1
|
Alkanlı SS, Dal Yöntem F, Yaşar M, Güven C, Kahraman MV, Kayaman Apohan N, Aktaş Z, Öncül MO, Ünlü A, Akçakaya H. Molecularly imprinted nanoparticles with recognition properties towards diphtheria toxin for ELISA applications. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:753-767. [PMID: 36357334 DOI: 10.1080/09205063.2022.2145866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plastic antibodies can be used for in vitro neutralization of biomacromolecules with different fragments due to their potential in separation, purification, chemical sensor, catalysis and drug production studies. These polymer nanoparticles with binding affinity and selectivity comparable to natural antibodies were prepared using functional monomer synthesis and copolymerization of acrylic monomers via miniemulsion polymerization. As a result, the in vitro cytotoxic effect from diphtheria toxin was reduced by MIPs. In vitro imaging experiments of polymer nanoparticles (plastic antibodies) were performed to examine the interaction of diphtheria toxin with actin filaments, and MIPs inhibited diphtheria toxin damage on actin filaments. The enzyme-linked immunosorbent assay (ELISA) was performed with plastic antibodies labeled with biotin, and it was determined that plastic antibodies could also be used for diagnostic purposes. We report that molecularly imprinted polymers (MIPs), which are biocompatible polymer nanoparticles, can capture and reduce the effect of diphtheria toxic and its fragment A.
Collapse
Affiliation(s)
- Süleyman Serdar Alkanlı
- Department of Biophysics, Istanbul Faculty of Medicine, Istanbul University, 34093, Istanbul, Turkey
- Department of Biophysics, Institute of Health Sciences, Istanbul Faculty of Medicine, Istanbul University, 34093, Istanbul, Turkey
| | - Fulya Dal Yöntem
- Department of Biophysics, Koç University School of Medicine, Koç University, 34450, Sariyer, Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), 34450, Sariyer, Istanbul, Turkey
| | - Merve Yaşar
- Department of Chemistry, Faculty of Art and Science, Marmara University, 34722, Göztepe, Istanbul, Turkey
| | - Celal Güven
- Department of Biophysics, Faculty of Medicine, Adiyaman University, 02040, Adiyaman, Turkey
| | - M. Vezir Kahraman
- Department of Chemistry, Faculty of Art and Science, Marmara University, 34722, Göztepe, Istanbul, Turkey
| | - Nilhan Kayaman Apohan
- Department of Chemistry, Faculty of Art and Science, Marmara University, 34722, Göztepe, Istanbul, Turkey
| | - Zerrin Aktaş
- Department of Microbiology & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, 34104, Istanbul, Turkey
| | - Mustafa Oral Öncül
- Department of Infectious Diseases & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, 34093, Istanbul, Turkey
| | - Ayhan Ünlü
- Department of Biophysics, Faculty of Medicine, Trakya University, 22020, Edirne, Turkey
| | - Handan Akçakaya
- Department of Biophysics, Istanbul Faculty of Medicine, Istanbul University, 34093, Istanbul, Turkey
| |
Collapse
|
2
|
Tewari AK, Upadhyay SC, Kumar M, Pathak K, Kaushik D, Verma R, Bhatt S, Massoud EES, Rahman MH, Cavalu S. Insights on Development Aspects of Polymeric Nanocarriers: The Translation from Bench to Clinic. Polymers (Basel) 2022; 14:3545. [PMID: 36080620 PMCID: PMC9459741 DOI: 10.3390/polym14173545] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 02/06/2023] Open
Abstract
Scientists are focusing immense attention on polymeric nanocarriers as a prominent delivery vehicle for several biomedical applications including diagnosis of diseases, delivery of therapeutic agents, peptides, proteins, genes, siRNA, and vaccines due to their exciting physicochemical characteristics which circumvent degradation of unstable drugs, reduce toxic side effects through controlled release, and improve bioavailability. Polymers-based nanocarriers offer numerous benefits for in vivo drug delivery such as biocompatibility, biodegradability, non-immunogenicity, active drug targeting via surface modification, and controlled release due to their pH-and thermosensitive characteristics. Despite their potential for medicinal use, regulatory approval has been achieved for just a few. In this review, we discuss the historical development of polymers starting from their initial design to their evolution as nanocarriers for therapeutic delivery of drugs, peptides, and genes. The review article also expresses the applications of polymeric nanocarriers in the pharmaceutical and medical industry with a special emphasis on oral, ocular, parenteral, and topical application of drugs, peptides, and genes over the last two decades. The review further examines the practical, regulatory, and clinical considerations of the polymeric nanocarriers, their safety issues, and directinos for future research.
Collapse
Affiliation(s)
- Akhilesh Kumar Tewari
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Satish Chandra Upadhyay
- Formulation Research and Development, Mankind Research Centre, Manesar, Gurugram 122050, Haryana, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, Uttar Pradesh, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Ravinder Verma
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram 122103, Haryana, India
| | - Shailendra Bhatt
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram 122103, Haryana, India
| | - Ehab El Sayed Massoud
- Biology Department, Faculty of Science and Arts in Dahran Aljnoub, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Agriculture Research Centre, Soil, Water and Environment Research Institute, Giza 3725004, Egypt
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
3
|
Suvarli N, Perner-Nochta I, Hubbuch J, Wörner M. Thiol-Functional Polymer Nanoparticles via Aerosol Photopolymerization. Polymers (Basel) 2021; 13:4363. [PMID: 34960913 PMCID: PMC8704326 DOI: 10.3390/polym13244363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
Spherical, individual polymer nanoparticles with functional -SH groups were synthesized via aerosol photopolymerization (APP) employing radically initiated thiol-ene chemistry. A series of various thiol and alkene monomer combinations were investigated based on di-, tri-, and tetrafunctional thiols with difunctional allyl and vinyl ethers, and di- and trifunctional acrylates. Only thiol and alkene monomer combinations able to build cross-linked poly(thio-ether) networks were compatible with APP, which requires fast polymerization of the generated droplet aerosol during the photoreactor passage within a residence time of half-minute. Higher monomer functionalities and equal overall stoichiometry of functional groups resulted in the best nanoparticles being spherical and individual, proven by scanning electron microscopy (SEM). The presence of reactive -SH groups in the synthesized nanoparticles as a basis for post-polymerization modifications was verified by Ellman's test.
Collapse
Affiliation(s)
| | | | | | - Michael Wörner
- Institute of Process Engineering in Life Science, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (N.S.); (I.P.-N.); (J.H.)
| |
Collapse
|