1
|
Sanjita Devi H, Rajiv C, Mondal G, Khan ZA, Devi SD, Bharali R, Chattoraj A. Influence of photoperiod variations on the mRNA expression pattern of melatonin bio-synthesizing enzyme genes in the pineal organ and retina: A study in relation to the serum melatonin profile in the tropical carp Catla catla. JOURNAL OF FISH BIOLOGY 2022; 101:1569-1581. [PMID: 36205436 DOI: 10.1111/jfb.15234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Surface-dwelling C. catla were exposed to different photoperiods (8L:16D, 12L:12D, 12D:12L and 16L:8D) and the mRNA level profile of enzymes involved in melatonin synthesis was evaluated in the pineal gland and retina. Furthermore, a comparative analysis of the serum melatonin profile with the mRNA level was also performed. The results indicated diurnal variations in the transcripts of tph1, aanat and hiomt in the pineal organ and retina, and these variations change with the change in lighting regime. The serum melatonin profile showed rhythmicity in the natural photoperiod, but the serum melatonin level increased proportionally with increasing daylength. In short photoperiods, the peak value (though lower than in long photoperiods) of melatonin maintains a longer duration in serum. Moreover, the comparative analysis revealed a similar profile of mRNA of pineal aanat1 and aanat2 with serum melatonin under the same lighting conditions. This indicates that serum melatonin is produced by the pineal gland. Our results specify the importance of day length and the timing of onset or offset of the dark for maintaining the oscillating levels of serum melatonin and mRNA levels of melatonin biosynthesizing enzyme genes in the pineal organ and retina as well. The findings in this study highlight the distinctive pattern of mRNA levels in the pineal organ and retina under different photoperiods. The pineal melatonin biosynthesizing enzyme genes showed a similar pattern with serum melatonin levels while the retinal genes changed dramatically with photoperiod. We also revealed a light-dependent transcriptional regulation of pineal aanat genes in C. catla. Moreover, our results suggest that ALAN and skyglow can influence the levels of serum melatonin and its biosynthesis, resulting in desynchronization of the entire biological clock as well as the overall physiology of the animal.
Collapse
Affiliation(s)
| | - Chongtham Rajiv
- Department of Biotechnology, Government of India, Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Imphal, India
| | - Gopinath Mondal
- Department of Biotechnology, Government of India, Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Imphal, India
| | - Zeeshan Ahmad Khan
- Department of Biotechnology, Government of India, Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Imphal, India
| | - Sijagurumayum Dharmajyoti Devi
- Department of Biotechnology, Government of India, Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Imphal, India
| | - Rupjyoti Bharali
- Department of Biotechnology, Gauhati University, Guwahati, India
| | - Asamanja Chattoraj
- Biological Rhythm Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
| |
Collapse
|
2
|
Khan ZA, Hong PJS, Lee CH, Hong Y. Recent Advances in Electrochemical and Optical Sensors for Detecting Tryptophan and Melatonin. Int J Nanomedicine 2021; 16:6861-6888. [PMID: 34675512 PMCID: PMC8521600 DOI: 10.2147/ijn.s325099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Tryptophan and melatonin are pleiotropic molecules, each capable of influencing several cellular, biochemical, and physiological responses. Therefore, sensitive detection of tryptophan and melatonin in pharmaceutical and human samples is crucial for human well-being. Mass spectrometry, high-performance liquid chromatography, and capillary electrophoresis are common methods for both tryptophan and melatonin analysis; however, these methods require copious amounts of time, money, and manpower. Novel electrochemical and optical detection tools have been subjects of intensive research due to their ability to offer a better signal-to-noise ratio, high specificity, ultra-sensitivity, and wide dynamic range. Recently, researchers have designed sensitive and selective electrochemical and optical platforms by using new surface modifications, microfabrication techniques, and the decoration of diverse nanomaterials with unique properties for the detection of tryptophan and melatonin. However, there is a scarcity of review articles addressing the recent developments in the electrochemical and optical detection of tryptophan and melatonin. Here, we provide a critical and objective review of high-sensitivity tryptophan and melatonin sensors that have been developed over the past six years (2015 onwards). We review the principles, performance, and limitations of these sensors. We also address critical aspects of sensitivity and selectivity, limit and range of detection, fabrication process and time, durability, and biocompatibility. Finally, we discuss challenges related to tryptophan and melatonin detection and present future outlooks.
Collapse
Affiliation(s)
- Zeeshan Ahmad Khan
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae, Gyeong-nam, 50834, Korea
| | - Paul Jung-Soo Hong
- Department of Chemistry, Newton South High School, Newton, MA, 02459, USA
| | - Christina Hayoung Lee
- Department of Biology, College of Arts and Sciences, Vanderbilt University, Nashville, TN, 37212, USA
| | - Yonggeun Hong
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Department of Medicine, Division of Hematology/Oncology, Harvard Medical School-Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| |
Collapse
|
3
|
Khan ZA, Yumnamcha T, Mondal G, Devi SD, Rajiv C, Labala RK, Sanjita Devi H, Chattoraj A. Artificial Light at Night (ALAN): A Potential Anthropogenic Component for the COVID-19 and HCoVs Outbreak. Front Endocrinol (Lausanne) 2020; 11:622. [PMID: 33013700 PMCID: PMC7511708 DOI: 10.3389/fendo.2020.00622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022] Open
Abstract
The origin of the coronavirus disease 2019 (COVID-19) pandemic is zoonotic. The circadian day-night is the rhythmic clue to organisms for their synchronized body functions. The "development for mankind" escalated the use of artificial light at night (ALAN). In this article, we tried to focus on the possible influence of this anthropogenic factor in human coronavirus (HCoV) outbreak. The relationship between the occurrences of coronavirus and the ascending curve of the night-light has also been delivered. The ALAN influences the physiology and behavior of bat, a known nocturnal natural reservoir of many Coronaviridae. The "threatened" and "endangered" status of the majority of bat species is mainly because of the destruction of their proper habit and habitat predominantly through artificial illumination. The stress exerted by ALAN leads to the impaired body functions, especially endocrine, immune, genomic integration, and overall rhythm features of different physiological variables and behaviors in nocturnal animals. Night-light disturbs "virus-host" synchronization and may lead to mutation in the genomic part of the virus and excessive virus shedding. We also proposed some future strategies to mitigate the repercussions of ALAN and for the protection of the living system in the earth as well.
Collapse
Affiliation(s)
- Zeeshan Ahmad Khan
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Thangal Yumnamcha
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Gopinath Mondal
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Sijagurumayum Dharmajyoti Devi
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Chongtham Rajiv
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Rajendra Kumar Labala
- Distributed Information Sub-centre, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
- Biological Rhythm Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
| | - Haobijam Sanjita Devi
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Asamanja Chattoraj
- Biological Rhythm Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
- *Correspondence: Asamanja Chattoraj ;
| |
Collapse
|
4
|
Rajiv C, Sanjita Devi H, Mondal G, Devi SD, Khan ZA, Yumnamcha T, Bharali R, Chattoraj A. Daily and Seasonal Expression Profile of Serum Melatonin and Its Biosynthesizing Enzyme Genes (tph1, aanat1, aanat2, andhiomt) in Pineal Organ and Retina: A Study under Natural Environmental Conditions in a Tropical Carp,Catla catla. ACTA ACUST UNITED AC 2017; 325:688-700. [DOI: 10.1002/jez.2061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/02/2017] [Accepted: 01/10/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Chongtham Rajiv
- Biological Rhythm Laboratory; Animal Resources Programme; Department of Biotechnology; Institute of Bioresources and Sustainable Development; Imphal India
| | - Haobijam Sanjita Devi
- Biological Rhythm Laboratory; Animal Resources Programme; Department of Biotechnology; Institute of Bioresources and Sustainable Development; Imphal India
| | - Gopinath Mondal
- Biological Rhythm Laboratory; Animal Resources Programme; Department of Biotechnology; Institute of Bioresources and Sustainable Development; Imphal India
| | - Sijagurumayum Dharmajyoti Devi
- Biological Rhythm Laboratory; Animal Resources Programme; Department of Biotechnology; Institute of Bioresources and Sustainable Development; Imphal India
| | - Zeeshan Ahmad Khan
- Biological Rhythm Laboratory; Animal Resources Programme; Department of Biotechnology; Institute of Bioresources and Sustainable Development; Imphal India
| | - Thangal Yumnamcha
- Biological Rhythm Laboratory; Animal Resources Programme; Department of Biotechnology; Institute of Bioresources and Sustainable Development; Imphal India
| | | | - Asamanja Chattoraj
- Biological Rhythm Laboratory; Animal Resources Programme; Department of Biotechnology; Institute of Bioresources and Sustainable Development; Imphal India
| |
Collapse
|