1
|
Zheng C, Hu X, Hua R, Ren X, Shi S, Hong X, Wang Y, Qiu L, Wu D, Cao T, Huang S, Zhao S, Pan Y. A Cerium Oxide Loaded Hyaluronic Acid Nanosystem Remits Glucose Oxidative Stress-Induced Odontoblasts Mitochondrial Apoptosis through Regulation of PGAM5 Pathway. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39772475 DOI: 10.1021/acsami.4c13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Diabetes mellitus (DM) induced mitochondrial oxidative stress (OS) can lead to severe injury of dental pulp. The cerium oxide nanoparticles (CNP) have been proven to have excellent antioxidative activity. However, whether CNP can relieve dental pulp damage caused by DM and the underlying mechanisms remain unclear. In this study, we modified ceria with hyaluronic acid to prepare nanoceria with good biocompatibility, water solubility, and stability, namely, HACNP (hyaluronic acid cerium oxide nanoparticles). We demonstrated the protective effect of HACNP on diabetic OS-induced mitochondrial apoptosis in dental pulp-like cells. As far as the mechanism of action was concerned, glucose oxidase (GO) treatment promoted the activation of phosphoglycerate mutase family 5 (PGAM5) leading to mitochondrial abnormalities and apoptosis in an odontoblast-like cell line (mDPC6T). Knockdown or overexpression of PGAM5 further validate these results. Meanwhile, HACNP remitted GO-related toxicity via down-regulating PGAM5 expression, whereas overexpression of PGAM5 abolished the beneficial effect of HACNP. Furthermore, in the constructed animal research model of diabetic pulp injury, we also confirmed that HACNP alleviated apoptosis and mitochondrial injury of dental pulp and decreased the expression level of PGAM5 in diabetic pulp tissue. In conclusion, these results revealed that HACNP played a protective role on diabetes-associated dental pulp injury through targeting the PGAM5-mediated mitochondrial pathway, providing an idea and method for the prevention or treatment of diabetes-induced dental pulp damage.
Collapse
Affiliation(s)
- Chuchu Zheng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiangyu Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Ruize Hua
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Xuekun Ren
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Shuai Shi
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xinhua Hong
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Yilin Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Lili Qiu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Danni Wu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Tong Cao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang LaboratoryZhejiang Lab for Regenerative Medicine, Vision, and Brain Health, Wenzhou 325027, China
| | - Shengbin Huang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Shufan Zhao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Yihuai Pan
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
2
|
Gong Z, Peng S, Cao J, Tan H, Zhao H, Bai J. Advances in the variations and biomedical applications of stimuli-responsive nanodrug delivery systems. NANOTECHNOLOGY 2024; 35:132001. [PMID: 38198449 DOI: 10.1088/1361-6528/ad170b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Chemotherapy is an important cancer treatment modality, but the clinical utility of chemotherapeutics is limited by their toxic side effects, inadequate distribution and insufficient intracellular concentrations. Nanodrug delivery systems (NDDSs) have shown significant advantages in cancer diagnosis and treatment. Variable NDDSs that respond to endogenous and exogenous triggers have attracted much research interest. Here, we summarized nanomaterials commonly used for tumor therapy, such as peptides, liposomes, and carbon nanotubes, as well as the responses of NDDSs to pH, enzymes, magnetic fields, light, and multiple stimuli. Specifically, well-designed NDDSs can change in size or morphology or rupture when induced by one or more stimuli. The varying responses of NDDSs to stimulation contribute to the molecular design and development of novel NDDSs, providing new ideas for improving drug penetration and accumulation, inhibiting tumor resistance and metastasis, and enhancing immunotherapy.
Collapse
Affiliation(s)
- Zhongying Gong
- College of Economics and Management, Qingdao University of Science and Technology, Qingdao 266061, People's Republic of China
| | - Shan Peng
- School of Stomatology, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Juanjuan Cao
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Jinan 250012, People's Republic of China
| | - Hongxia Zhao
- College of Economics and Management, Qingdao University of Science and Technology, Qingdao 266061, People's Republic of China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, People's Republic of China
| |
Collapse
|
3
|
Smart Polymeric Micelles for Anticancer Hydrophobic Drugs. Cancers (Basel) 2022; 15:cancers15010004. [PMID: 36612002 PMCID: PMC9817890 DOI: 10.3390/cancers15010004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer has become one of the deadliest diseases in our society. Surgery accompanied by subsequent chemotherapy is the treatment most used to prolong or save the patient's life. Still, it carries secondary risks such as infections and thrombosis and causes cytotoxic effects in healthy tissues. Using nanocarriers such as smart polymer micelles is a promising alternative to avoid or minimize these problems. These nanostructured systems will be able to encapsulate hydrophilic and hydrophobic drugs through modified copolymers with various functional groups such as carboxyls, amines, hydroxyls, etc. The release of the drug occurs due to the structural degradation of these copolymers when they are subjected to endogenous (pH, redox reactions, and enzymatic activity) and exogenous (temperature, ultrasound, light, magnetic and electric field) stimuli. We did a systematic review of the efficacy of smart polymeric micelles as nanocarriers for anticancer drugs (doxorubicin, paclitaxel, docetaxel, lapatinib, cisplatin, adriamycin, and curcumin). For this reason, we evaluate the influence of the synthesis methods and the physicochemical properties of these systems that subsequently allow an effective encapsulation and release of the drug. On the other hand, we demonstrate how computational chemistry will enable us to guide and optimize the design of these micelles to carry out better experimental work.
Collapse
|
4
|
Tan RYH, Lee CS, Pichika MR, Cheng SF, Lam KY. PH Responsive Polyurethane for the Advancement of Biomedical and Drug Delivery. Polymers (Basel) 2022; 14:polym14091672. [PMID: 35566843 PMCID: PMC9102459 DOI: 10.3390/polym14091672] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Due to the specific physiological pH throughout the human body, pH-responsive polymers have been considered for aiding drug delivery systems. Depending on the surrounding pH conditions, the polymers can undergo swelling or contraction behaviors, and a degradation mechanism can release incorporated substances. Additionally, polyurethane, a highly versatile polymer, has been reported for its biocompatibility properties, in which it demonstrates good biological response and sustainability in biomedical applications. In this review, we focus on summarizing the applications of pH-responsive polyurethane in the biomedical and drug delivery fields in recent years. In recent studies, there have been great developments in pH-responsive polyurethanes used as controlled drug delivery systems for oral administration, intravaginal administration, and targeted drug delivery systems for chemotherapy treatment. Other applications such as surface biomaterials, sensors, and optical imaging probes are also discussed in this review.
Collapse
Affiliation(s)
- Rachel Yie Hang Tan
- School of Postgraduate, International Medical University, Kuala Lumpur 57000, Malaysia; (R.Y.H.T.); (K.Y.L.)
| | - Choy Sin Lee
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence:
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Sit Foon Cheng
- Unit of Research on Lipids (URL), Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Ki Yan Lam
- School of Postgraduate, International Medical University, Kuala Lumpur 57000, Malaysia; (R.Y.H.T.); (K.Y.L.)
| |
Collapse
|
5
|
Baghbanbashi M, Kakkar A. Polymersomes: Soft Nanoparticles from Miktoarm Stars for Applications in Drug Delivery. Mol Pharm 2022; 19:1687-1703. [PMID: 35157463 DOI: 10.1021/acs.molpharmaceut.1c00928] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Self-assembly of amphiphilic macromolecules has provided an advantageous platform to address significant issues in a variety of areas, including biology. Such soft nanoparticles with a hydrophobic core and hydrophilic corona, referred to as micelles, have been extensively investigated for delivering lipophilic therapeutics by physical encapsulation. Polymeric vesicles or polymersomes with similarities in morphology to liposomes continue to play an essential role in understanding the behavior of cell membranes and, in addition, have offered opportunities in designing smart nanoformulations. With the evolution in synthetic methodologies to macromolecular precursors, the construction of such assemblies can now be modulated to tailor their properties to match desired needs. This review brings into focus the current state-of-the-art in the design of polymersomes using amphiphilic miktoarm star polymers through a detailed analysis of the synthesis of miktoarm star polymers with tuned lengths of varied polymeric arms, their self-assembly, and applications in drug delivery.
Collapse
Affiliation(s)
- Mojhdeh Baghbanbashi
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada.,Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
6
|
Xie L, Liu R, Chen X, He M, Zhang Y, Chen S. Micelles Based on Lysine, Histidine, or Arginine: Designing Structures for Enhanced Drug Delivery. Front Bioeng Biotechnol 2021; 9:744657. [PMID: 34646819 PMCID: PMC8503256 DOI: 10.3389/fbioe.2021.744657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
Natural amino acids and their derivatives are excellent building blocks of polymers for various biomedical applications owing to the non-toxicity, biocompatibility, and ease of multifunctionalization. In the present review, we summarized the common approaches to designing and constructing functional polymeric micelles based on basic amino acids including lysine, histidine, and arginine and highlighted their applications as drug carriers for cancer therapy. Different polypeptide architectures including linear polypeptides and dendrimers were developed for efficient drug loading and delivery. Besides, polylysine- and polyhistidine-based micelles could enable pH-responsive drug release, and polyarginine can realize enhanced membrane penetration and gas therapy by generating metabolites of nitric oxide (NO). It is worth mentioning that according to the structural or functional characteristics of basic amino acids and their derivatives, key points for designing functional micelles with excellent drug delivery efficiency are importantly elaborated in order to pave the way for exploring micelles based on basic amino acids.
Collapse
Affiliation(s)
- Li Xie
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Rong Liu
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Xin Chen
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Mei He
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Yi Zhang
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Shuyi Chen
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| |
Collapse
|
7
|
Murugan B, Sagadevan S, Fatimah I, Oh WC, Motalib Hossain MA, Johan MR. Smart stimuli-responsive nanocarriers for the cancer therapy – nanomedicine. NANOTECHNOLOGY REVIEWS 2021; 10:933-953. [DOI: 10.1515/ntrev-2021-0067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Nanomedicine is ongoing current research in the applications of nanotechnology for cancer therapy. Simply from a technology perspective, this field of research has an enormous broadening and success to date. Recently, nanomedicine has also made inroads in the treatment of cancer. Stimuli-responsive nanoparticles are an emerging field of research because its targeting capacity is of great interest in the treatment of cancer. The responsive nanoparticles are efficient in encountering different internal biological stimuli (acidic, pH, redox, and enzyme) and external stimuli (temperature, ultrasounds, magnetic field, and light), which are used as smart nanocarriers for delivery of the chemotherapeutic and imaging agents for cancer therapy. In-depth, the responsive nanocarrier that responds to the biological cues is of pronounced interest due to its capability to provide a controlled release profile at the tumor-specific site. The outlook of this review focuses on the stimuli-responsive nanocarrier drug delivery systems in sequence to address the biological challenges that need to be evaluated to overcome conventional cancer therapy.
Collapse
Affiliation(s)
- Baranya Murugan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed-to-be University , Thanjavur , 613401 , India
- School of Chemical & Biotechnology, SASTRA Deemed-to-be University , Thanjavur , 613401 , India
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya , 50603 , Kuala Lumpur , Malaysia
| | - Is Fatimah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII , Jl. Kaliurang Km 14, Sleman , Yogyakarta , Indonesia
| | - Won-Chun Oh
- Department of Advanced Materials Science and Engineering, Hanseo University , Seosan-si , Chungnam , 356-706 , Republic of Korea
| | - Mohd Abd Motalib Hossain
- Nanotechnology & Catalysis Research Centre, University of Malaya , 50603 , Kuala Lumpur , Malaysia
| | - Mohd Rafie Johan
- Nanotechnology & Catalysis Research Centre, University of Malaya , 50603 , Kuala Lumpur , Malaysia
| |
Collapse
|
8
|
Basinska T, Gadzinowski M, Mickiewicz D, Slomkowski S. Functionalized Particles Designed for Targeted Delivery. Polymers (Basel) 2021; 13:2022. [PMID: 34205672 PMCID: PMC8234925 DOI: 10.3390/polym13122022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Pure bioactive compounds alone can only be exceptionally administered in medical treatment. Usually, drugs are produced as various forms of active compounds and auxiliary substances, combinations assuring the desired healing functions. One of the important drug forms is represented by a combination of active substances and particle-shaped polymer in the nano- or micrometer size range. The review describes recent progress in this field balanced with basic information. After a brief introduction, the paper presents a concise overview of polymers used as components of nano- and microparticle drug carriers. Thereafter, progress in direct synthesis of polymer particles with functional groups is discussed. A section is devoted to formation of particles by self-assembly of homo- and copolymer-bearing functional groups. Special attention is focused on modification of the primary functional groups introduced during particle preparation, including introduction of ligands promoting anchorage of particles onto the chosen living cell types by interactions with specific receptors present in cell membranes. Particular attention is focused on progress in methods suitable for preparation of particles loaded with bioactive substances. The review ends with a brief discussion of the still not answered questions and unsolved problems.
Collapse
Affiliation(s)
- Teresa Basinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (D.M.)
| | | | | | - Stanislaw Slomkowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (D.M.)
| |
Collapse
|
9
|
Dharmayanti C, Gillam TA, Klingler-Hoffmann M, Albrecht H, Blencowe A. Strategies for the Development of pH-Responsive Synthetic Polypeptides and Polymer-Peptide Hybrids: Recent Advancements. Polymers (Basel) 2021; 13:624. [PMID: 33669548 PMCID: PMC7921987 DOI: 10.3390/polym13040624] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Synthetic polypeptides and polymer-peptide hybrid materials have been successfully implemented in an array of biomedical applications owing to their biocompatibility, biodegradability and ability to mimic natural proteins. In addition, these materials have the capacity to form complex supramolecular structures, facilitate specific biological interactions, and incorporate a diverse selection of functional groups that can be used as the basis for further synthetic modification. Like conventional synthetic polymers, polypeptide-based materials can be designed to respond to external stimuli (e.g., light and temperature) or changes in the environmental conditions (e.g., redox reactions and pH). In particular, pH-responsive polypeptide-based systems represent an interesting avenue for the preparation of novel drug delivery systems that can exploit physiological or pathological pH variations within the body, such as those that arise in the extracellular tumour microenvironment, intracellularly within endosomes/lysosomes, or during tissue inflammation. Here, we review the significant progress made in advancing pH-responsive polypeptides and polymer-peptide hybrid materials during the last five years, with a particular emphasis on the manipulation of ionisable functional groups, pH-labile linkages, pH-sensitive changes to secondary structure, and supramolecular interactions.
Collapse
Affiliation(s)
- Cintya Dharmayanti
- Applied Chemistry and Translational Biomaterials Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (C.D.); (T.A.G.)
| | - Todd A. Gillam
- Applied Chemistry and Translational Biomaterials Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (C.D.); (T.A.G.)
- Surface Interactions and Soft Matter Group, Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | | | - Hugo Albrecht
- Drug Discovery and Development Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (C.D.); (T.A.G.)
| |
Collapse
|
10
|
Wang P, Yang R, Liu S, Ren Y, Liu X, Wang X, Zhang W, Chi B. Thermosensitive nanoparticle of mPEG-PTMC for oligopeptide delivery into osteoclast precursors. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520933916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Transmembrane delivery of biomolecules through nanoparticles plays an important role in targeted therapy. Here, we designed a simple nanoparticle for the delivery of model peptide drug into primary osteoclast precursor cells (bone marrow macrophages) by thermosensitive and biodegradable diblock copolymer monomethoxy poly(ethylene glycol)-block-poly(trimethylene carbonate). The model peptide drug was encapsulated into the nanoparticle by dropping the drug carrier dissolved in dimethylsulfoxide solvent into water containing poly(vinyl alcohol) to achieve temperature response nanoparticles. Through size analysis, we found that the nanoparticles possessed a temperature-sensitive property between 30°C and 40°C. Moreover, flow cytometry and spectrofluorimetry analysis indicated that nanoparticle systems underwent significant cellular uptake. In addition, the evaluation of cell biology showed that nanoparticles have excellent biocompatibility. Thus, the results indicated that the temperature-sensitive nanoparticles have potential application value for targeted delivery of oligopeptide in the treatment process of osteoarthritis.
Collapse
Affiliation(s)
- Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiaoxue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University, Nanjing, China
| |
Collapse
|
11
|
Yang F, Xu J, Fu M, Ji J, Chi L, Zhai G. Development of stimuli-responsive intelligent polymer micelles for the delivery of doxorubicin. J Drug Target 2020; 28:993-1011. [PMID: 32378974 DOI: 10.1080/1061186x.2020.1766474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Doxorubicin is still used as a first-line drug in current therapeutics for numerous types of malignant tumours (including lymphoma, transplantable leukaemia and solid tumour). Nevertheless, to overcome the serious side effects like cardiotoxicity and myelosuppression caused by effective doses of doxorubicin remains as a world-class puzzle. In recent years, the usage of biocompatible polymeric nanomaterials to form an intelligently sensitive carrier for the targeted release in tumour microenvironment has attracted wide attention. These different intelligent polymeric micelles (PMs) could change the pharmacokinetics process of drugs or respond in the special microenvironment of tumour site to maximise the efficacy and reduce the toxicity of doxorubicin in other tissues and organs. Several intelligent PMs have already been in the clinical research stage and planned for market. Therefore, related research remains active, and the latest nanotechnology approaches for doxorubicin delivery are always in the spotlight. Centring on the model drugs doxorubicin, this review summarised the mechanisms of PMs, classified the polymers used in the application of doxorubicin delivery and discussed some interesting and imaginative smart PMs in recent years.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jiangkang Xu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Manfei Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Liqun Chi
- Department of Pharmacy, Haidian Maternal and Child Health Hospital of Beijing, Beijing, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
12
|
Wang XZ, Zhang ZQ, Guo R, Zhang YY, Zhu NJ, Wang K, Sun PP, Mao XY, Liu JJ, Huo JZ, Wang XR, Ding B. Dual-emission CdTe quantum dot@ZIF-365 ratiometric fluorescent sensor and application for highly sensitive detection of l-histidine and Cu 2. Talanta 2020; 217:121010. [PMID: 32498848 DOI: 10.1016/j.talanta.2020.121010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/13/2022]
Abstract
l-histidine acts as a semi-essential amino acid, which is medically used in the treatment of gastric ulcer, anemia, allergies. However, the overuse of l-histidine will result in terrible damage to heart disease, slow growth of animals and water pollution in the environment. In addition, Cu2+ pollution is common environmental pollution in the industry. It has the characteristics of high accumulation, migration, and persistence. Given this, through the post-synthesis strategy, CdTe quantum dots (QDs) were the first time to introduce into zeolitic imidazolate framework-ZIF-365 to synthesis dual-emission hybrid material CdTe@ZIF-365 with high quantum yield. TEM mappings and N2 absorption tests are applied to confirm the combination mode between CdTe quantum dots and ZIF-365. It should be noted that CdTe@ZIF-365 can be successfully utilized as a bi-functional ratiometric sensor for highly sensitive discrimination of l-histidine and Cu2+. Firstly, CdTe@ZIF-365 is applied to a fluorescent ratiometric sensor for Cu2+ with high sensitivity (the Ksv value is 2.7417✕107 [M-1]) and selectivity in the mixed cation ions' solution. On the other hand, CdTe@ZIF-365 also behaved as the first example for an excellent ratiometric fluorescent senor for l-histidine with high sensitivity (the Ksv value is 6.0507✕108 [M-1]) and selectivity in the mixed amino acids' solutions.
Collapse
Affiliation(s)
- Xing Ze Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Zi Qing Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Rui Guo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Yi Yun Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Na Jia Zhu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Kuo Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Ping Ping Sun
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Xin Yu Mao
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Jun Jie Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Jian Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Xin Rui Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China.
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
13
|
Guo Y, Karimi F, Fu Q, G Qiao G, Zhang H. Reduced administration frequency for the treatment of fungal keratitis: a sustained natamycin release from a micellar solution. Expert Opin Drug Deliv 2020; 17:407-421. [PMID: 32009483 DOI: 10.1080/17425247.2020.1719995] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: Natamycin is the only topical ophthalmic antifungal drug approved by the Food and Drug Administration (FDA) of the United States, but has unsatisfactory factors such as high dosing frequency.Methods: We report the synthesis and preparation of self-assembled poly(ethylene glycol)-block-poly(glycidyl methacrylate) (PEG-b-PGMA) micelles. These nanoparticles exhibit sustained delivery of a hydrophobic natamycin by topical administration on eye due to the hydrolysable properties of PGMA segments of micelle. Hydrolysis of glycidyl groups within a physiologically relevant environment provides an additional driving force for drug release by generation of hydrophilic hydroxyl groups to 'push' the encapsulated hydrophobic drug away from the resultant hydrophilic domains and into surrounding environment.Results: In vitro and in vivo results revealed that the self-assembled micelles and the encapsulated natamycin were not cytotoxic and the released drug have strong antifungal ability to Candida albicans. Importantly, sustained natamycin release from micelles leads to the reduced administration frequency of natamycin from 8 times per day to 3 times per day in rabbits suffering from fungal keratitis (FK).Conclusion: This study demonstrates a facile method that can greatly reduce dosing frequency of natamycin administration and thus improve long-term patient compliance.
Collapse
Affiliation(s)
- Yiyuan Guo
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China.,Department of Chemical Engineering, The University of Melbourne, Melbourne, Australia
| | - Fatemeh Karimi
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Qiang Fu
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Australia.,The Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, Australia
| | - Greg G Qiao
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Australia
| | - Hong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China
| |
Collapse
|
14
|
Proliferation and odontogenic differentiation of human umbilical cord mesenchymal stem cells and human dental pulp cells co-cultured in hydrogel. Arch Oral Biol 2019; 109:104582. [PMID: 31605918 DOI: 10.1016/j.archoralbio.2019.104582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the proliferation and odontogenic differentiation of human dental pulp cells (hDPCs) and human umbilical cord mesenchymal stem cells (hUCMSCs) in three-dimensional co-culture system which was established with the help of bone morphogenetic protein-2 (BMP-2) and hydrogel. METHODS hDPCs and hUCMSCs were cultured in different concentrations of hydrogel to explore the more suitable concentrations for subsequent experiments. hUCMSCs and hDPCs induced by BMP-2 were co-cultured in the hydrogel. MTT assay was used to measure the cell viability. The differentiation into odontoblast-like cells were measured by the mRNA expression of dentin salivary phosphoprotein (DSPP), dentin matrix protein-1 (DMP-1), alkaline phosphatase and osteocalcin. Alizarin red staining was performed for the formation of mineralized nodules. RESULTS hUCMSCs and hDPCs could grow and proliferate in hydrogel scaffold. The growth rate of cells in lower concentrations hydrogels were higher than that of high concentrations hydrogels (P < 0.05). The study showed that 0.25% hydrogel scaffold was more suitable for subsequent experiments than other groups. Compared with hUCMSCs-monoculture and hDPCs-monoculture, the co-culture groups exhibited more proliferative potential, alkaline phosphatase activity and mineralization nodule formation (P < 0.05). The mRNA expression in co-culture groups were higher than that of hUCMSCs-monoculture, closed to or even higher than that of hDPCs-monoculture. CONCLUSION 0.25% hydrogel was the suitable concentration in co-culture system for subsequent experiments. The co-culture groups had stronger abilities of odontoblastic differentiation and mineralization than cells-monoculture groups, indicated that the co-culture conditions could regulate cell proliferation and differentiation within a certain range.
Collapse
|