1
|
Stark AK, Penn JS. Prostanoid signaling in retinal vascular diseases. Prostaglandins Other Lipid Mediat 2024; 174:106864. [PMID: 38955261 DOI: 10.1016/j.prostaglandins.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
The vasculature of the retina is exposed to systemic and local factors that have the capacity to induce several retinal vascular diseases, each of which may lead to vision loss. Prostaglandin signaling has arisen as a potential therapeutic target for several of these diseases due to the diverse manners in which these lipid mediators may affect retinal blood vessel function. Previous reports and clinical practices have investigated cyclooxygenase (COX) inhibition by nonsteroidal anti-inflammatory drugs (NSAIDs) to address retinal diseases with varying degrees of success; however, targeting individual prostanoids or their distinct receptors affords more signaling specificity and poses strong potential for therapeutic development. This review offers a comprehensive view of prostanoid signaling involved in five key retinal vascular diseases: retinopathy of prematurity, diabetic retinopathy, age-related macular degeneration, retinal occlusive diseases, and uveitis. Mechanistic and clinical studies of these lipid mediators provide an outlook for therapeutic development with the potential to reduce vision loss in each of these conditions.
Collapse
Affiliation(s)
- Amy K Stark
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| | - John S Penn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Hu SB, Zou Q, Lv X, Zhou RL, Niu X, Weng C, Chen F, Fan YW, Deng ZY, Li J. 9t18:1 and 11t18:1 activate the MAPK pathway to regulate the expression of PLA2 and cause inflammation in HUVECs. Food Funct 2020; 11:649-661. [PMID: 31895396 DOI: 10.1039/c9fo01982k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
trans fatty acids (TFAs) have been reported to promote vascular diseases mainly by promoting apoptosis and inflammation of vascular endothelial cells. However, it has been reported in recent years that elaidic acid (9t18:1) and vaccenic acid (11t18:1) may have different effects on vascular health. This study investigated the effects of 9t18:1 and 11t18:1 on human umbilical vein endothelial cell (HUVEC) function and the possible mechanism of inflammation by analyzing the changes in the phospholipid composition and the relationship between phospholipase A2 (PLA2) and MAPK pathway. Here we found that the effect of 11t18:1 on cell viability, membrane damage and cellular inflammation was significantly lower than that of 9t18:1 (p < 0.05). And 9t18:1 and 11t18:1 had different effects on phospholipid composition. Both 9t18:1 and 11t18:1 significantly increased the protein expression of PLA2. Moreover, the MAPK pathway regulated the expression of PLA2, inflammatory cytokines and cyclooxygenase-2 (COX-2) and the secretion of prostaglandin E2 (PGE2) in HUVECs induced by 9t18:1 and 11t18:1. In conclusion, 9t18:1 and 11t18:1 activated the MAPK pathway which regulated the expression of PLA2 to cause inflammation in HUVECs.
Collapse
Affiliation(s)
- Sheng-Ben Hu
- State Key Lab of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Mançanares ACF, Cabezas J, Manríquez J, de Oliveira VC, Wong Alvaro YS, Rojas D, Navarrete Aguirre F, Rodriguez-Alvarez L, Castro FO. Edition of Prostaglandin E2 Receptors EP2 and EP4 by CRISPR/Cas9 Technology in Equine Adipose Mesenchymal Stem Cells. Animals (Basel) 2020; 10:E1078. [PMID: 32585798 PMCID: PMC7341266 DOI: 10.3390/ani10061078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/14/2023] Open
Abstract
In mesenchymal stem cells (MSCs), it has been reported that prostaglandin E2 (PGE2) stimulation of EP2 and EP4 receptors triggers processes such as migration, self-renewal, survival, and proliferation, and their activation is involved in homing. The aim of this work was to establish a genetically modified adipose (aMSC) model in which receptor genes EP2 and EP4 were edited separately using the CRISPR/Cas9 system. After edition, the genes were evaluated as to if the expression of MSC surface markers was affected, as well as the migration capacity in vitro of the generated cells. Adipose MSCs were obtained from Chilean breed horses and cultured in DMEM High Glucose with 10% fetal bovine serum (FBS). sgRNA were cloned into a linearized LentiCRISPRv2GFP vector and transfected into HEK293FT cells for producing viral particles that were used to transduce aMSCs. GFP-expressing cells were separated by sorting to obtain individual clones. Genomic DNA was amplified, and the site-directed mutation frequency was assessed by T7E1, followed by Sanger sequencing. We selected 11 clones of EP2 and 10 clones of EP4, and by Sanger sequencing we confirmed 1 clone knock-out to aMSC/EP2 and one heterozygous mutant clone of aMSC/EP4. Both edited cells had decreased expression of EP2 and EP4 receptors when compared to the wild type, and the edition of EP2 and EP4 did not affect the expression of MSC surface markers, showing the same pattern in filling the scratch. We can conclude that the edition of these receptors in aMSCs does not affect their surface marker phenotype and migration ability when compared to wild-type cells.
Collapse
Affiliation(s)
- Ana Carolina Furlanetto Mançanares
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| | - Joel Cabezas
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| | - José Manríquez
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| | - Vanessa Cristina de Oliveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo 13630-000, Brazil;
| | - Yat Sen Wong Alvaro
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| | - Daniela Rojas
- Department of Animal Pathology, Faculty of Veterinary Sciences, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile;
| | - Felipe Navarrete Aguirre
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| | - Lleretny Rodriguez-Alvarez
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| | - Fidel Ovidio Castro
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| |
Collapse
|
4
|
Effect of a Topical Combination of Latanoprost and Pranoprofen on Intraocular Pressure and the Ocular Surface in Open-Angle Glaucoma Patients. J Ophthalmol 2018; 2018:7474086. [PMID: 30647962 PMCID: PMC6311814 DOI: 10.1155/2018/7474086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022] Open
Abstract
Objective A prospective study was performed to observe the effects of nonsteroidal anti-inflammatory drug (NSAID) eyedrops on intraocular pressure (IOP) and the ocular surface in primary open-angle glaucoma (POAG) patients treated with 0.005% latanoprost eyedrops. Methods Forty-eight subjects were randomized into two study groups (NSAID and control). Latanoprost was continued for 10 weeks in all subjects. At the end of week 4, pranoprofen was added in the NSAID group, and treatment lasted for 4 weeks, whereas patients in the control group were treated with latanoprost alone. IOP was measured in both groups every 2 weeks, and the changes in the ocular surface in the NSAID group were evaluated once a month. Results Pranoprofen addition resulted in a decrease in IOP in the NSAID group compared to the control group (p < 0.01). After pranoprofen was discontinued, IOP significantly increased in the NSAID group (p < 0.01), remaining approximately at the same IOP as when they were being treated with latanoprost alone. During the same examination, no significant variations in IOP were found in the control group. Patients who were treated with latanoprost alone showed gradual improvements in ocular surface symptom scores and conjunctival hyperemia scores during the first four weeks of treatment (p < 0.01). When pranoprofen eyedrops were added, ocular surface symptom scores decreased (p < 0.01), but conjunctival hyperemia scores did not change significantly. Conclusions For POAG patients treated with latanoprost, the combination of pranoprofen can not only significantly enhance the latanoprost-induced IOP-lowering effect but also relieve the uncomfortable ocular symptoms caused by latanoprost.
Collapse
|
5
|
Chen X, Jiang D, Wang J, Chen X, Xu X, Xi P, Fan Y, Zhang X, Guan Y. Prostaglandin E2 EP1 receptor enhances TGF-β1-induced mesangial cell injury. Int J Mol Med 2014; 35:285-93. [PMID: 25352206 DOI: 10.3892/ijmm.2014.1979] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 10/15/2014] [Indexed: 11/05/2022] Open
Abstract
Increasing evidence indicates that transforming growth factor-β1 (TGF-β1) is a pivotal mediator in the pathogenesis of renal fibrosis. Mesangial cells (MCs) are important for glomerular function under both physiological and pathological conditions. Studies have found that the expression level of prostaglandin E2 (PGE2) in MCs increases under high glucose conditions, that PGE2 affects the proliferation and hypertrophy of MCs mainly through the EP1 pathway, and that the proliferation of MCs and the accumulation of extracellular matrix are the main events leading to glomerular fibrosis. In this study, we investigated the effects and mechanisms of action of the EP1 receptor, which is induced by transforming growth factor (TGF)-β1, on the proliferation of mouse MCs, the accumulation of extracellular matrix and the expression of PGE2 synthase. Primary mouse glomerular MCs were isolated from EP1 receptor-deficient mice (EP1-/- mice, in which the EP1 receptor was knocked down) and wild-type (WT) mice (WT MCs). In our preliminary experiments, we found that cell proliferation, as well as the mRNA and protein expression of cyclin D1, proliferating cell nuclear antigen (PCNA), fibronectin (FN), collagen I (ColI), membrane-associated PGE2 synthase-1 (mPGES-1) and cyclooxygenase-2 (COX-2) in the WT MCs were significantly increased following treatment with 10 ng/ml TGF-β1 for 24 h. Compared with the WT MCs, following the knockdown of the EP1 gene, the TGF-β1-induced MC injury was markedly suppressed. The aforementioned changes were notably enhanced following treatment with the EP1 agonist, 17-phenyl trinor PGE2 ethyl amide. Additionally, TGF-β1 induced extracellular signal-regulated kinase (ERK) phosphorylation. We found that the TGF-β1-induced ERK phosphorylation was alleviated by EP1 knockdown and promoted by EP1 expression. These results suggest that the EP1 receptor plays a role in the proliferation of mouse MCs, in the accumulation of extracellular matrix and in the expression of mPGES-1 induced by TGF-β1. Its mechanisms of action are possibly related to the reinforcement of ERK phosphorylation.
Collapse
Affiliation(s)
- Xu Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Daishan Jiang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Jing Wang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Xiaolan Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Xiaolin Xu
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Peipei Xi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Yaping Fan
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Xiaoyan Zhang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Youfei Guan
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| |
Collapse
|
6
|
Gilger BC, Abarca E, Salmon JH. Selection of Appropriate Animal Models in Ocular Research: Ocular Anatomy and Physiology of Common Animal Models. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2013. [DOI: 10.1007/7653_2013_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Schachar RA, Raber S, Courtney R, Zhang M. A phase 2, randomized, dose-response trial of taprenepag isopropyl (PF-04217329) versus latanoprost 0.005% in open-angle glaucoma and ocular hypertension. Curr Eye Res 2012; 36:809-17. [PMID: 21851167 DOI: 10.3109/02713683.2011.593725] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To evaluate the safety of escalating doses of taprenepag isopropyl (PF-04217329), a selective EP(2) receptor agonist administered as a topical ophthalmic solution, versus its vehicle (Stage I), and dose-response of taprenepag isopropyl alone and in unfixed combination with latanoprost ophthalmic solution 0.005% versus latanoprost alone (Stage II). SUBJECTS AND METHODS Randomized, vehicle- and active-controlled, double-masked, two-stage, dose-finding trial in primary open-angle glaucoma (POAG) or ocular hypertension; first taprenepag isopropyl study in patients (NCT00572455). Study eye: 26 mmHg ≤ intraocular pressure (IOP) <36 mmHg at 8 am and 22 mmHg ≤ IOP <36 mmHg at 10 am, 1 pm, 4 pm. Stage I: 3 cohorts (total n = 67) received 1 drop of taprenepag isopropyl unit dose formulation qPM/eye for 14 days: low dose: 0.0025%, 0.005%, vehicle; middle dose: 0.01%, 0.015%, vehicle; high dose: 0.02%, 0.03%, vehicle. Stage II: 7 groups (total n = 250) received 1 drop of taprenepag isopropyl multidose formulation qPM/eye for 28 days: 0.005%, 0.01%, 0.015% monotherapy; each in unfixed combination with latanoprost 0.005%, or latanoprost monotherapy. MAIN OUTCOMES mean change in diurnal IOP, baseline to last visit; adverse events. RESULTS Stage I at day 14: statistically significantly greater IOP reductions were observed at all taprenepag isopropyl doses versus vehicle. Stage II at day 28: statistically significantly greater IOP reductions were observed at all doses of the unfixed combination versus latanoprost monotherapy. At least 1 treatment-emergent adverse event reported for 29/67 (43.3%) subjects in Stage I and 158/250 (63.2%) in Stage II. CONCLUSIONS Taprenepag isopropyl significantly reduces IOP in POAG and ocular hypertension. Taprenepag isopropyl monotherapy is comparable to latanoprost 0.005% in reducing IOP. As demonstrated in this report, the activity of taprenepag isopropyl is additive to that of latanoprost 0.005%. Further studies are required to determine whether it shows similar additivity when administered with other ocular antihypertensive medications.
Collapse
|
8
|
He L, Meng XL, Tu CY, Wen G, Xu AM, Zhang CL, Tao YT, Cheng YG. Clinical significance of peripheral blood and tumor tissue PGE 2 levels in patients with colorectal carcinoma. Shijie Huaren Xiaohua Zazhi 2011; 19:205-208. [DOI: 10.11569/wcjd.v19.i2.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the dynamic changes in the levels of peripheral blood and tumor tissue prostaglandin E2 (PGE2) in patients with colorectal carcinoma and to analyze their clinical significance.
METHODS: Sixty-one patients with colorectal carcinoma were included in the study. Of these patients, 15 had distant metastasis and 46 did not show any obvious distant metastasis; 11 underwent palliative resection, 9 underwent laparotomy, and 41 received radical resection; 20 had stage A-B disease, 26 had stage C disease, and 15 had stage D disease. Thirty healthy people were used as controls. The levels of peripheral blood and tumor PGE2 were assayed before and after operation.
RESULTS: Patients with colorectal cancer had high concentrations of peripheral blood PGE2 before operation. However, peripheral blood IL-2 level and CD4+/CD8+ ratio were lower in patients with colorectal cancer than in controls before operation. Peripheral blood PGE2 levels had a negative correlation with IL-2 level and CD4+/CD8+ ratio. Peripheral blood PGE2 levels were higher in patients with stage D disease than in those with stage A-C disease. Peripheral blood PGE2 levels had a positive correlation with tumor size. The level of PGE2 in tumor tissue was 3.7-fold as high as that in normal bowel mucosa [134.43 ng/(g•mL) ± 119.50 ng/(g•mL) vs 61.01 ng/(g•mL) ± 30.98 ng/(g•mL), 35.80 ng/(g•mL) ± 10.99 ng/(g•mL), P < 0.05, 0.01]. After operation, peripheral blood PGE2 levels decreased and IL-2 level and CD4+/CD8+ ratio increased. Peripheral blood levels of PGE2 decreased almost to normal in patients after radical resection, but were still higher in those after palliative resection.
CONCLUSION: Peripheral blood PGE2 in patients with colorectal carcinoma originates from the tumor. PGE2 is involved in the immunologic hypofunction in patients with colorectal carcinoma before operation. Removal of tumor may improve the state of systemic cellular immunity in patients with colorectal carcinoma.
Collapse
|
9
|
Liclican EL, Nguyen V, Sullivan AB, Gronert K. Selective activation of the prostaglandin E2 circuit in chronic injury-induced pathologic angiogenesis. Invest Ophthalmol Vis Sci 2010; 51:6311-20. [PMID: 20610836 DOI: 10.1167/iovs.10-5455] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Cyclooxygenase (COX)-derived prostaglandin E(2) (PGE(2)) is a prevalent and established mediator of inflammation and pain in numerous tissues and diseases. Distribution and expression of the four PGE(2) receptors (EP1-EP4) can dictate whether PGE(2) exerts an anti-inflammatory or a proinflammatory and/or a proangiogenic effect. The role and mechanism of endogenous PGE(2) in the cornea, and the regulation of EP expression during a dynamic and complex inflammatory/reparative response remain to be clearly defined. METHODS Chronic or acute self-resolving inflammation was induced in mice by corneal suture or epithelial abrasion, respectively. Reepithelialization was monitored by fluorescein staining and neovascularization quantified by CD31/PECAM-1 immunofluorescence. PGE(2) formation was analyzed by lipidomics and polymorphonuclear leukocyte (PMN) infiltration quantified by myeloperoxidase activity. Expression of EPs and inflammatory/angiogenic mediators was assessed by real-time PCR and immunohistochemistry. Mice eyes were treated with PGE(2) (100 ng topically, three times a day) for up to 7 days. RESULTS COX-2, EP-2, and EP-4 expression was upregulated with chronic inflammation that correlated with increased corneal PGE(2) formation and marked neovascularization. In contrast, acute abrasion injury did not alter PGE(2) or EP levels. PGE(2) treatment amplified PMN infiltration and the angiogenic response to chronic inflammation but did not affect wound healing or PMN infiltration after epithelial abrasion. Exacerbated inflammatory neovascularization with PGE(2) treatment was independent of the VEGF circuit but was associated with a significant induction of the eotaxin-CCR3 axis. CONCLUSIONS These findings place the corneal PGE(2) circuit as an endogenous mediator of inflammatory neovascularization rather than general inflammation and demonstrate that chronic inflammation selectively regulates this circuit at the level of biosynthetic enzyme and receptor expression.
Collapse
Affiliation(s)
- Elvira L Liclican
- Vision Science Program, School of Optometry, University of California at Berkeley, Berkeley, CA 94720-2020, USA
| | | | | | | |
Collapse
|
10
|
Biswas S, Bhattacherjee P, Paterson CA, Maruyama T, Narumiya S. Modulation of ocular inflammatory responses by EP1 receptors in mice. Exp Eye Res 2006; 84:39-43. [PMID: 17052707 DOI: 10.1016/j.exer.2006.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 08/03/2006] [Accepted: 08/25/2006] [Indexed: 10/24/2022]
Abstract
The purpose of the study was to investigate the role of EP1 receptors in intraocular inflammation and to determine possible interplay between EP1, EP2 and EP4 receptors. The eyes of separate groups of EP1 receptor knockout and wild type mice were: 1) treated topically with prostaglandin E2 (PGE2) or the EP2 receptor selective agonist, butaprost; 2) given intravitreal injection of LPS; or 3) paracentesis performed. Another group of knockout mice were pretreated topically with an EP4 receptor selective antagonist prior to paracentesis or LPS treatment. Results demonstrated a significant increase (50% or more) in the protein levels of aqueous humor of the EP1 knockout mice in response to PGE2, paracentesis or LPS. The leukocyte infiltration in the aqueous humor of the knockout mice was 47% higher when compared with that in the wild type controls in response to LPS injection. No significant change was observed in the protein levels in response to butaprost. Pretreating the knockout mice with an EP4 receptor antagonist prior to paracentesis and LPS treatment substantially reduced the aqueous humor protein levels. Also, the leukocyte count in the aqueous humor of the knockout mice in response to LPS was reduced 4 fold after pretreatment with EP4 receptor antagonist when compared with the findings in knockout mice receiving LPS only. We concluded that EP1 receptor has no modulatory effect on EP2 receptors but there is definitely cross-talk between EP1 and EP4 receptors.
Collapse
MESH Headings
- Alprostadil/analogs & derivatives
- Alprostadil/pharmacology
- Animals
- Aqueous Humor/cytology
- Aqueous Humor/metabolism
- Blood-Aqueous Barrier/drug effects
- Blood-Aqueous Barrier/physiology
- Dinoprostone/pharmacology
- Eye Proteins/metabolism
- Inflammation/chemically induced
- Inflammation/metabolism
- Inflammation/physiopathology
- Leukocyte Count
- Lipopolysaccharides
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Paracentesis
- Receptors, Prostaglandin E/agonists
- Receptors, Prostaglandin E/antagonists & inhibitors
- Receptors, Prostaglandin E/physiology
- Receptors, Prostaglandin E, EP1 Subtype
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
Collapse
Affiliation(s)
- S Biswas
- Department of Ophthalmology and Visual Science, University of Louisville, 301E Muhammad Ali Blvd, Louisville, KY 40202, USA.
| | | | | | | | | |
Collapse
|