1
|
Xu H, Cui Y, Tian Y, Dou M, Sun S, Wang J, Wu D. Nanoparticle-Based Drug Delivery Systems for Enhancing Bone Regeneration. ACS Biomater Sci Eng 2024; 10:1302-1322. [PMID: 38346448 DOI: 10.1021/acsbiomaterials.3c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The treatment of bone defects has been a long-standing challenge in clinical practice. Among the various bone tissue engineering approaches, there has been substantial progress in the development of drug delivery systems based on functional drugs and appropriate carrier materials owing to technological advances in recent years. A large number of materials based on functional nanocarriers have been developed and applied to improve the complex osteogenic microenvironment, including for promoting osteogenic activity, inhibiting osteoclast activity, and exerting certain antibacterial effects. This Review discusses the physicochemical properties, drug loading mechanisms, advantages and disadvantages of nanoparticles (NPs) used for constructing drug delivery systems. In addition, we provide an overview of the osteogenic microenvironment regulation mechanism of drug delivery systems based on nanoparticle (NP) carriers and the construction strategies of drug delivery systems. Finally, the advantages and disadvantages of NP carriers are summarized along with their prospects and future research trends in bone tissue engineering. This Review thus provides advanced strategies for the design and application of drug delivery systems based on NPs in the treatment of bone defects.
Collapse
Affiliation(s)
- Hang Xu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Minghan Dou
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Shouye Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Jingwei Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| |
Collapse
|
2
|
Zhang R, Jo JI, Kanda R, Nishiura A, Hashimoto Y, Matsumoto N. Bioactive Polyetheretherketone with Gelatin Hydrogel Leads to Sustained Release of Bone Morphogenetic Protein-2 and Promotes Osteogenic Differentiation. Int J Mol Sci 2023; 24:12741. [PMID: 37628923 PMCID: PMC10454083 DOI: 10.3390/ijms241612741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Polyetheretherketone (PEEK) is one of the most promising implant materials for hard tissues due to its similar elastic modulus; however, usage of PEEK is still limited owing to its biological inertness and low osteoconductivity. The objective of the study was to provide PEEK with the ability to sustain the release of growth factors and the osteogenic differentiation of stem cells. The PEEK surface was sandblasted and modified with polydopamine (PDA). Moreover, successful sandblasting and PDA modification of the PEEK surface was confirmed through physicochemical characterization. The gelatin hydrogel was then chemically bound to the PEEK by adding a solution of glutaraldehyde and gelatin to the surface of the PDA-modified PEEK. The binding and degradation of the gelatin hydrogel with PEEK (GPEEK) were confirmed, and the GPEEK mineralization was observed in simulated body fluid. Sustained release of bone morphogenetic protein (BMP)-2 was observed in GPEEK. When cultured on GPEEK with BMP-2, human mesenchymal stem cells (hMSCs) exhibited osteogenic differentiation. We conclude that PEEK with a gelatin hydrogel incorporating BMP-2 is a promising substrate for bone tissue engineering.
Collapse
Affiliation(s)
- Ruonan Zhang
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (R.Z.); (A.N.); (N.M.)
| | - Jun-Ichiro Jo
- Department of Biomaterials, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan;
| | - Ryuhei Kanda
- Division of Creative and Integrated Medicine, Advanced Medicine Research Center, Translational Research Institute for Medical Innovation (TRIMI), Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan;
| | - Aki Nishiura
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (R.Z.); (A.N.); (N.M.)
| | - Yoshiya Hashimoto
- Department of Biomaterials, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan;
| | - Naoyuki Matsumoto
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (R.Z.); (A.N.); (N.M.)
| |
Collapse
|
3
|
Li W, Wu Y, Zhang X, Wu T, Huang K, Wang B, Liao J. Self-healing hydrogels for bone defect repair. RSC Adv 2023; 13:16773-16788. [PMID: 37283866 PMCID: PMC10240173 DOI: 10.1039/d3ra01700a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Severe bone defects can be caused by various factors, such as tumor resection, severe trauma, and infection. However, bone regeneration capacity is limited up to a critical-size defect, and further intervention is required. Currently, the most common clinical method to repair bone defects is bone grafting, where autografts are the "gold standard." However, the disadvantages of autografts, including inflammation, secondary trauma and chronic disease, limit their application. Bone tissue engineering (BTE) is an attractive strategy for repairing bone defects and has been widely researched. In particular, hydrogels with a three-dimensional network can be used as scaffolds for BTE owing to their hydrophilicity, biocompatibility, and large porosity. Self-healing hydrogels respond rapidly, autonomously, and repeatedly to induced damage and can maintain their original properties (i.e., mechanical properties, fluidity, and biocompatibility) following self-healing. This review focuses on self-healing hydrogels and their applications in bone defect repair. Moreover, we discussed the recent progress in this research field. Despite the significant existing research achievements, there are still challenges that need to be addressed to promote clinical research of self-healing hydrogels in bone defect repair and increase the market penetration.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Yanting Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Tingkui Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Kangkang Huang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Beiyu Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
4
|
Hatt LP, Armiento AR, Mys K, Thompson K, Hildebrand M, Nehrbass D, Müller WEG, Zeiter S, Eglin D, Stoddart MJ. Standard in vitro evaluations of engineered bone substitutes are not sufficient to predict in vivo preclinical model outcomes. Acta Biomater 2023; 156:177-189. [PMID: 35988660 DOI: 10.1016/j.actbio.2022.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/18/2023]
Abstract
Understanding the optimal conditions required for bone healing can have a substantial impact to target the problem of non-unions and large bone defects. The combination of bioactive factors, regenerative progenitor cells and biomaterials to form a tissue engineered (TE) complex is a promising solution but translation to the clinic has been slow. We hypothesized the typical material testing algorithm used is insufficient and leads to materials being mischaracterized as promising. In the first part of this study, human bone marrow - derived mesenchymal stromal cells (hBM-MSCs) were embedded in three commonly used biomaterials (hyaluronic acid methacrylate, gelatin methacrylate and fibrin) and combined with relevant bioactive osteogenesis factors (dexamethasone microparticles and polyphosphate nanoparticles) to form a TE construct that underwent in vitro osteogenic differentiation for 28 days. Gene expression of relevant transcription factors and osteogenic markers, and von Kossa staining were performed. In the second and third part of this study, the same combination of TE constructs were implanted subcutaneously (cell containing) in T cell-deficient athymic Crl:NIH-Foxn1rnu rats for 8 weeks or cell free in an immunocompetent New Zealand white rabbit calvarial model for 6 weeks, respectively. Osteogenic performance was investigated via MicroCT imaging and histology staining. The in vitro study showed enhanced upregulation of relevant genes and significant mineral deposition within the three biomaterials, generally considered as a positive result. Subcutaneous implantation indicates none to minor ectopic bone formation. No enhanced calvarial bone healing was detected in implanted biomaterials compared to the empty defect. The reasons for the poor correlation of in vitro and in vivo outcomes are unclear and needs further investigation. This study highlights the discrepancy between in vitro and in vivo outcomes, demonstrating that in vitro data should be interpreted with extreme caution. In vitro models with higher complexity are necessary to increase value for translational studies. STATEMENT OF SIGNIFICANCE: Preclinical testing of newly developed biomaterials is a crucial element of the development cycle. Despite this, there is still significant discrepancy between in vitro and in vivo test results. Within this study we investigate multiple combinations of materials and osteogenic stimulants and demonstrate a poor correlation between the in vitro and in vivo data. We propose rationale for why this may be the case and suggest a modified testing algorithm.
Collapse
Affiliation(s)
- Luan P Hatt
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; Institute for Biomechanics, ETH Zürich; 8093 Zürich, Switzerland
| | | | - Karen Mys
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
| | - Keith Thompson
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
| | | | - Dirk Nehrbass
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
| | - Werner E G Müller
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stephan Zeiter
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
| | - David Eglin
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | | |
Collapse
|
5
|
Abpeikar Z, Alizadeh AA, Ahmadyousefi Y, Najafi AA, Safaei M. Engineered cells along with smart scaffolds: critical factors for improving tissue engineering approaches. Regen Med 2022; 17:855-876. [PMID: 36065834 DOI: 10.2217/rme-2022-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this review, gene delivery and its applications are discussed in tissue engineering (TE); also, new techniques such as the CRISPR-Cas9 system, synthetics biology and molecular dynamics simulation to improve the efficiency of the scaffolds have been studied. CRISPR-Cas9 is expected to make significant advances in TE in the future. The fundamentals of synthetic biology have developed powerful and flexible methods for programming cells via artificial genetic circuits. The combination of regenerative medicine and artificial biology allows the engineering of cells and organisms for use in TE, biomaterials, bioprocessing and scaffold development. The dynamics of protein adsorption at the scaffold surface at the atomic level can provide valuable guidelines for the future design of TE scaffolds /implants.
Collapse
Affiliation(s)
- Zahra Abpeikar
- Department of Tissue Engineering & Applied Cell Sciences, School of Advance Medical Science & Technology, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Ali Akbar Alizadeh
- Department of Tissue Engineering & Applied Cell Sciences, School of Advance Medical Science & Technology, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Yaghoub Ahmadyousefi
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6517838687, Iran
| | - Ali Akbar Najafi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7919693116, Iran
| | - Mohsen Safaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| |
Collapse
|
6
|
Gene-Activated Matrix with Self-Assembly Anionic Nano-Device Containing Plasmid DNAs for Rat Cranial Bone Augmentation. MATERIALS 2021; 14:ma14227097. [PMID: 34832496 PMCID: PMC8621468 DOI: 10.3390/ma14227097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
We have developed nanoballs, a biocompatible self-assembly nano-vector based on electrostatic interactions that arrange anionic macromolecules to polymeric nanomaterials to create nucleic acid carriers. Nanoballs exhibit low cytotoxicity and high transfection efficiently in vivo. This study investigated whether a gene-activated matrix (GAM) composed of nanoballs containing plasmid (p) DNAs encoding bone morphogenetic protein 4 (pBMP4) could promote bone augmentation with a small amount of DNA compared to that composed of naked pDNAs. We prepared nanoballs (BMP4-nanoballs) constructed with pBMP4 and dendrigraft poly-L-lysine (DGL, a cationic polymer) coated by γ-polyglutamic acid (γ-PGA; an anionic polymer), and determined their biological functions in vitro and in vivo. Next, GAMs were manufactured by mixing nanoballs with 2% atelocollagen and β-tricalcium phosphate (β-TCP) granules and lyophilizing them for bone augmentation. The GAMs were then transplanted to rat cranial bone surfaces under the periosteum. From the initial stage, infiltrated macrophages and mesenchymal progenitor cells took up the nanoballs, and their anti-inflammatory and osteoblastic differentiations were promoted over time. Subsequently, bone augmentation was clearly recognized for up to 8 weeks in transplanted GAMs containing BMP4-nanoballs. Notably, only 1 μg of BMP4-nanoballs induced a sufficient volume of new bone, while 1000 μg of naked pDNAs were required to induce the same level of bone augmentation. These data suggest that applying this anionic vector to the appropriate matrices can facilitate GAM-based bone engineering.
Collapse
|
7
|
Madry H, Venkatesan JK, Carballo-Pedrares N, Rey-Rico A, Cucchiarini M. Scaffold-Mediated Gene Delivery for Osteochondral Repair. Pharmaceutics 2020; 12:pharmaceutics12100930. [PMID: 33003607 PMCID: PMC7601511 DOI: 10.3390/pharmaceutics12100930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Osteochondral defects involve both the articular cartilage and the underlying subchondral bone. If left untreated, they may lead to osteoarthritis. Advanced biomaterial-guided delivery of gene vectors has recently emerged as an attractive therapeutic concept for osteochondral repair. The goal of this review is to provide an overview of the variety of biomaterials employed as nonviral or viral gene carriers for osteochondral repair approaches both in vitro and in vivo, including hydrogels, solid scaffolds, and hybrid materials. The data show that a site-specific delivery of therapeutic gene vectors in the context of acellular or cellular strategies allows for a spatial and temporal control of osteochondral neotissue composition in vitro. In vivo, implantation of acellular hydrogels loaded with nonviral or viral vectors has been reported to significantly improve osteochondral repair in translational defect models. These advances support the concept of scaffold-mediated gene delivery for osteochondral repair.
Collapse
Affiliation(s)
- Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany; (H.M.); (J.K.V.)
| | - Jagadeesh Kumar Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany; (H.M.); (J.K.V.)
| | - Natalia Carballo-Pedrares
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, S-15071 A Coruña, Spain; (N.C.-P.); (A.R.-R.)
| | - Ana Rey-Rico
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, S-15071 A Coruña, Spain; (N.C.-P.); (A.R.-R.)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany; (H.M.); (J.K.V.)
- Correspondence: ; Tel.: +49-684-1162-4987; Fax: +49-684-1162-4988
| |
Collapse
|
8
|
Vasilyev AV, Kuznetsova VS, Bukharova TB, Grigoriev TE, Zagoskin Y, Korolenkova MV, Zorina OA, Chvalun SN, Goldshtein DV, Kulakov AA. Development prospects of curable osteoplastic materials in dentistry and maxillofacial surgery. Heliyon 2020; 6:e04686. [PMID: 32817899 PMCID: PMC7424217 DOI: 10.1016/j.heliyon.2020.e04686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/02/2019] [Accepted: 08/07/2020] [Indexed: 12/21/2022] Open
Abstract
The article presents classification of the thermosetting materials for bone augmentation. The physical, mechanical, biological, and clinical properties of such materials are reviewed. There are two main types of curable osteoplastic materials: bone cements and hydrogels. Compared to hydrogels, bone cements have high strength features, but their biological properties are not ideal and must be improved. Hydrogels are biocompatible and closely mimic the extracellular matrix. They can be used as cytocompatible scaffolds for tissue engineering, as can protein- and nucleic acid-activated structures. Hydrogels may be impregnated with osteoinductors such as proteins and genetic vectors without conformational changes. However, the mechanical properties of hydrogels limit their use for load-bearing bone defects. Thus, improving the strength properties of hydrogels is one of the possible strategies to achieve the basis for an ideal osteoplastic material.
Collapse
Affiliation(s)
- A V Vasilyev
- Central Research Institute of Dental and Maxillofacial Surgery, Moscow, Russia.,Research Centre of Medical Genetics, Moscow, Russia
| | - V S Kuznetsova
- Central Research Institute of Dental and Maxillofacial Surgery, Moscow, Russia.,Research Centre of Medical Genetics, Moscow, Russia
| | | | | | | | - M V Korolenkova
- Central Research Institute of Dental and Maxillofacial Surgery, Moscow, Russia
| | - O A Zorina
- Central Research Institute of Dental and Maxillofacial Surgery, Moscow, Russia
| | | | | | - A A Kulakov
- Central Research Institute of Dental and Maxillofacial Surgery, Moscow, Russia
| |
Collapse
|
9
|
Carballo-Pedrares N, Fuentes-Boquete I, Díaz-Prado S, Rey-Rico A. Hydrogel-Based Localized Nonviral Gene Delivery in Regenerative Medicine Approaches-An Overview. Pharmaceutics 2020; 12:E752. [PMID: 32785171 PMCID: PMC7464633 DOI: 10.3390/pharmaceutics12080752] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Hydrogel-based nonviral gene delivery constitutes a powerful strategy in various regenerative medicine scenarios, as those concerning the treatment of musculoskeletal, cardiovascular, or neural tissues disorders as well as wound healing. By a minimally invasive administration, these systems can provide a spatially and temporarily defined supply of specific gene sequences into the target tissue cells that are overexpressing or silencing the original gene, which can promote natural repairing mechanisms to achieve the desired effect. In the present work, we provide an overview of the most avant-garde approaches using various hydrogels systems for controlled delivery of therapeutic nucleic acid molecules in different regenerative medicine approaches.
Collapse
Affiliation(s)
- Natalia Carballo-Pedrares
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (N.C.-P.); (I.F.-B.); (S.D.-P.)
| | - Isaac Fuentes-Boquete
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (N.C.-P.); (I.F.-B.); (S.D.-P.)
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15071 A Coruña, Galicia, Spain
| | - Silvia Díaz-Prado
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (N.C.-P.); (I.F.-B.); (S.D.-P.)
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15071 A Coruña, Galicia, Spain
| | - Ana Rey-Rico
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (N.C.-P.); (I.F.-B.); (S.D.-P.)
| |
Collapse
|
10
|
Zhang Y, Yu T, Peng L, Sun Q, Wei Y, Han B. Advancements in Hydrogel-Based Drug Sustained Release Systems for Bone Tissue Engineering. Front Pharmacol 2020; 11:622. [PMID: 32435200 PMCID: PMC7218105 DOI: 10.3389/fphar.2020.00622] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Bone defects caused by injury, disease, or congenital deformity remain a major health concern, and efficiently regenerating bone is a prominent clinical demand worldwide. However, bone regeneration is an intricate process that requires concerted participation of both cells and bioactive factors. Mimicking physiological bone healing procedures, the sustained release of bioactive molecules plays a vital role in creating an optimal osteogenic microenvironment and achieving promising bone repair outcomes. The utilization of biomaterial scaffolds can positively affect the osteogenesis process by integrating cells with bioactive factors in a proper way. A high water content, tunable physio-mechanical properties, and diverse synthetic strategies make hydrogels ideal cell carriers and controlled drug release reservoirs. Herein, we reviewed the current advancements in hydrogel-based drug sustained release systems that have delivered osteogenesis-inducing peptides, nucleic acids, and other bioactive molecules in bone tissue engineering (BTE).
Collapse
Affiliation(s)
- Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Liying Peng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qiannan Sun
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
11
|
Characterization and Optimization of PLA Stereocomplexed Hydrogels for Local Gene Delivery Systems. Polymers (Basel) 2019; 11:polym11050796. [PMID: 31058859 PMCID: PMC6572047 DOI: 10.3390/polym11050796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 01/05/2023] Open
Abstract
Localized gene delivery still remains as a challenging therapeutic method due to the multiple hurdles to overcome. One of the significant factors is a development of a matrix to carry and safely deliver genes at the local site in a controlled manner and then exit and disintegrate harmlessly. This report describes the structural and mechanistic studies on the in-situ forming hydrogels composed of the PEI/DNA multi-layered micelles to apply for gene therapy. The stereocomplexation-driven hydrogel systems from the DNA-loaded and DNA-free PLA-PEG-PLA triblock copolymer micelles that include enantiomeric polylactide blocks exhibited a sol-to-gel transitions between room and body temperatures. These hydrogels have well-described structure and compositions, and improved mechanical properties. Furthermore, the investigation of their degradation profiles and chemical analysis indicated the faster acidic degradation and stepwise degradation process of these micelle–hydrogel systems.
Collapse
|
12
|
Li L, Zhang W, Huang M, Li J, Chen J, Zhou M, He J. Preparation of gelatin/genipin nanofibrous membrane for tympanic member repair. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:2154-2167. [PMID: 30295148 DOI: 10.1080/09205063.2018.1528519] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Longfei Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Weizheng Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Mengjia Huang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jie Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jia Chen
- Department of Otorhinolaryngology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mi Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianguo He
- Department of Otorhinolaryngology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Wang Y, Ma M, Wang J, Zhang W, Lu W, Gao Y, Zhang B, Guo Y. Development of a Photo-Crosslinking, Biodegradable GelMA/PEGDA Hydrogel for Guided Bone Regeneration Materials. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1345. [PMID: 30081450 PMCID: PMC6119853 DOI: 10.3390/ma11081345] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 01/17/2023]
Abstract
Gelatin-based hydrogel, which mimics the natural dermal extracellular matrix, is a promising tissue engineering material. However, insufficient and uncontrollable mechanical and degradation properties remain the major obstacles for its application in medical bone regeneration material. Herein, we develop a facile but efficient strategy for a novel hydrogel as guided bone regeneration (GBR) material. In this study, methacrylic anhydride (MA) has been used to modify gelatin to obtain photo-crosslinkable methacrylated gelatin (GelMA). Moreover, the GelMA/PEGDA hydrogel was prepared by photo-crosslinking GelMA and PEGDA with photoinitiator I2959 under UV treatment. Compared with the GelMA hydrogel, the GelMA/PEGDA hydrogel exhibits several times stronger mechanical properties than pure GelMA hydrogel. The GelMA/PEGDA hydrogel shows a suitable degradation rate of more than 4 weeks, which is beneficial to implant in body. In vitro cell culture showed that osteoblast can adhere and proliferate on the surface of the hydrogel, indicating that the GelMA/PEGDA hydrogel had good cell viability and biocompatibility. Furthermore, by changing the quantities of GelMA, I2959, and PEGDA, the gelation time can be controlled easily to meet the requirement of its applications. In short, this study demonstrated that PEGDA enhanced the performance and extended the applications of GelMA hydrogels, turning the GelMA/PEGDA hydrogel into an excellent GBR material.
Collapse
Affiliation(s)
- Yihu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
- Hangzhou Branch of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310018, China.
| | - Ming Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jianing Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weijie Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Weipeng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Hangzhou Branch of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310018, China.
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Bing Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
- Hangzhou Branch of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310018, China.
| |
Collapse
|
14
|
Influence of alginate backbone on efficacy of thermo-responsive alginate-g-P(NIPAAm) hydrogel as a vehicle for sustained and controlled gene delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 95:409-421. [PMID: 30573265 DOI: 10.1016/j.msec.2017.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/30/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022]
Abstract
Alginate grafted poly(N-isopropylacrylamide) hydrogels (Alg-g-P(NIPAAm)) form three-dimensional networks in mild conditions, making them suitable for incorporation of labile macromolecules, such as DNA. The impact of P(NIPAAm) on copolymer characteristics has been well studied, however the impact of alginate backbone characteristics on copolymer properties has to-date not been investigated. Six different Alg-g-P(NIPAAm) hydrogels were synthesised with 10% alginate, which varied in terms of molecular weight (MW) and mannuronate/guluronate (M/G) monomer ratio, and with 90% NIPAAm in order to develop an injectable and thermo-responsive hydrogel formulation for localised gene delivery. Hydrogel stiffness was directly proportional to MW and the M/G ratio of the alginate backbone. Hydrogels with a high MW or low M/G ratio alginate backbone demonstrated a greater stiffness than those hydrogels comprising low MW alginates and high M/G ratio. Hydrogels with a high M/G ratio also produced a complexed and meshed hydrogel network while hydrogels with a low M/G ratio produced a simplified structure with the superposition of Alg-g-P(NIPAAm) sheets. This study was designed to produce the optimal Alg-g-P(NIPAAm) hydrogel with respect to localised delivery of DNA nanoparticles as a potential medical device for those with castrate resistant prostate cancer (CRPC). Given that CRPC typically disseminates to bone causing pain, morbidity and a plethora of skeletal related events, a copolymer based hydrogel was designed to for long term release of therapeutic DNA nanoparticles. The nanoparticles were comprised of plasmid DNA (pDNA), complexed with an amphipathic cell penetrating peptide termed RALA that is designed to enter cells with high efficiency. Alginate MW and M/G ratio affected stiffness, structure, injectability and degradation of the Alg-g-P(NIPAAm) hydrogel. Algogel 3001, had the optimal characteristics for long-term application and was loaded with RALA/pDNA NPs. From the release profiles, it was evident that RALA protected the pDNA from degradation over a 30-day period and conferred a sustained and controlled release profile from the hydrogels compared to pDNA only. Taken together, we have designed a slowly degrading hydrogel suitable for sustained delivery of nucleic acids when incorporated with the RALA delivery peptide. This now opens up several opportunities for the delivery of therapeutic pDNA from this thermo-responsive hydrogel with numerous medical applications.
Collapse
|
15
|
Recent development of synthetic nonviral systems for sustained gene delivery. Drug Discov Today 2017; 22:1318-1335. [PMID: 28428056 DOI: 10.1016/j.drudis.2017.04.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/02/2017] [Accepted: 04/05/2017] [Indexed: 12/22/2022]
Abstract
Sustained gene delivery is of particular importance today because it circumvents the need for repeated therapeutic administration and provides spatial and temporal control of the release profile. Better understanding of the genetic basis of diseases and advances in gene therapy have propelled significant research on biocompatible gene carriers for therapeutic purposes. Varied biodegradable polymer-based architectures have been used to create new compositions with unique properties suitable for sustained gene delivery. This review presents the most recent advances in various polymeric systems: hydrogels, microspheres, nanospheres and scaffolds, having complex architectures to encapsulate and deliver functional genes. Through the recombination of different existing polymer systems, the multicomplex systems can be further endowed with new properties for better-targeted biomedical applications.
Collapse
|
16
|
Merhautova J, Demlova R, Slaby O. MicroRNA-Based Therapy in Animal Models of Selected Gastrointestinal Cancers. Front Pharmacol 2016; 7:329. [PMID: 27729862 PMCID: PMC5037200 DOI: 10.3389/fphar.2016.00329] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/06/2016] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal cancer accounts for the 20 most frequent cancer diseases worldwide and there is a constant urge to bring new therapeutics with new mechanism of action into the clinical practice. Quantity of in vitro and in vivo evidences indicate, that exogenous change in pathologically imbalanced microRNAs (miRNAs) is capable of transforming the cancer cell phenotype. This review analyzed preclinical miRNA-based therapy attempts in animal models of gastric, pancreatic, gallbladder, and colorectal cancer. From more than 400 original articles, 26 was found to assess the effect of miRNA mimics, precursors, expression vectors, or inhibitors administered locally or systemically being an approach with relatively high translational potential. We have focused on mapping available information on animal model used (animal strain, cell line, xenograft method), pharmacological aspects (oligonucleotide chemistry, delivery system, posology, route of administration) and toxicology assessments. We also summarize findings in the field pharmacokinetics and toxicity of miRNA-based therapy.
Collapse
Affiliation(s)
- Jana Merhautova
- Molecular Oncology II - Solid Cancer, Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic; Department of Pharmacology, Faculty of Medicine, Masaryk UniversityBrno, Czech Republic
| | - Regina Demlova
- Department of Pharmacology, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Ondrej Slaby
- Molecular Oncology II - Solid Cancer, Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic; Masaryk Memorial Cancer InstituteBrno, Czech Republic
| |
Collapse
|