1
|
Zhao Y, Zhong W. Recent Progress in Advanced Polyester Elastomers for Tissue Engineering and Bioelectronics. Molecules 2023; 28:8025. [PMID: 38138515 PMCID: PMC10745526 DOI: 10.3390/molecules28248025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Polyester elastomers are highly flexible and elastic materials that have demonstrated considerable potential in various biomedical applications including cardiac, vascular, neural, and bone tissue engineering and bioelectronics. Polyesters are desirable candidates for future commercial implants due to their biocompatibility, biodegradability, tunable mechanical properties, and facile synthesis and fabrication methods. The incorporation of bioactive components further improves the therapeutic effects of polyester elastomers in biomedical applications. In this review, novel structural modification methods that contribute to outstanding mechanical behaviors of polyester elastomers are discussed. Recent advances in the application of polyester elastomers in tissue engineering and bioelectronics are outlined and analyzed. A prospective of the future research and development on polyester elastomers is also provided.
Collapse
Affiliation(s)
- Yawei Zhao
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
2
|
Ishihara K, Fukazawa K. Cell-membrane-inspired polymers for constructing biointerfaces with efficient molecular recognition. J Mater Chem B 2022; 10:3397-3419. [PMID: 35389394 DOI: 10.1039/d2tb00242f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fabrication of devices that accurately recognize, detect, and separate target molecules from mixtures is a crucial aspect of biotechnology for applications in medical, pharmaceutical, and food sciences. This technology has also been recently applied in solving environmental and energy-related problems. In molecular recognition, biomolecules are typically complexed with a substrate, and specific molecules from a mixture are recognized, captured, and reacted. To increase sensitivity and efficiency, the activity of the biomolecules used for capture should be maintained, and non-specific reactions on the surface should be prevented. This review summarizes polymeric materials that are used for constructing biointerfaces. Precise molecular recognition occurring at the surface of cell membranes is fundamental to sustaining life; therefore, materials that mimic the structure and properties of this particular surface are emphasized in this article. The requirements for biointerfaces to eliminate nonspecific interactions of biomolecules are described. In particular, the major issue of protein adsorption on biointerfaces is discussed by focusing on the structure of water near the interface from a thermodynamic viewpoint; moreover, the structure of polymer molecules that control the water structure is considered. Methodologies enabling stable formation of these interfaces on material surfaces are also presented.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
3
|
Eremenko E, Ding J, Kwan P, Tredget EE. The Biology of Extracellular Matrix Proteins in Hypertrophic Scarring. Adv Wound Care (New Rochelle) 2022; 11:234-254. [PMID: 33913776 DOI: 10.1089/wound.2020.1257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Significance: Hypertrophic scars (HTS) are a fibroproliferative disorder that occur following deep dermal injury and affect up to 72% of burn patients. These scars result in discomfort, impaired mobility, disruption of normal function and cosmesis, and significant psychological distress. Currently, there are no satisfactory methods to treat or prevent HTS, as the cellular and molecular mechanisms are complex and incompletely understood. This review summarizes the biology of proteins in the dermal extracellular matrix (ECM), which are involved in wound healing and hypertrophic scarring. Recent Advances: New basic research continues toward understanding the diversity of cellular and molecular mechanisms of normal wound healing and hypertrophic scarring. Broadening the understanding of these mechanisms creates insight into novel methods for preventing and treating HTS. Critical Issues: Although there is an abundance of research conducted on collagen in the ECM and its relationship to HTS, there is a significant gap in understanding the role of proteoglycans and their specific isoforms in dermal fibrosis. Future Directions: Exploring the biological roles of ECM proteins and their unique isoforms in HTS, mature scars, and normal skin will further the understanding of abnormal wound healing and create a more robust understanding of what constitutes dermal fibrosis. Research into the biological roles of ECM protein isoforms and their regulation during wound healing warrants a more extensive investigation to identify their distinct biological functions in cellular processes and outcomes.
Collapse
Affiliation(s)
- Elizabeth Eremenko
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Canada
| | - Jie Ding
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Canada
| | - Peter Kwan
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Canada
- Division of Plastic Surgery, Department of Surgery, University of Alberta, Edmonton, Canada
| | - Edward E. Tredget
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Canada
- Division of Plastic Surgery, Department of Surgery, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Marcano A, Fatyeyeva K, Koun M, Dubuis P, Grimme M, Chappey C, Marais S. Enhanced water and oxygen barrier performance of flexible polyurethane membranes for biomedical application. J Biomed Mater Res A 2021; 110:105-121. [PMID: 34288381 DOI: 10.1002/jbm.a.37269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/05/2021] [Accepted: 06/25/2021] [Indexed: 01/13/2023]
Abstract
In order to improve water and oxygen barrier properties, the surface of two commercial medical grade polyurethane (PU) membranes (Chronoflex® AR-LT and Bionate® II) was modified by a spray deposited film of poly(ethylene-co-vinyl alcohol) (EVOH). The influence of the temperature, the deposited layer thickness and the EVOH ethylene group percentage (27%, 32%, and 44% for EVOH27, EVOH32, and EVOH44, respectively) on the barrier properties of the PU/EVOH multilayered membranes was investigated. The increase of the EVOH layer thickness leads to higher oxygen barrier properties (the highest barrier improvement factor of 412 was obtained). However, in case of the deposited layer thickness higher than 18 μm, microcracks appeared on the treated surface promote a significant loss of the barrier effect. Due to its higher crystallinity degree, EVOH27 provides a higher oxygen barrier effect compared to EVOH32 and EVOH44. On the contrary, an increase of the water barrier properties was observed with the increase of the percentage of ethylene groups. Moreover, the delamination of the EVOH layer was noted after water permeation, especially in case of EVOH44, which is the most hydrophobic layer. Nevertheless, significant decrease of the water and oxygen permeability of the modified PU membranes was achieved, thus showing the benefit of using the EVOH spray deposition for the biomedical application, which requires high performance material with flexible and barrier properties.
Collapse
Affiliation(s)
- Aracelys Marcano
- Normandie Université, UNIROUEN, INSA ROUEN, CNRS, Polymères Biopolymères Surfaces (PBS), Rouen, France.,CARMAT SA, Vélizy Villacoublay, France
| | - Kateryna Fatyeyeva
- Normandie Université, UNIROUEN, INSA ROUEN, CNRS, Polymères Biopolymères Surfaces (PBS), Rouen, France
| | | | | | | | - Corinne Chappey
- Normandie Université, UNIROUEN, INSA ROUEN, CNRS, Polymères Biopolymères Surfaces (PBS), Rouen, France
| | - Stéphane Marais
- Normandie Université, UNIROUEN, INSA ROUEN, CNRS, Polymères Biopolymères Surfaces (PBS), Rouen, France
| |
Collapse
|
5
|
Kim H, Hong JY, Jeon WJ, Lee J, Ha IH. Evaluation of the effects of differences in silicone hardness on rat model of lumbar spinal stenosis. PLoS One 2021; 16:e0251464. [PMID: 33984013 PMCID: PMC8118556 DOI: 10.1371/journal.pone.0251464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/27/2021] [Indexed: 01/28/2023] Open
Abstract
Lumbar spinal stenosis (LSS), one of the most commonly reported spinal disorders, can cause loss of sensation and dyskinesia. In currently used animal models of LSS, the spinal cord is covered entirely with a silicone sheet, or block-shaped silicone is inserted directly into the spinal canal after laminectomy. However, the effects of differences between these implant materials have not been studied. We assessed the degree of damage and locomotor function of an LSS model in Sprague-Dawley rats using silicone blocks of varying hardness (70, 80, and 90 kPa) implanted at the L4 level. In sham rats, the spinal cord remained intact; in LSS rats, the spinal cord was increasingly compressed by the mechanical pressure of the silicone blocks as hardness increased. Inflammatory cells were not evident in sham rats, but numerous inflammatory cells were observed around the implanted silicone block in LSS rats. CD68+ cell quantification revealed increases in the inflammatory response in a hardness-dependent manner in LSS rats. Compared with those in sham rats, proinflammatory cytokine levels were significantly elevated in a hardness-dependent manner, and locomotor function was significantly decreased, in LSS rats. Overall, this study showed that hardness could be used as an index to control the severity of nerve injury induced by silicone implants.
Collapse
Affiliation(s)
- Hyunseong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| |
Collapse
|
6
|
Guo S, Gao B, Li D. New GSH-responsive amphiphilic zinc(II) phthalocyanine micelles as efficient drug carriers for combinatorial cancer therapy. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Combination therapies for the treatment of cancer have attracted wide attention. The poor selectivity and biocompatibility of photosensitizers (PS) limit the use of combination therapies in chemotherapy and photodynamic therapy (PDT) for cancer. In this work, the Gender PS (mPEG-[Formula: see text]-PLA-S-S-ZnPC), asymmetric zinc(II) phthalocyanine (ZnPC) and mono-methoxy oxygen-based polyethylene glycol-polylactic acid (mPEG-b-PLA) were designed and synthesized for PDT through disulfide bond (-S-S-). The amphipathic PS could be self-assembled into a micelle in aqueous solution, and paclitaxel (PTX) was encapsulated in the core of the micelle for chemotherapy (PTX/mPEG-[Formula: see text]-PLA-S-S-ZnPc). The PTX/mPEG-[Formula: see text]-PLA-S-S-ZnPc micelle was spherical with a uniform diameter of about 184 nm. At the first 48 h, the release behaviors of ZnPC and PTX at 10 mmol / L GSH were 30% and 75.2%, respectively. These results suggested that GSH-responsive PTX/mPEG-[Formula: see text]-PLA-S-S-ZnPc micelle was an active ingredient in combination therapies for cancer.
Collapse
Affiliation(s)
- Shanlei Guo
- School of Materials Science and Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130022, China
| | - Bo Gao
- School of Materials Science and Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130022, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Dongni Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130022, China
- China–Japan Union Hospital of Jilin University, Jilin University, 126 Xiantai Street, Changchun, 130033, China
| |
Collapse
|
7
|
Karimi F, Thombare VJ, Hutton CA, O'Connor AJ, Qiao GG, Heath DE. Biomaterials functionalized with nanoclusters of integrin- and syndecan-binding ligands improve cell adhesion and mechanosensing under shear flow conditions. J Biomed Mater Res A 2020; 109:313-325. [PMID: 32490581 DOI: 10.1002/jbm.a.37024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Abstract
We have engineered biomaterials that display nanoclusters of ligands that bind both integrin and syndecan-4 cell receptors. These surfaces regulate cell behaviors under static conditions including adhesion, spreading, actin stress fiber formation, and migration. The syndecan-4 receptors are also critical mediators of cellular mechanotransduction. In this contribution we assess whether this novel class of materials can regulate the response of cells to applied mechanical stimulation, using the shear stress imparted by laminar fluid flow as a model stimulus. Specifically, we assess endothelial cell detachment due to flow, cell alignment due to flow, and cell adhesion from the flowing fluid. A high degree of cell retention was observed on surfaces containing integrin-binding ligands or a mixed population of integrin- and syndecan-binding ligands. However, the presence of both ligand types was necessary for the cells to align in the direction of flow. These results imply that integrin engagement is necessary for adhesion strength, but engagement of both receptor types aids in appropriate mechanotransduction. Additionally, it was found that surfaces functionalized with both ligand types were able to scavenge a larger number of cells from flow, and to do so at a faster rate, compared to surfaces functionalized with only integrin- or syndecan-binding ligands. These results show that interfaces functionalized with both integrin- and syndecan-binding ligands regulate a significant range of biophysical cell behaviors in response to shear stress.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, University of Melbourne, Parkville, Victoria, Australia.,Polymer Science Group, Department of Chemical Engineering, Particulate Fluid Processing Centre, University of Melbourne, Parkville, Victoria, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Varsha Jagannath Thombare
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Craig A Hutton
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical Engineering, Particulate Fluid Processing Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Yu F, Cheng S, Lei J, Hang Y, Liu Q, Wang H, Yuan L. Heparin mimics and fibroblast growth factor-2 fabricated nanogold composite in promoting neural differentiation of mouse embryonic stem cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1623-1647. [PMID: 32460635 DOI: 10.1080/09205063.2020.1767375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The replacement therapy or transplantation using neural cells, which differentiated from stem cells, has emerged as a promising strategy for repairing damaged neural tissues and helping functional recovery in the treatment of neural system diseases. The challenge, however, is how to control embryonic stem cell fate so that neural differentiation can be efficiently directed to enrich a neuron cell population, and meanwhile to maintain their bioactivities. This is a key question and has a very significant impact in regenerative medicine. Here we proposed a new neural-differentiation inductive nanocomposite, containing gold nanoparticles (AuNPs), poly(2-methacrylamido glucopyranose-co-3-sulfopropyl acrylate) (PMS), and basic fibroblast growth factor (FGF2), for the high efficient directional neural-specific differentiation of mouse embryonic stem cells (mESCs). In this AuNP-PMS/FGF2 composite, PMS, playing as the high-active mimic of heparin/heparan sulfate (HS), is covalently anchored to AuNPs and bound with FGF2 on the surface of nanoparticles, forming a HS/FGF2 complex nanomimics to facilitate its binding to FGF receptor (FGFR) and promote high neural-inductive activity of mESCs. The stability, bioactivity and biocompatibility of the composite are investigated in this study. The results showed that the AuNP-PMS/FGF2 composite could maintain a long-term stability at room temperature for at least 8 days, and greatly promote the neural differentiation of mESCs. Compared with the other materials, the AuNP-PMS/FGF2 composite could significantly stimulate the expression of the specific neural differentiation markers (nestin and β3-tubulin), while obviously down-regulate the mRNA production of pluripotency marker Oct-4 in mESCs. Moreover, the promotion effect of the composite on neuronal maturation marker β3-tubulin expression achieved maximally at the low concentration of FGF2 (4 ng/mL), which suggested the high efficiency of AuNP-PMS/FGF2 composite in neural differentiation of mESCs. Meanwhile, both mESCs and L929 cells showed desirable growth during the incubation with AuNP-PMS/FGF2 composite. The AuNP-PMS/FGF2 system presents a new way to achieve HS/FGF2 complex nanomimics efficiently for the neural differentiation of mESCs.
Collapse
Affiliation(s)
- Fei Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People's Republic of China
| | - Shaoyu Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People's Republic of China
| | - Jiehua Lei
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People's Republic of China
| | - Yingjie Hang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People's Republic of China
| | - Qi Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People's Republic of China
| | - Hongwei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People's Republic of China
| | - Lin Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
9
|
Babakhanova G, Krieger J, Li BX, Turiv T, Kim MH, Lavrentovich OD. Cell alignment by smectic liquid crystal elastomer coatings with nanogrooves. J Biomed Mater Res A 2020; 108:1223-1230. [PMID: 32034939 DOI: 10.1002/jbm.a.36896] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 11/07/2022]
Abstract
Control of cells behavior through topography of substrates is an important theme in biomedical applications. Among many materials used as substrates, polymers show advantages since they can be tailored by chemical functionalization. Fabrication of polymer substrates with nano- and microscale topography requires processing by lithography, microprinting, etching, and so forth. In this work, we introduce a different approach based on anisotropic elastic properties of polymerized smectic A (SmA) liquid crystal elastomer (LCE). When the SmA liquid crystal coating is deposited onto a substrate with planar alignment of the molecules, it develops nanogrooves at its free surface. After photopolymerization, these nanogrooves show an excellent ability to align human dermal fibroblasts over large areas. The alignment quality is good for both bare SmA LCE substrates and for substrates coated with fibronectin. The SmA LCE nano-topographies show a high potential for tissue engineering.
Collapse
Affiliation(s)
- Greta Babakhanova
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio
- Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio
| | - Jess Krieger
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Bing-Xiang Li
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio
- Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio
| | - Taras Turiv
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio
- Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio
| | - Min-Ho Kim
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Oleg D Lavrentovich
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio
- Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio
- Department of Physics, Kent State University, Kent, Ohio
| |
Collapse
|
10
|
Baroni É, Cao B, Webley PA, Scales PJ, Martin GJO. Nitrogen Availability and the Nature of Extracellular Organic Matter of Microalgae. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Érico Baroni
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- Particulate Fluids Processing Centre, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bingdi Cao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Paul A. Webley
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter J. Scales
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- Particulate Fluids Processing Centre, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gregory J. O. Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- Particulate Fluids Processing Centre, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
11
|
Li D, Gao B, Duan Q. Preparation of star-shaped functionalized polylactides by metal porphyrin complexes as both catalysts and cocatalysts. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several aluminum porphyrin complexes as catalysts and a copper porphyrin complex as a cocatalyst were prepared. These complexes were characterized by 1H NMR and elemental analysis. These complexes are used for L-lactide polymerization. The kinetic data of the polymerization using complex 2 as catalyst revealed that the polymeric rates were first-ordered in both the monomer and catalyst. There is a linear relationship between lactide conversion and the number-averaged molecular weight of PLA.
Collapse
Affiliation(s)
- Dongni Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130022, China
- Department of Blood Transfusion, China–Japan Union Hospital of Jilin University, Jilin University, 126 Xiantai Street, Changchun, 130033, China
| | - Bo Gao
- School of Materials Science and Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130022, China
- Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun 130022, China
| | - Qian Duan
- School of Materials Science and Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130022, China
- Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun 130022, China
| |
Collapse
|
12
|
Li D, Gao B, Duan Q. Syntheses of biodegradable and biorenewable polylactides initiated by aluminum complexes bearing porphyrin derivatives by the ring-opening polymerization of lactides. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:846-860. [DOI: 10.1080/09205063.2019.1605867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Dongni Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, China
- Department of Blood Transfusion, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Bo Gao
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, China
- Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Qian Duan
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, China
- Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun, China
| |
Collapse
|
13
|
Heath DE. A Review of Decellularized Extracellular Matrix Biomaterials for Regenerative Engineering Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-018-0080-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Li D, Gao B, Duan Q. Synthesis of biodegradable and biorenewable polylactides initiated by aluminum complexes bearing m-xylylenediamine derivatives via the ring-opening polymerization of lactides. NEW J CHEM 2019. [DOI: 10.1039/c9nj01268k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aluminum complexes derived from m-xylylenediamine were synthesized and investigated as initiators for l-lactide and rac-lactide polymerization.
Collapse
Affiliation(s)
- Dongni Li
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- 7989 Weixing Road
- Changchun 130022
- China
| | - Bo Gao
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- 7989 Weixing Road
- Changchun 130022
- China
| | - Qian Duan
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- 7989 Weixing Road
- Changchun 130022
- China
| |
Collapse
|
15
|
Karimi F, O'Connor AJ, Qiao GG, Heath DE. Integrin Clustering Matters: A Review of Biomaterials Functionalized with Multivalent Integrin-Binding Ligands to Improve Cell Adhesion, Migration, Differentiation, Angiogenesis, and Biomedical Device Integration. Adv Healthc Mater 2018; 7:e1701324. [PMID: 29577678 DOI: 10.1002/adhm.201701324] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/24/2018] [Indexed: 01/17/2023]
Abstract
Material systems that exhibit tailored interactions with cells are a cornerstone of biomaterial and tissue engineering technologies. One method of achieving these tailored interactions is to biofunctionalize materials with peptide ligands that bind integrin receptors present on the cell surface. However, cell biology research has illustrated that both integrin binding and integrin clustering are required to achieve a full adhesion response. This biophysical knowledge has motivated researchers to develop material systems biofunctionalized with nanoscale clusters of ligands that promote both integrin occupancy and clustering of the receptors. These materials have improved a wide variety of biological interactions in vitro including cell adhesion, proliferation, migration speed, gene expression, and stem cell differentiation; and improved in vivo outcomes including increased angiogenesis, tissue healing, and biomedical device integration. This review first introduces the techniques that enable the fabrication of these nanopatterned materials, describes the improved biological effects that have been achieved, and lastly discusses the current limitations of the technology and where future advances may occur. Although this technology is still in its nascency, it will undoubtedly play an important role in the future development of biomaterials and tissue engineering scaffolds for both in vitro and in vivo applications.
Collapse
Affiliation(s)
- Fatemeh Karimi
- School of Chemical and Biomedical Engineering; Particulate Fluids Processing Centre; University of Melbourne; Parkville VIC 3010 Australia
- Polymer Science Group; Department of Chemical Engineering; Particulate Fluid Processing Centre; University of Melbourne; Parkville VIC 3010 Australia
| | - Andrea J. O'Connor
- School of Chemical and Biomedical Engineering; Particulate Fluids Processing Centre; University of Melbourne; Parkville VIC 3010 Australia
| | - Greg G. Qiao
- Polymer Science Group; Department of Chemical Engineering; Particulate Fluid Processing Centre; University of Melbourne; Parkville VIC 3010 Australia
| | - Daniel E. Heath
- School of Chemical and Biomedical Engineering; Particulate Fluids Processing Centre; University of Melbourne; Parkville VIC 3010 Australia
| |
Collapse
|
16
|
Bioinspired thermoresponsive nanoscaled coatings: Tailor-made polymer brushes with bioconjugated arginine-glycine-aspartic acid-peptides. Biointerphases 2018; 13:021002. [PMID: 29776313 DOI: 10.1116/1.5020129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The development of bioengineered surface coatings with stimuli-responsive properties is beneficial for a number of biomedical applications. Environmentally responsive and switchable polymer brush systems have a great potential to create such smart biointerfaces. This study focuses on the bioconjugation of cell-instructive peptides, containing the arginine-glycine-aspartic acid tripeptide sequence (RGD motif), onto well-defined polymer brush films. Herein, the highly tailored end-grafted homo polymer brushes are either composed of the polyelectrolyte poly(acrylic) acid (PAA), providing the reactive carboxyl functionalities, or of the temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm). Of particular interest is the preparation of grafted-to binary brushes using both polymers and their subsequent conversion to RGD-biofunctionalized PNIPAAm-PAA binary brushes by a carbodiimide conjugation method. The bioconjugation process of two linear RGD-peptides Gly-Arg-Gly-Asp-Ser and Gly-Arg-Gly-Asp-Ser-Pro-Lys and one cyclic RGD-peptide cyclo(Arg-Gly-Asp-D-Tyr-Lys) is comparatively investigated by complementary analysis methods. Both techniques, in situ attenuated total reflectance Fourier transform infrared spectroscopy measurements and the in situ spectroscopic ellipsometric analysis, describe changes of the brush surface properties due to biofunctionalization. Besides, the bound RGD-peptide amount is quantitatively evaluated by ellipsometry in comparison to high performance liquid chromatography analysis data. Additionally, molecular dynamic simulations of the RGD-peptides themselves allow a better understanding of the bioconjugation process depending on the peptide properties. The significant influence on the bioconjugation result can be derived, on the one hand, of the polymer brush composition, especially from the PNIPAAm content, and, on the other hand, of the peptide dimension and its reactivity.
Collapse
|
17
|
Nurlidar F, Kobayashi M, Terada K, Ando T, Tanihara M. Cytocompatible polyion complex gel of poly(Pro-Hyp-Gly) for simultaneous rat bone marrow stromal cell encapsulation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1480-1496. [PMID: 28514893 DOI: 10.1080/09205063.2017.1331872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Polyion complex (PIC) gel of poly(Pro-Hyp-Gly) was successfully fabricated by simply mixing polyanion and polycation derivatives of poly(Pro-Hyp-Gly), a collagen-like polypeptide. The polyanion, succinylated poly(Pro-Hyp-Gly), and the polycation, arginylated poly(Pro-Hyp-Gly), contain carboxy (pKa = 5.2) and guanidinium (pKa = 12.4) groups, respectively. Mixing the polyanion and the polycation at physiological pH (pH = 7.4) resulted in PIC gel. The hydrogel formation was optimum at an equimolar ratio of carboxy to guanidinium groups, suggesting that ionic interaction is the main determinant for the hydrogel formation. The hydrogel was successfully used for simultaneous rat bone marrow stromal cell encapsulation. The encapsulated cells survived and proliferated within the hydrogel. In addition, the cells exhibited different morphology in the hydrogel compared with cells cultured on a tissue culture dish as a two-dimensional (2D) control. At day one, a round morphology and homogeneous single cell distribution were observed in the hydrogel. In contrast, the cells spread and formed a fibroblast-like morphology on the 2D control. After three days, the cells in the hydrogel maintained their morphology and some of them formed multicellular aggregates, which is similar to cell morphology in an in vivo microenvironment. These results suggest that the PIC gel of poly(Pro-Hyp-Gly) can serve as a cytocompatible three-dimensional scaffold for stem cell encapsulation, supporting their viability, proliferation, and in vivo-like behavior.
Collapse
Affiliation(s)
- Farah Nurlidar
- a Graduate School of Materials Science , Nara Institute of Science and Technology , Nara , Japan
| | - Mime Kobayashi
- a Graduate School of Materials Science , Nara Institute of Science and Technology , Nara , Japan
| | - Kayo Terada
- a Graduate School of Materials Science , Nara Institute of Science and Technology , Nara , Japan
| | - Tsuyoshi Ando
- a Graduate School of Materials Science , Nara Institute of Science and Technology , Nara , Japan
| | - Masao Tanihara
- a Graduate School of Materials Science , Nara Institute of Science and Technology , Nara , Japan
| |
Collapse
|