1
|
Phan CM, Wy Chan V, Drolle E, Hui A, Ngo W, Bose S, Shows A, Liang S, Sharma V, Subbaraman L, Zheng Y, Shi X, Wu J, Jones L. Evaluating the in vitro wettability and coefficient of friction of a novel and contemporary reusable silicone hydrogel contact lens materials using an in vitro blink model. Cont Lens Anterior Eye 2024; 47:102129. [PMID: 38423868 DOI: 10.1016/j.clae.2024.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE To evaluate the in vitro wettability and coefficient of friction of a novel amphiphilic polymeric surfactant (APS), poly(oxyethylene)-co-poly(oxybutylene) (PEO-PBO) releasing silicone hydrogel (SiHy) contact lens material (serafilcon A), compared to other reusable SiHy lens materials. METHODS The release of fluorescently-labelled nitrobenzoxadiazole (NBD)-PEO-PBO was evaluated from serafilcon A over 7 days in a vial. The wettability and coefficient of friction of serafilcon A and three contemporary SiHy contact lens materials (senofilcon A; samfilcon A; comfilcon A) were evaluated using an in vitro blink model over their recommended wearing period; t = 0, 1, 7, 14 days for all lens types and t = 30 days for samfilcon A and comfilcon A (n = 4). Sessile drop contact angles were determined and in vitro non-invasive keratographic break-up time (NIKBUT) measurements were assessed on a blink model via the OCULUS Keratograph 5 M. The coefficient of friction was measured using a nano tribometer. RESULTS The relative fluorescence of NBD-PEO-PBO decreased in serafilcon A by approximately 18 % after 7 days. The amount of NBD-PEO-PBO released on day 7 was 50 % less than the amount released on day 1 (6.5±1.0 vs 3.4±0.5 µg/lens). The reduction in PEO-PBO in the lens also coincided with an increase in contact angles for serafilcon A after 7 days (p < 0.05), although there were no changes in NIKBUT or coefficient of friction (p > 0.05). The other contact lens materials had stable contact angles and NIKBUT over their recommended wearing period (p > 0.05), with the exception of samfilcon A, which had an increase in contact angle after 14 days as compared to t = 0 (p < 0.05). Senofilcon A and samfilcon A also showed an increase in coefficient of friction at 14 and 30 days, respectively, compared to their blister pack values (p < 0.05). CONCLUSION The results indicate that serafilcon A gradually depletes its reserve of PEO-PBO over 1 week, but this decrease did not significantly change the lens performance in vitro during this time frame.
Collapse
Affiliation(s)
- Chau-Minh Phan
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China.
| | - Vivian Wy Chan
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Elizabeth Drolle
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Alex Hui
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, Australia
| | - William Ngo
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Susmita Bose
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Amanda Shows
- Alcon Research LLC, Fort Worth TX & Johns Creek, GA, USA
| | - Shuang Liang
- Alcon Research LLC, Fort Worth TX & Johns Creek, GA, USA
| | - Vinay Sharma
- Alcon Research LLC, Fort Worth TX & Johns Creek, GA, USA
| | | | - Ying Zheng
- Alcon Research LLC, Fort Worth TX & Johns Creek, GA, USA
| | - Xinfeng Shi
- Alcon Research LLC, Fort Worth TX & Johns Creek, GA, USA
| | - James Wu
- Alcon Research LLC, Fort Worth TX & Johns Creek, GA, USA
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
2
|
Rizzarelli P, Leanza M, Rapisarda M. Investigations into the characterization, degradation, and applications of biodegradable polymers by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023. [PMID: 38014928 DOI: 10.1002/mas.21869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Biodegradable polymers have been getting more and more attention because of their contribution to the plastic pollution environmental issues and to move towards a circular economy. Nevertheless, biodegradable materials still exhibit various disadvantages restraining a widespread use in the market. Therefore, additional research efforts are required to improve their performance. Mass spectrometry (MS) affords a relevant contribution to optimize biodegradable polymer synthesis, to confirm macromolecular structures, to examine along the time the progress of degradation processes and highlight advantages and drawbacks in the extensive applications. This review aims to provide an overview of the MS investigations carried out to support the synthesis of biodegradable polymers, with helpful information on undesirable products or polymerization mechanism, to understand deterioration pathways by the structure of degradation products and to follow drug release and pharmacokinetic. Additionally, it summarizes MS studies addressed on environmental and health issues related to the extensive use of plastic materials, that is, potential migration of additives or microplastics identification and quantification. The paper is focused on the most significant studies relating to synthetic and microbial biodegradable polymers published in the last 15 years, not including agro-polymers such as proteins and polysaccharides.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Melania Leanza
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Marco Rapisarda
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| |
Collapse
|
3
|
Pereira-da-Mota AF, Vivero-Lopez M, Garg P, Phan CM, Concheiro A, Jones L, Alvarez-Lorenzo C. In vitro-in vivo correlation of drug release profiles from medicated contact lenses using an in vitro eye blink model. Drug Deliv Transl Res 2023; 13:1116-1127. [PMID: 36528710 PMCID: PMC9981533 DOI: 10.1007/s13346-022-01276-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
There is still a paucity of information on how in vitro release profiles from drug-loaded contact lenses (CLs) recorded in 3D printed eye models correlate with in vivo profiles. This work aims to evaluate the release profiles of two drug-loaded CLs in a 3D in vitro eye blink model and compare the obtained results with the release in a vial and the drug levels in tear fluid previously obtained from an animal in vivo study. In vitro release in the eye model was tested at two different flow rates (5 and 10 µL/min) and a blink speed of 1 blink/10 s. Model CLs were loaded with two different drugs, hydrophilic pravastatin and hydrophobic resveratrol. The release of both drugs was more sustained and lower in the 3D eye model compared to the in vitro release in vials. Interestingly, both drugs presented similar release patterns in the eye model and in vivo, although the total amount of drugs released in the eye model was significantly lower, especially for resveratrol. Strong correlations between percentages of pravastatin released in the eye model and in vivo were found. These findings suggest that the current 3D printed eye blink model could be a useful tool to measure the release of ophthalmic drugs from medicated CLs. Nevertheless, physiological parameters such as the composition of the tear fluid and eyeball surface, tear flow rates, and temperature should be optimized in further studies.
Collapse
Affiliation(s)
- Ana F Pereira-da-Mota
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Maria Vivero-Lopez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Piyush Garg
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Chau-Minh Phan
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Marx S, Baluschev S, Sickenberger W. Solution-related in Vitro Dewetting Behavior of Various Daily Disposable Contact Lenses. Optom Vis Sci 2022; 99:750-757. [PMID: 36095059 PMCID: PMC9553268 DOI: 10.1097/opx.0000000000001939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SIGNIFICANCE The dewetting process of contact lenses (CLs) is a result of material and solution properties as well as environmental factors. This article describes an investigational approach to observe and describe dewetting characteristics of different CL material and solution combinations. PURPOSE This study aimed to determine the in vitro dewetting characteristics of various daily disposable CLs that were assessed using a noninvasive keratograph dewetting procedure (noninvasive keratograph dry-up time). In vitro dewetting data of the same CL materials soaked in saline solution and artificial tear solution (ATS) were measured to determine additional dewetting characteristics. METHODS Noninvasive keratograph dry-up time was measured for six different soft CL materials and three different test conditions, in their specific blister solution, after exposure to saline and an ATS. Twenty CLs of each solution/material combination were assessed after an 8-hour soaking, during a 180-second dewetting observation, and the results were expressed by area under the curve values. RESULTS Fastest dewetting occurred for all materials when measured out of saline, indicated by the highest averaged area under the curve value of 9243.3 ± 38.3 over all lens materials. Slower dewetting was detected for all materials when measured out of their specific blister solution (7755.9 ± 37.1) and out of ATS (7988.8 ± 40.0). Intragroup results were statistically significantly different for all solutions showing the smallest differences within the ATS group ( P < .001, Kruskal-Wallis test). CONCLUSIONS A pure saline thin film is not an ideal representation of a complex tear film layer of a healthy human because it lacks any evaporative protection by a lipid layer. The use of an ATS, which more likely mimics the natural tear film, allowed in this experimental in vitro project to decrease the gap to the in vivo field. In vitro dewetting information in connection with the blister solution allows only a theoretical conclusion about the initial lens wear after lens insertion.
Collapse
Affiliation(s)
- Sebastian Marx
- JenVis Research GbR, Jena, Germany
- Faculty of Physics, Sofia University, Sofia, Bulgaria
| | - Stanislav Baluschev
- Faculty of Physics, Sofia University, Sofia, Bulgaria
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Wolfgang Sickenberger
- JenVis Research GbR, Jena, Germany
- Ernst Abbe University of Applied Sciences, Jena, Germany
| |
Collapse
|
5
|
Zheng Y, Dou J, Wang Y, Zhu L, Yao G, Kim YH, Radke CJ, Wu JY. Sustained Release of a Polymeric Wetting Agent from a Silicone-Hydrogel Contact Lens Material. ACS OMEGA 2022; 7:29223-29230. [PMID: 36033690 PMCID: PMC9404521 DOI: 10.1021/acsomega.2c03310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Uptake and release kinetics are investigated of a dilute aqueous polymeric-surfactant wetting agent, (ethylene oxide)45-(butylene oxide)10 copolymer, also referred to as poly(oxyethylene)-co-poly(oxybutylene), impregnated into a newly designed silicone-hydrogel lens material. Transient scanning concentration profiles of the fluorescently tagged polymeric surfactant follow Fick's second law with a diffusion coefficient near 10-11 cm2/s, a value 3-4 orders smaller than that of the free surfactant in bulk water. The Nernst partition coefficient of the tagged polymeric wetting agent, determined by fluorescence microscopy and by methanol extraction, is near 350, a very large value. Back-extraction of the polymeric-surfactant wetting agent releases only ∼20% of the loaded amount after soaking the fully loaded lens for over 7 days. The remaining ∼80% is irreversibly bound in the lens matrix. Reverse-phase liquid chromatography of the lens-loaded and lens-extracted surfactant demonstrates that the released wetting agent is more hydrophilic with a higher polarity. Aqueous poly(oxyethylene)-co-poly(oxybutylene) is hypothesized to attach strongly to the lens matrix, most likely to the lens silicone domains. Strong binding leads to slow transient diffusion, to large uptake, and to significant irreversible retention. These characteristics indicate the suitability of using a poly(oxyethylene)-co-poly(oxybutylene) nonionic polymeric surfactant to maintain enhanced lens wettability over time. Methodology and findings from this study provide useful insights for designing sustained-release contact-lens wetting agents and materials.
Collapse
Affiliation(s)
- Ying Zheng
- Alcon
Research LLC, 11460 Johns
Creek Parkway, Duluth, Georgia 30097, United States
| | - Jinbo Dou
- Alcon
Research LLC, 11460 Johns
Creek Parkway, Duluth, Georgia 30097, United States
| | - Yan Wang
- Alcon
Research LLC, 11460 Johns
Creek Parkway, Duluth, Georgia 30097, United States
| | - Lu Zhu
- Alcon
Research LLC, 11460 Johns
Creek Parkway, Duluth, Georgia 30097, United States
| | - George Yao
- Alcon
Research LLC, 11460 Johns
Creek Parkway, Duluth, Georgia 30097, United States
- Alcon
Research LLC, 6201 South
Freeway, Fort Worth, Texas 76134, United States
| | - Young Hyun Kim
- Alcon
Research LLC, 11460 Johns
Creek Parkway, Duluth, Georgia 30097, United States
- Chemical
and Biomolecular Engineering Department, University of California, Berkeley, California 94720, United States
- Herbert
Wertheim School of Optometry & Vision Science, University of California, Berkeley, California 94720, United States
| | - Clayton J. Radke
- Chemical
and Biomolecular Engineering Department, University of California, Berkeley, California 94720, United States
- Herbert
Wertheim School of Optometry & Vision Science, University of California, Berkeley, California 94720, United States
| | - James Yuliang Wu
- Alcon
Research LLC, 11460 Johns
Creek Parkway, Duluth, Georgia 30097, United States
- Alcon
Research LLC, 6201 South
Freeway, Fort Worth, Texas 76134, United States
| |
Collapse
|
6
|
Chan VWY, Phan CM, Ngo W, Jones L. Lysozyme Deposition on Contact Lenses in an In Vitro Blink-Simulation Eye Model Versus a Static Vial Deposition Model. Eye Contact Lens 2021; 47:388-393. [PMID: 33840748 DOI: 10.1097/icl.0000000000000784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate active lysozyme deposition on daily disposable (DD) contact lenses (CL) using a novel in vitro blink model. METHODS Three conventional hydrogel DD CL materials (etafilcon A, omafilcon A, nelfilcon A) and three silicone hydrogel DD CL materials (delefilcon A, senofilcon A, somofilcon A) were tested. The device blink rate was set to 6 blinks/min with a tear flow rate of 1 μL/min using an artificial tear solution (ATS) containing lysozyme and other typical tear film components. After incubation at 2, 4, or 8 hr, lenses were removed, and lysozyme activity was measured. A separate experiment was conducted with lenses incubated in a static vial containing 480 μL of ATS. RESULTS Etafilcon A deposited significantly higher amounts of active lysozyme (402±102 μg/lens) than other lens materials after 8 hr (P<0.0001). Etafilcon A had a higher amount of active lysozyme using the blink model compared with the static vial (P=0.0435), whereas somofilcon A (P=0.0076) and senofilcon A (P=0.0019) had a higher amount of lysozyme activity in the vial compared with the blink model. CONCLUSION The blink model can be tuned to provide quantitative data that closely mimics ex vivo studies and can be used to model deposition of lysozyme on CL materials.
Collapse
Affiliation(s)
- Vivian W Y Chan
- Centre for Ocular Research and Education (CORE) (V.W.Y.C., C.-M.P., W.N., L.J.), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada ; and Centre for Eye and Vision Research (CEVR) (C.-M.P., W.N., L.J.), Hong Kong, China
| | | | | | | |
Collapse
|
7
|
CLEAR - Contact lens wettability, cleaning, disinfection and interactions with tears. Cont Lens Anterior Eye 2021; 44:157-191. [DOI: 10.1016/j.clae.2021.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
|
8
|
Phan CM, Shukla M, Walther H, Heynen M, Suh D, Jones L. Development of an In Vitro Blink Model for Ophthalmic Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13030300. [PMID: 33668884 PMCID: PMC7996515 DOI: 10.3390/pharmaceutics13030300] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Purpose: The purpose of this study was to develop an advanced in vitro blink model that can be used to examine the release of a wide variety of components (for example, topical ophthalmic drugs, comfort-inducing agents) from soft contact lenses. Methods: The model was designed using computer-aided design software and printed using a stereolithography 3D printer. The eyelid and eyeball were synthesized from polyvinyl alcohol and silicone material, respectively. Simulated tear fluid was infused through tubing attached to the eyelid using a syringe pump. With each blink cycle, the eyelid slides and flexes across the eyeball to create an artificial tear film layer. The flow-through fluid was collected using a specialized trough. Two contact lenses, etafilcon A and senofilcon A, were incubated in 2 mL of a water-soluble red dye for 24 h and then placed on the eye model (n = 3). The release of the dye was measured over 24 h using a tear flow rate of 5 µL/min. Results: Approximately 25% of the fluid that flowed over the eye model was lost due to evaporation, nonspecific absorption, and residual dead volume. Senofilcon A absorbed more dye (47.6 ± 2.7 µL) than etafilcon A (22.3 ± 2.0 µL). For etafilcon A, the release of the dye followed a burst-plateau profile in the vial but was sustained in the eye model. For senofilcon A, the release of the dye was sustained in both the vial and the eye model, though more dye was released in the vial (p < 0.05). Overall, the release of the dye from the contact lenses was higher in the vial compared with the eye model (p < 0.05). Conclusion: The blink model developed in this study could be used to measure the release of topical ophthalmic drugs or comfort agents from contact lenses. Simulation of a blink mechanism, an artificial tear film, and nonspecific absorption in an eye model may provide better results than a simple, static vial incubation model.
Collapse
Affiliation(s)
- Chau-Minh Phan
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (M.S.); (H.W.); (M.H.); (D.S.); (L.J.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Correspondence: ; Tel.: +1-519-888-4567 (ext. 37009)
| | - Manish Shukla
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (M.S.); (H.W.); (M.H.); (D.S.); (L.J.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Hendrik Walther
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (M.S.); (H.W.); (M.H.); (D.S.); (L.J.)
| | - Miriam Heynen
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (M.S.); (H.W.); (M.H.); (D.S.); (L.J.)
| | - David Suh
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (M.S.); (H.W.); (M.H.); (D.S.); (L.J.)
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (M.S.); (H.W.); (M.H.); (D.S.); (L.J.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| |
Collapse
|
9
|
Rizzarelli P, Rapisarda M, Valenti G. Mass spectrometry in bioresorbable polymer development, degradation and drug-release tracking. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8697. [PMID: 31834664 DOI: 10.1002/rcm.8697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
A detailed characterization of polymeric matrices and appropriate degradation monitoring techniques are required to sustain the development of new materials as well as to enlarge the applications of the old ones. In fact, polymer analysis is essential for the clarification of the intrinsic relationship between structure and properties that ascertains the industrial applications in diverse fields. In bioresorbable and biodegradable polymers, the role of analytical methods is dual since it is pointed both at the polymeric matrices and at degradation tracking. The structural architectures, the mechanical and morphological properties, and the degradation rate, are of outstanding importance for a specific application. In some cases, the complexity of the polymer structure, the processes of decomposition or the low concentration of the degradation products need the concurrent use of different complementary analytical techniques to give detailed information of the reactions taking place. Several analytical methods are used in bioresorbable polymer development and degradation tracking. Among them, mass spectrometry (MS) plays an essential role and it is used to refine polymer syntheses, for its high sensitivity, to highlight degradation mechanism by detecting compounds present in trace amounts, or to track the degradation product profile and to study drug release. In fact, elucidation of reaction mechanisms and polymer structure, attesting to the purity and detecting defects as well as residual catalysts, in biodegradable and bioresorbable polymers, requires sensitive analytical characterization methods that are essential in providing an assurance of safety, efficacy and quality. This review aims to provide an overview of the MS strategies used to support research and development of resorbable polymers as well as to investigate their degradation mechanisms. It is focused on the most significant studies concerning synthetic bioresorbable matrices (polylactide, polyglycolide and their copolymers, polyhydroxybutyrate, etc.), published in the last ten years.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| | - Marco Rapisarda
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| | - Graziella Valenti
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| |
Collapse
|
10
|
Maulvi FA, Patel PJ, Soni PD, Desai AR, Desai DT, Shukla MR, Ranch KM, Shah SA, Shah DO. Novel Poly(vinylpyrrolidone)-Coated Silicone Contact Lenses to Improve Tear Volume During Lens Wear: In Vitro and In Vivo Studies. ACS OMEGA 2020; 5:18148-18154. [PMID: 32743189 PMCID: PMC7391853 DOI: 10.1021/acsomega.0c01764] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Poly(vinylpyrrolidone) (PVP-K90) is widely used to manage dry eye syndrome (DES). The marketed eye drop solutions (high dose) need frequent instillation, affecting the routine lifestyle of patients. PVP-K90-laden contact lenses can be used to overcome the limitations of eye drop solutions (low bioavailability and frequent instillation). However, the conventional methods of PVP-K90 loading show poor loading capacity and short duration of effect. In the present study, we have developed PVP-K90-coated contact lenses via a short curing approach to increase the PVP-K90 loading capacity with a sustained release profile to manage dry eye syndrome. PVP-K90 was loaded by a soaking method (SM-PVP), direct loading (during fabrication, DL-PVP), a combination of soaking and direct loading (DL-SM-PVP), and a novel coating process (SM-PVP-C and DL-SM-PVP-C). The swelling studies suggested improvement in the water uptake (hydration) property of the contact lenses due to the presence of PVP-K90. The optical transparency was within an acceptable range. The in vitro release of PVP-K90 was in the following order: PVP-coated contact lens (168 h) > DL-SM-PVP (168 h) > DL-PVP (96 h) > SM-PVP (72-96 h). PVP-coated contact lenses showed a high burst effect (lubricating effect) and sustained release (3161-448 ng/h between 24 and 168 h) due to high PVP loading/coating in comparison to the uncoated respective contact lenses (964-113 ng/h between 24 and 96 h). In animal studies, the PVP-K90-coated contact lens showed higher tear volume in comparison to the respective uncoated contact lenses and an eye drop solution. This study demonstrates a novel approach of coating a high amount of PVP-K90 on contact lenses for sustained release to manage several ocular diseases like dry eye syndrome, conjunctivitis, and other ocular injuries.
Collapse
Affiliation(s)
- Furqan A. Maulvi
- Maliba
Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Pooja J. Patel
- Maliba
Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Parth D. Soni
- Maliba
Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Ankita R. Desai
- Maliba
Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Ditixa T. Desai
- Maliba
Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Manish R. Shukla
- Centre
for Ocular Research & Education (CORE), School of Optometry and
Vision Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ketan M. Ranch
- Maliba
Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Shailesh A. Shah
- Maliba
Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Dinesh O. Shah
- Department
of Chemical Engineering and Department of Anesthesiology, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
11
|
Yamasaki K, Drolle E, Nakagawa H, Hisamura R, Ngo W, Jones L. Impact of a low molecular weight hyaluronic acid derivative on contact lens wettability. Cont Lens Anterior Eye 2020; 44:101334. [PMID: 32505651 DOI: 10.1016/j.clae.2020.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE To investigate the interaction of a novel low molecular weight hyaluronic acid derivative containing hydrophobic groups with soft contact lenses and its effect on lens hydrophilicity compared with a conventional form of hyaluronic acid. METHODS This investigation studied the uptake of fluorescently-labelled hyaluronic acid and a low molecular weight hyaluronic acid derivative to four types of contact lenses using fluorescent microscopy and confocal laser scanning microscopy. Further, the four lens types were used to compare efficacy in improving hydrophilicity, as well as maintenance of contact angle measurements, in commercially available multipurpose solutions that contained either hyaluronic acid, the low molecular weight hyaluronic acid derivative, or an alternative wetting agent. RESULTS The low molecular weight hyaluronic acid derivative was found to sorb more readily to silicone hydrogel lenses and exhibit a greater accumulation over time than conventional hyaluronic acid. Multipurpose solutions containing the low molecular weight hyaluronic acid derivative showed an increase in lens hydrophilicity through decreases in contact angle measurements when compared with those obtained from lenses treated with multipurpose solutions containing conventional hyaluronic acid or alternative wetting agents. This increase in lens hydrophilicity associated with the low molecular weight hyaluronic acid derivative was also maintained over multiple cycles in phosphate buffered saline, while alternative solutions with conventional hyaluronic acid did not. CONCLUSION Overall, lens treatment using a low molecular weight hyaluronic acid derivative-based solution lead to improved in vitro lens hydrophilicity.
Collapse
Affiliation(s)
- Katsuhide Yamasaki
- Ophtecs Corporation, 5-2-4 Minatojima-Minami-Machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Elizabeth Drolle
- Centre for Ocular Research and Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Haruki Nakagawa
- Ophtecs Corporation, 5-2-4 Minatojima-Minami-Machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Ryuji Hisamura
- Ophtecs Corporation, 5-2-4 Minatojima-Minami-Machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - William Ngo
- Centre for Ocular Research and Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Lyndon Jones
- Centre for Ocular Research and Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
12
|
Phan CM, Walther H, Qiao H, Shinde R, Jones L. Development of an Eye Model With a Physiological Blink Mechanism. Transl Vis Sci Technol 2019; 8:1. [PMID: 31534830 PMCID: PMC6727780 DOI: 10.1167/tvst.8.5.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/04/2019] [Indexed: 01/26/2023] Open
Abstract
Purpose To develop an eye model with a physiological blink mechanism. Methods All parts of the eye model were designed using computer-aided design software. The eyelid consisted of a unique 3D printed structure containing teeth to physically secure a flexible membrane. Both the eyeball and eyelid membrane were synthesized using polyvinyl alcohol (PVA). Four molecular weights of PVA (89–98, 85–124, 130, and 146–186 kDa) were tested at a range of concentrations between 5% and 30% weight/volume. The wettability and water content of these materials were compared with the bovine cornea and sclera. The model was connected to a microfluidic pump, which delivers artificial tear solution (ATS) to the eyelid. A corneal topographer was used to evaluate the tear break-up and tear film regeneration. Results The eyelid flexes and slides across the eyeball during each blink, which ensures direct contact between the two surfaces. When loaded with an ATS, this mechanism evenly spreads the solution over the eyeball to generate an artificial tear film. The artificial tear film in this eye model had a tear break-up time (TBUT) of 5.13 ± 0.09 seconds at 1.4 μL/min flow rate, 6 blinks/min, and <25% humidity. Conclusions This model simulates a physiological blink actuation and an artificial tear film layer. Future studies will examine variations in flow rates and ATS composition to simulate clinical values of TBUT. Translational Relevance The eye model could be used to study in vitro TBUT, tear deposition, and simple drug delivery.
Collapse
Affiliation(s)
- Chau-Min Phan
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Hendri Walther
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Ha Qiao
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Ra Shinde
- Manipal Academy of Higher Education, Manipal Institute of Technology, Madhav Nagar, Manipal, Karnataka, India
| | - Lyndo Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|