers with core-shell structure could effectively support the attachment and proliferation of cells. PLCL beaded nanofiber with core-shell structure would work as a promising candidate for drug release system and tissue engineering.
Collapse
Affiliation(s)
- Tingxiao Li
- School of Textile and Fashion, Shanghai University of Engineering Science, Shanghai, China
| | - Lei Wang
- School of Textile and Fashion, Shanghai University of Engineering Science, Shanghai, China
| | - Yifan Huang
- School of Textile and Fashion, Shanghai University of Engineering Science, Shanghai, China
| | - Binjie Xin
- School of Textile and Fashion, Shanghai University of Engineering Science, Shanghai, China
| | - Shuang Liu
- School of Chemistry and Chemical engineering, Shanghai University of Engineering Science, Shanghai, China
| |
Collapse
|
11
|
Hamedani Y, Chakraborty S, Sabarwal A, Pal S, Bhowmick S, Balan M. Novel Honokiol-eluting PLGA-based scaffold effectively restricts the growth of renal cancer cells. PLoS One 2020; 15:e0243837. [PMID: 33332399 PMCID: PMC7746163 DOI: 10.1371/journal.pone.0243837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Renal Cell Carcinoma (RCC) often becomes resistant to targeted therapies, and in addition, dose-dependent toxicities limit the effectiveness of therapeutic agents. Therefore, identifying novel drug delivery approaches to achieve optimal dosing of therapeutic agents can be beneficial in managing toxicities and to attain optimal therapeutic effects. Previously, we have demonstrated that Honokiol, a natural compound with potent anti-tumorigenic and anti-inflammatory effects, can induce cancer cell apoptosis and inhibit the growth of renal tumors in vivo. In cancer treatment, implant-based drug delivery systems can be used for gradual and sustained delivery of therapeutic agents like Honokiol to minimize systemic toxicity. Electrospun polymeric fibrous scaffolds are ideal candidates to be used as drug implants due to their favorable morphological properties such as high surface to volume ratio, flexibility and ease of fabrication. In this study, we fabricated Honokiol-loaded Poly(lactide-co-glycolide) (PLGA) electrospun scaffolds; and evaluated their structural characterization and biological activity. Proton nuclear magnetic resonance data proved the existence of Honokiol in the drug loaded polymeric scaffolds. The release kinetics showed that only 24% of the loaded Honokiol were released in 24hr, suggesting that sustained delivery of Honokiol is feasible. We calculated the cumulative concentration of the Honokiol released from the scaffold in 24hr; and the extent of renal cancer cell apoptosis induced with the released Honokiol is similar to an equivalent concentration of direct application of Honokiol. Also, Honokiol-loaded scaffolds placed directly in renal cell culture inhibited renal cancer cell proliferation and migration. Together, we demonstrate that Honokiol delivered through electrospun PLGA-based scaffolds is effective in inhibiting the growth of renal cancer cells; and our data necessitates further in vivo studies to explore the potential of sustained release of therapeutic agents-loaded electrospun scaffolds in the treatment of RCC and other cancer types.
Collapse
Affiliation(s)
- Yasaman Hamedani
- Department of Mechanical Engineering, Biomedical Engineering and Biotechnology Program, University of Massachusetts Dartmouth, Dartmouth, MA, United States of America
| | - Samik Chakraborty
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Akash Sabarwal
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Soumitro Pal
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Sankha Bhowmick
- Department of Mechanical Engineering, Biomedical Engineering and Biotechnology Program, University of Massachusetts Dartmouth, Dartmouth, MA, United States of America
- * E-mail: (MB); (SB)
| | - Murugabaskar Balan
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- * E-mail: (MB); (SB)
| |
Collapse
|
12
|
Dang HP, Shabab T, Shafiee A, Peiffer QC, Fox K, Tran N, Dargaville TR, Hutmacher DW, Tran PA. 3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function. Biofabrication 2019; 11:035014. [PMID: 30933941 DOI: 10.1088/1758-5090/ab14ff] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tissue engineering macroporous scaffolds are important for regeneration of large volume defects resulting from diseases such as breast or bone cancers. Another important part of the treatment of these conditions is adjuvant drug therapy to prevent disease recurrence or surgical site infection. In this study, we developed a new type of macroporous scaffolds that have drug loading and release functionality to use in these scenarios. 3D printing allows for building macroporous scaffolds with deterministically designed complex architectures for tissue engineering yet they often have low surface areas thus limiting their drug loading capability. In this proof-of-concept study, we aimed to introduce microscale porosity into macroporous scaffolds to allow for efficient yet simple soak-loading of various clinical drugs and control their release. Manufacturing of scaffolds having both macroporosity and microscale porosity remains a difficult task. Here, we combined porogen leaching and 3D printing to achieve this goal. Porogen microparticles were mixed with medical grade polycaprolactone and extruded into scaffolds having macropores of 0.7 mm in size. After leaching, intra-strut microscale pores were realized with pore size of 20-70 μm and a total microscale porosity of nearly 40%. Doxorubicin (DOX), paclitaxel (PTX) and cefazolin (CEF) were chosen as model drugs of different charges and solubilities to soak-load the scaffolds and achieved loading efficiency of over 80%. The microscale porosity was found to significantly reduce the burst release allowing the microporous scaffolds to release drugs up to 200, 500 and 150 h for DOX, PTX and CEF, respectively. Finally, cell assays were used and confirmed the bioactivities and dose response of the drug-loaded scaffolds. Together, the findings from this proof-of-concept study demonstrate a new type of scaffolds with dual micro-, macro-porosity for tissue engineering applications with intrinsic capability for efficient loading and sustained release of drugs to prevent post-surgery complications.
Collapse
Affiliation(s)
- Hoang Phuc Dang
- ARC Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Brisbane, Queensland, Australia. Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, QUT, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
C.R. R, Sundaran SP, T. S, Athiyanathil S. “Nano in micro” architecture composite membranes for controlled drug delivery. APPLIED CLAY SCIENCE 2018; 166:262-275. [DOI: 10.1016/j.clay.2018.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Fu Y, Li X, Ren Z, Mao C, Han G. Multifunctional Electrospun Nanofibers for Enhancing Localized Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801183. [PMID: 29952070 PMCID: PMC6342678 DOI: 10.1002/smll.201801183] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/26/2018] [Indexed: 05/16/2023]
Abstract
Localized cancer treatment is one of the most effective strategies in clinical destruction of solid tumors at early stages as it can minimize the side effects of cancer therapeutics. Electrospun nanofibers have been demonstrated as a promising implantable platform in localized cancer treatment, enabling the on-site delivery of therapeutic components and minimizing side effects to normal tissues. This Review discusses the recent cutting-edge research with regard to electrospun nanofibers used for various therapeutic approaches, including gene therapy, chemotherapy, photodynamic therapy, thermal therapy, and combination therapy, in enhancing localized cancer treatment. Furthermore, it extensively analyzes the current challenges and potential breakthroughs in utilizing this novel platform for clinical transition in localized cancer treatment.
Collapse
Affiliation(s)
- Yike Fu
- State Key Laboratory of Silicon Materials, School of Materials
Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R.
China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials
Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China.,
| | - Zhaohui Ren
- State Key Laboratory of Silicon Materials, School of Materials
Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China.,
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life
Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway,
Norman, Oklahoma, 73019-5300, USA.,
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials
Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R.
China
| |
Collapse
|
15
|
Shin YC, Kang SH, Lee JH, Kim B, Hong SW, Han DW. Three-dimensional graphene oxide-coated polyurethane foams beneficial to myogenesis. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:762-774. [PMID: 28657493 DOI: 10.1080/09205063.2017.1348738] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of three dimensional (3D) scaffolds for promoting and stimulating cell growth is one of the greatest concerns in biomedical and tissue engineering. In the present study, novel biomimetic 3D scaffolds composed of polyurethane (PU) foam and graphene oxide (GO) nanosheets were designed, and their potential as 3D scaffolds for skeletal tissue regeneration was explored. The GO-coated PU foams (GO-PU foams) were characterized by scanning electron microscopy and Raman spectroscopy. It was revealed that the 3D GO-PU foams consisted of an interconnected foam-like network structure with an approximate 300 μm pore size, and the GO was uniformly distributed in the PU foams. On the other hand, the myogenic stimulatory effects of GO on skeletal myoblasts were also investigated. Moreover, the cellular behaviors of the skeletal myoblasts within the 3D GO-PU foams were evaluated by immunofluorescence analysis. Our findings showed that GO can significantly promote spontaneous myogenic differentiation without any myogenic factors, and the 3D GO-PU foams can provide a suitable 3D microenvironment for cell growth. Furthermore, the 3D GO-PU foams stimulated spontaneous myogenic differentiation via the myogenic stimulatory effects of GO. Therefore, this study suggests that the 3D GO-PU foams are beneficial to myogenesis, and can be used as biomimetic 3D scaffolds for skeletal tissue engineering.
Collapse
Affiliation(s)
- Yong Cheol Shin
- a Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea
| | - Seok Hee Kang
- a Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea
| | - Jong Ho Lee
- b Center for Biomaterials, Biomedical Research Institute , Korea Institute of Science and Technology , Seoul , Korea
| | - Bongju Kim
- c Dental Life Science Research Institute & Clinical Translational Research Center for Dental Science , Seoul National University Dental Hospital , Seoul , Korea
| | - Suck Won Hong
- a Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea.,d Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea
| | - Dong-Wook Han
- a Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea.,d Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea
| |
Collapse
|
16
|
Jong K, Ju B, Zhang S. Synthesis of pH-responsive N-acetyl-cysteine modified starch derivatives for oral delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1525-1537. [DOI: 10.1080/09205063.2017.1333698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kwanghyok Jong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, PR China
- Department of Application Chemistry, KimChaek University of Technology, Pyongyang, Democratic People’s Republic of Korea
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, PR China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, PR China
| |
Collapse
|
17
|
Jassal M, Boominathan VP, Ferreira T, Sengupta S, Bhowmick S. pH-responsive drug release from functionalized electrospun poly(caprolactone) scaffolds under simulated in vivo environment. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1380-95. [DOI: 10.1080/09205063.2016.1203218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Manisha Jassal
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Vijay P. Boominathan
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Tracie Ferreira
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Sukalyan Sengupta
- Department of Civil and Environmental Engineering, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Sankha Bhowmick
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| |
Collapse
|