1
|
Derakhshan Z, Bahmanpour S, Nasr-Esfahani MH, Masjedi F, Mirani M, Dara M, Tabei SMB. Alpha-Lipoic Acid Ameliorates Impaired Steroidogenesis in Human Granulosa Cells Induced by Advanced Glycation End-Products. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:515-527. [PMID: 39205823 PMCID: PMC11347593 DOI: 10.30476/ijms.2023.99512.3168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 10/20/2023] [Indexed: 09/04/2024]
Abstract
Background Ovarian granulosa cells (GCs) are essential for follicular development. Ovarian advanced glycation end-products (AGEs) accumulation is related to GCs dysfunction. Alpha-lipoic acid (ALA) illustrates therapeutic capabilities for infertility-related disorders. Therefore, this study assessed the effects of ALA on AGEs-induced GCs hormonal dysfunction. Methods The study was conducted from October 2021 to September 2022 at the Department of Medical Genetics, Shiraz University of Medical Sciences. Isolated GCs (n=50) were divided into control, human glycated albumin (HGA), HGA+ALA, and ALA treatments. Steroidogenic enzymes and AGE receptor (RAGE) genes were assessed by qRT-PCR. Steroid hormones and RAGE protein were evaluated using ELISA and Western blotting. Data were analyzed using GraphPad Prism software (ver. 9), and P<0.05 was considered significant. Results Our findings showed that HGA treatment significantly (P=0.0001) increased RAGE (by 140.66%), STAR (by 117.65%), 3β-HSD (by 165.68%), and 17β-HSD (by 122.15%) expression, while it decreased CYP19A1 (by 68.37%) expression. RAGE protein level (by 267.10%) was also increased in HGA-treated GCs. A significant decrease in estradiol (by 59.66%) and a slight and sharp elevation in progesterone (by 30.40%) and total testosterone (by 158.24%) levels was also observed. ALA treatment ameliorated the HGA-induced changes in steroidogenic enzyme mRNA levels (P=0.001) and steroid hormone secretion (P=0.010). Conclusion This work shows that ALA therapy likely corrects hormonal dysfunctions caused by AGEs in luteinized GCs. This effect is probably achieved by decreased RAGE expression. Clinical research is needed to understand how AGEs and ALA interact in the ovary, which might lead to a more targeted ovarian dysfunction therapy.
Collapse
Affiliation(s)
- Zahra Derakhshan
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of MedicalSciences, Shiraz, Iran
| | - Soghra Bahmanpour
- Department of Anatomy and Reproductive Biology, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, Isfahan, Iran
- Isfahan Fertility and Infertility Center, Isfahan, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mirani
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of MedicalSciences, Shiraz, Iran
| | - Mahintaj Dara
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Bagher Tabei
- Department of Medical Genetics, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Maternal-fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Sampaio OGM, Santos SAAR, Damasceno MDBMV, Joventino LB, Schneider A, Masternak MM, Campos AR, Cavalcante MB. Impact of repeated ovarian hyperstimulation on the reproductive function. J Reprod Immunol 2024; 164:104277. [PMID: 38889661 DOI: 10.1016/j.jri.2024.104277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
One of six couples (17.5 % of the adult population) worldwide is affected by infertility during their lifetime. This number represents a substantial increase in the prevalence of this gynecological condition over the last decade. Ovulatory dysfunction and anovulation are the main causes of female infertility. Timed intercourse, intrauterine insemination, and assisted reproductive technology (ART), such as in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), are the most common interventions for infertile couples. Ovulation induction protocols for IVF/ICSI routinely use supraphysiological doses of gonadotropins to stimulate many preovulatory follicles. Animal and human studies suggested that ovarian hyperstimulation, alone or repeatedly, for ART cycles can induce changes in the immune response and increase the oxidative stress (OS) in the ovarian microenvironment. The consequences of repeated ovarian hyperstimulation on the human ovary remain poorly understood, particularly in relation to the effects of ovarian stimulation on the immune system and the potential for ovarian stimulation to cause OS. Animal studies have observed that repeated cycles of ovarian hyperstimulation can accelerate ovarian aging. Changes in ovarian hormone levels, accelerated loss of ovarian reserve, disorders in ovarian ultrastructure, ovarian senescence, and decreased reproductive performance represent possible long-term effects of repeated ovarian hyperstimulation. The short and long-term impact of the combination of antioxidant agents in ovarian hyperstimulation protocols in women undergoing ART must urgently be better understood. The recent increase in the number of ART and fertility preservation cycles may accelerate ovarian aging in these women, promoting consequences beyond the reproductive function and including health deterioration.
Collapse
Affiliation(s)
| | | | | | | | - Augusto Schneider
- Nutrition College, Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA; Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Adriana Rolim Campos
- Graduate Program in Medical Sciences, Universidade de Fortaleza (UNIFOR), Fortaleza, CE 60.811-905, Brazil
| | - Marcelo Borges Cavalcante
- Graduate Program in Medical Sciences, Universidade de Fortaleza (UNIFOR), Fortaleza, CE 60.811-905, Brazil; Medical School, Universidade de Fortaleza (UNIFOR), Fortaleza, CE 60.811-905, Brazil; CONCEPTUS - Reproductive Medicine, Fortaleza, CE 60.170-240, Brazil.
| |
Collapse
|
3
|
Ziaei R, Ghavami A, Ghasemi-Tehrani H, Movahedi M, Hashemi M, Hajhashemi M, Elyasi M, Vajdi M, Kalatehjari M. Dietary acid load and risk of diminished ovarian reserve: a case-control study. Reprod Biol Endocrinol 2024; 22:63. [PMID: 38835018 DOI: 10.1186/s12958-024-01238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The epidemiologic evidence on the association between acid load potential of diet and the risk of diminished ovarian reserve (DOR) is scarce. We aim to explore the possible relationship between dietary acid load (DAL), markers of ovarian reserve and DOR risk in a case-control study. METHODS 370 women (120 women with DOR and 250 women with normal ovarian reserve as controls), matched by age and BMI, were recruited. Dietary intake was obtained using a validated 80-item semi-quantitative food frequency questionnaire (FFQ). The DAL scores including the potential renal acid load (PRAL) and net endogenous acid production (NEAP) were calculated based on nutrients intake. NEAP and PRAL scores were categorized by quartiles based on the distribution of controls. Antral follicle count (AFC), serum antimullerian hormone (AMH) and anthropometric indices were measured. Logistic regression models were used to estimate multivariable odds ratio (OR) of DOR across quartiles of NEAP and PRAL scores. RESULTS Following increase in PRAL and NEAP scores, serum AMH significantly decreased in women with DOR. Also, AFC count had a significant decrease following increase in PRAL score (P = 0.045). After adjustment for multiple confounding variables, participants in the top quartile of PRAL had increased OR for DOR (OR: 1.26; 95%CI: 1.08-1.42, P = 0.254). CONCLUSION Diets with high acid-forming potential may negatively affect ovarian reserve in women with DOR. Also, high DAL may increase the risk of DOR. The association between DAL and markers of ovarian reserve should be explored in prospective studies and clinical trials.
Collapse
Affiliation(s)
- Rahele Ziaei
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abed Ghavami
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hatav Ghasemi-Tehrani
- Fertility department, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Minoo Movahedi
- Department of Obstetrics & Gynecology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Hashemi
- Department of Obstetrics & Gynecology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Hajhashemi
- Department of Obstetrics & Gynecology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Elyasi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Vajdi
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan, Iran
| | - Maryam Kalatehjari
- Reproductive Sciences and Sexual Health Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Özer A, Şengel N, Küçük A, Yığman Z, Özdemir Ç, Kılıç Y, Dursun AD, Bostancı H, Kip G, Arslan M. The Effect of Cerium Oxide (CeO 2) on Ischemia-Reperfusion Injury in Skeletal Muscle in Mice with Streptozocin-Induced Diabetes. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:752. [PMID: 38792935 PMCID: PMC11122892 DOI: 10.3390/medicina60050752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
Objective: Lower extremity ischemia-reperfusion injury (IRI) may occur with trauma-related vascular injury and various vascular diseases, during the use of a tourniquet, in temporary clamping of the aorta in aortic surgery, or following acute or bilateral acute femoral artery occlusion. Mitochondrial dysfunction and increased basal oxidative stress in diabetes may cause an increase in the effects of increased reactive oxygen species (ROS) and mitochondrial dysfunction due to IRI. It is of great importance to examine therapeutic approaches that can minimize the effects of IRI, especially for patient groups under chronic oxidative stress such as DM. Cerium oxide (CeO2) nanoparticles mimic antioxidant enzymes and act as a catalyst that scavenges ROS. In this study, it was aimed to investigate whether CeO2 has protective effects on skeletal muscles in lower extremity IRI in mice with streptozocin-induced diabetes. Methods: A total of 38 Swiss albino mice were divided into six groups as follows: control group (group C, n = 6), diabetes group (group D, n = 8), diabetes-CeO2 (group DCO, n = 8), diabetes-ischemia/reperfusion (group DIR, n = 8), and diabetes-ischemia/reperfusion-CeO2 (group DIRCO, n = 8). The DCO and DIRCO groups were given doses of CeO2 of 0.5 mg/kg intraperitoneally 30 min before the IR procedure. A 120 min ischemia-120 min reperfusion period with 100% O2 was performed. At the end of the reperfusion period, muscle tissues were removed for histopathological and biochemical examinations. Results: Total antioxidant status (TAS) levels were found to be significantly lower in group DIR compared with group D (p = 0.047 and p = 0.022, respectively). In group DIRCO, total oxidant status (TOS) levels were found to be significantly higher than in group DIR (p < 0.001). The oxidative stress index (OSI) was found to be significantly lower in group DIR compared with group DCO (p < 0.001). Paraoxanase (PON) enzyme activity was found to be significantly increased in group DIR compared with group DCO (p < 0.001). The disorganization and degeneration score for muscle cells, inflammatory cell infiltration score, and total injury score in group DIRCO were found to be significantly lower than in group DIR (p = 0.002, p = 0.034, and p = 0.001, respectively). Conclusions: Our results confirm that CeO2, with its antioxidative properties, reduces skeletal muscle damage in lower extremity IRI in diabetic mice.
Collapse
Affiliation(s)
- Abdullah Özer
- Department of Cardiovascular Surgery, Faculty of Medicine, Gazi University, Ankara 06510, Turkey;
| | - Necmiye Şengel
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Gazi University, Ankara 06490, Turkey;
| | - Ayşegül Küçük
- Department of Physiology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya 43020, Turkey;
| | - Zeynep Yığman
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara 06510, Turkey;
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara 06830, Turkey
| | - Çağrı Özdemir
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey; (Ç.Ö.); (G.K.)
| | - Yiğit Kılıç
- Department of Pediatric Cardiovascular Surgery, Gazi Yaşargil Education Research Hospital, Diyarbakır 21010, Turkey;
| | - Ali Doğan Dursun
- Department of Physiology, Faculty of Medicine, Atılım University, Ankara 06830, Turkey;
| | - Hasan Bostancı
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara 06510, Turkey;
| | - Gülay Kip
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey; (Ç.Ö.); (G.K.)
| | - Mustafa Arslan
- Life Sciences Application and Research Center, Gazi University, Ankara 06830, Turkey
- Laboratory Animal Breeding and Experimental Researches Center (GÜDAM), Gazi University, Ankara 06510, Turkey
| |
Collapse
|
5
|
Oğuzman H, Kaçmaz M. The role of pentraxin 3 and oxidative status in the prognosis of multiple myeloma. J Investig Med 2024; 72:333-340. [PMID: 38373952 DOI: 10.1177/10815589241235662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Multiple myeloma (MM) is a bone marrow malignancy characterized by plasma cell proliferation. It was aimed to investigate pentraxin 3 (PTX3) levels, oxidative/antioxidative status, and their correlation in MM. In the study, four groups were established, including newly diagnosed MM (NDMM), MM in remission (Rem-MM), relapsed/refractory MM (RRMM) patients, and a healthy control group. PTX3 levels were measured using enzyme-linked immunosorbent assay, and the total antioxidant status (TAS) and total oxidant status (TOS) were assessed with an autoanalyzer. The oxidative stress index (OSI) was calculated using the formula: OSI (arbitrary unit) = TOS (µmol H2O2 Eq/L)/TAS (mmol Trolox Eq/L) × 100. The study involved comparing PTX3, TAS, TOS, and OSI levels among these four groups. PTX3 levels were significantly elevated in NDMM and RRMM groups compared to controls and the Rem-MM group (NDMM vs control; p < 0.001, NDMM vs Rem-MM; p < 0.001, RRMM vs control; p < 0.001, and RRMM vs Rem-MM; p = 0.006). TAS was higher in NDMM and RRMM groups versus controls (p = 0.009 and p < 0.001, respectively), and TOS was higher in rem-MM group versus NDMM and control groups (p < 0.001 and p = 0.016, respectively). OSI was higher in the Rem-MM group than in NDMM and RRMM groups (p < 0.001 and p = 0.009, respectively). Multivariate analysis confirmed associations between MM groups and PTX3 levels. Receiver operating characteristic analysis revealed high specificity (90%) and sensitivity (79%) for PTX3 in NDMM at a >0.56 ng/mL cut-off value. This study suggests that PTX3 levels may have diagnostic and prognostic potential in MM and its relationship with oxidative stress requires further exploration.
Collapse
Affiliation(s)
- Hamdi Oğuzman
- Department of Medical Biochemistry, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Murat Kaçmaz
- Department of Hematology, Diyarbakir Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| |
Collapse
|
6
|
Zhao LL, Jayeoye TJ, Ashaolu TJ, Olatunji OJ. Pinostrobin, a dietary bioflavonoid exerts antioxidant, anti-inflammatory, and anti-apoptotic protective effects against methotrexate-induced ovarian toxicity in rats. Tissue Cell 2023; 85:102254. [PMID: 37866152 DOI: 10.1016/j.tice.2023.102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/02/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
This study investigated the protective activities of pinostrobin (PIN) against methotrexate (MTX)-induced ovarian toxicity. Female rats were administered with PIN (50 mg/kg) for 4 weeks, while MTX was administered from weeks 2-4 of PIN treatment. Serum hormonal profiles, ovarian oxidative stress, inflammatory and apoptotic biomarkers as well as ovarian histomorphometry were evaluated. MTX administration elicited profound deficit in serum progesterone and estrogen (E2) levels, while luteinizing hormone (LH) and follicle stimulating hormone (FSH) were significantly increased. Additionally, MTX administration was associated with significant increases in ovarian malondialdehyde, nitric oxide, NF-кB, TNF-α, IL-6, IL-1β, iNOS and caspase-3 activity, as well as notable reduction in the activities of glutathione peroxidase, catalase and superoxide dismutase as well as the level of glutathione. Whereas, treatment with PIN significantly decreased serum levels of FSH and LH, as well as ovarian levels of NO, MDA, caspase 3, NF-κB, IL-1β, IL-6, TNF-α and iNOS. PIN also significantly upregulated GSH, GPx, CAT and SOD in the ovarian tissues as well as increased serum E2 and progesterone levels compared to the MTX group. Furthermore, PIN significantly restored altered ovarian histoarchitecture in the treated group. These findings suggests that PIN exerts protective effects against MTX-triggered ovarian damages.
Collapse
Affiliation(s)
- Ling-Ling Zhao
- Department of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|
7
|
Wang W, Zhang D, Sun L, Zhang Z, Zhang Y, Zhang Y, Zhang Y, Zhang M. Alpha-lipoic acid supplementation reverses the declining quality of oocytes exposed to cyclophosphamide. Food Chem Toxicol 2023; 181:114090. [PMID: 37838213 DOI: 10.1016/j.fct.2023.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/12/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Cyclophosphamide (CY) is a chemotherapeutic drug that is commonly used to treat malignancies of the ovary, breast, and hematology, as well as autoimmune disorders. As a cofactor of mitochondrial multienzyme complexes, alpha lipoic acid (ALA) is well known for its antioxidant characteristics, which operate directly on the scavenging of reactive oxygen species (ROS) and indirectly on the intracellular recycling of other antioxidants. However, the underlying mechanisms through which CY exerts its toxic effects on meiosis and oocyte quality, as well as a viable approach for protecting oocyte quality and preserving fertility, remain unknown. In present study, immunostaining and fluorescence intensity quantification were applied to assess the effects of CY and ALA supplementation on the key processes during the oocyte meiotic maturation. Our results show that supplementing oocytes with ALA, a well-known antioxidant and free radical scavenger, can reverse CY-induced oocyte meiotic maturation failure. Specifically, we found that CY exposure caused oocyte meiotic failure by disrupting meiotic organelle dynamics and arrangement, as well as a prominently impaired cytoskeleton assembly. In addition, CY caused an abnormal distribution of mitochondrion and cortical granules, two indicators of oocyte cytoplasmic maturation. More importantly, we show that ALA supplementation effectively reverses CY-induced meiotic failure and oocyte quality decline by suppressing oxidative stress-induced DNA damage and apoptosis in oocytes. Collectively, our data reveal that ALA supplementation is a feasible approach to protect oocytes from CY-exposed deterioration, providing a better understanding of the mechanisms involved in chemotherapy-induced meiotic failure.
Collapse
Affiliation(s)
- Wei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Dandan Zhang
- Department of Reproductive Medicine, General Hospital of WanBei Coal Group, Suzhou, 234000, China
| | - Lei Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zihao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yiwen Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yongteng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Mianqun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
8
|
Lu G, Zhu YY, Li HX, Yin YL, Shen J, Shen MH. Effects of acupuncture treatment on microRNAs expression in ovarian tissues from Tripterygium glycoside-induced diminished ovarian reserve rats. Front Genet 2022; 13:968711. [PMID: 36212128 PMCID: PMC9532950 DOI: 10.3389/fgene.2022.968711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Acupuncture is widely used to improve ovarian function. Previously, we demonstrated that acupuncture can improve oxidative stress in rats with tripterygium glycoside tablet suspension (TG)-induced diminished ovarian reserve (DOR). Herein, we aimed to explore the antioxidation mechanism of acupuncture for ameliorating the ovarian reserve in DOR rats. We performed microRNA sequencing and bioinformatics analysis to screen differentially expressed miRNAs (DE miRNAs) in ovarian tissues. In total, 1,172 miRNAs were identified by miRNA sequencing, of which 28 DE miRNAs were detected (including 14 upregulated and 14 downregulated) in ovarian tissues from the acupuncture group when compared with the DOR model rats. Based on functional enrichment analysis, the target genes of DE miRNAs were significantly enriched in GO-biological process (BP) terms associated with biological processes, positive regulation of transcription by RNA polymerase II, signal transduction, regulation of transcription, DNA-templated processes, and oxidation–reduction processes. In the Kyoto Encyclopedia of Genes and Genomes analysis, the main pathways were the MAPK signaling pathway, hepatitis B, proteoglycans in cancer, human cytomegalovirus infection, and the Ras signaling pathway. Finally, reverse transcription-quantitative PCR results confirmed that rno-miR-92b-3p, mdo-miR-26b-5p_R+1_1ss10TC, and bta-miR-7857-3p_R-1 were downregulated in the acupuncture group. The results revealed the impact of acupuncture on miRNA profiling of ovarian tissues from DOR rats, suggesting that rno-miR-92b-3p, mdo-miR-26b-5p_R+1_1ss10TC, and bta-miR-7857-3p_R-1 might provide relevant cues to relieve DOR-mediated oxidative stress.
Collapse
Affiliation(s)
- Ge Lu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao-yao Zhu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-xiao Li
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao-li Yin
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Shen
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Jie Shen, ; Mei-hong Shen,
| | - Mei-hong Shen
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Jie Shen, ; Mei-hong Shen,
| |
Collapse
|
9
|
Kiremitli T, Kiremitli S, Akselim B, Yilmaz B, Mammadov R, Tor IH, Yazici GN, Gulaboglu M. Protective effect of Coenzyme Q10 on oxidative ovarian and uterine damage induced by methotrexate in rats. Hum Exp Toxicol 2021; 40:1537-1544. [PMID: 33745333 DOI: 10.1177/09603271211002891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Methotrexate (MTX) has toxic effects on the uterus and ovaries via oxidative stress. Coenzyme Q10 (CoQ10) is an important component in electron transport in the mitochondria and an antioxidant in cellular metabolism through the inhibition of lipid peroxidation. The aim of this study was to investigate the preventive effects of CoQ10 on MTX-induced utero-ovarian damage and oxidative stress in rats.In this experimental study, 30 albino Wistar female rats were divided randomly into three groups. Once a day for a month, 10 mg/kg of CoQ10 was orally administered to the rats in the MTX+CoQ10 group, while the same volume of olive oil was administered orally to the other two groups. One hour thereafter, 20 mg/kg of MTX was injected intraperitoneally into the rats in the MTX and MTX+CoQ10 groups; the remaining group was the control. At the end of the month, biochemical and histopathologic examinations were performed on the extracted uteri and ovaries. In the uterine ovarian tissues of the animals in the MTX group, there was an increase in oxidative stress mediators and a decrease in antioxidant and anti-inflammatory mediators, but these trends were reversed in the MTX+CoQ10 group, demonstrating the antioxidant effects of CoQ10. MTX leads to oxidative stress-related ovarian and uterine injury, and CoQ10 may be useful for protecting ovarian and uterine tissue from such injury.
Collapse
Affiliation(s)
- T Kiremitli
- Medical Faculty, Department of Obstetrics and Gynaecology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - S Kiremitli
- Medical Faculty, Department of Obstetrics and Gynaecology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - B Akselim
- Department of Gynaecology and Obstetrics, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - B Yilmaz
- Medical Faculty, Department of Obstetrics and Gynaecology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - R Mammadov
- Medical Faculty, Department of Pharmacology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - I H Tor
- Department of Anesthesia, Erzurum Regional Education and Research Hospital, University of Health Sciences, Erzurum, Turkey
| | - G N Yazici
- Medical Faculty, Department of Histology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - M Gulaboglu
- Medical Faculty, Department of Biochemistry, Ataturk University, Erzurum, Turkey
| |
Collapse
|
10
|
Lim J, Ali S, Liao LS, Nguyen ES, Ortiz L, Reshel S, Luderer U. Antioxidant supplementation partially rescues accelerated ovarian follicle loss, but not oocyte quality, of glutathione-deficient mice†. Biol Reprod 2021; 102:1065-1079. [PMID: 31950131 DOI: 10.1093/biolre/ioaa009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/16/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022] Open
Abstract
The tripeptide thiol antioxidant glutathione (GSH) has multiple physiological functions. Female mice lacking the modifier subunit of glutamate cysteine ligase (GCLM), the rate-limiting enzyme in GSH synthesis, have decreased GSH concentrations, ovarian oxidative stress, preimplantation embryonic mortality, and accelerated age-related decline in ovarian follicles. We hypothesized that supplementation with thiol antioxidants, N-acetyl cysteine (NAC), or α-lipoic acid (ALA) will rescue this phenotype. Gclm-/- and Gclm+/+ females received 0 or 80 mM NAC in drinking water from postnatal day (PND) 21-30; follicle growth was induced with equine chorionic gonadotropin (eCG) on PND 27, followed by an ovulatory dose of human CG and mating with a wild type male on PND 29 and zygote harvest 20 h after hCG. N-acetyl cysteine supplementation failed to rescue the low rate of second pronucleus formation in zygotes from Gclm-/- versus Gclm+/+ females. In the second study, Gclm-/- and Gclm+/+ females received diet containing 0, 150, or 600 mg/kg ALA beginning at weaning and were mated with wild type males from 8 to 20 weeks of age. α-Lipoic acid failed to rescue the decreased offspring production of Gclm-/- females. However, 150 mg/kg diet ALA partially rescued the accelerated decline in primordial follicles, as well as the increased recruitment of follicles into the growing pool and the increased percentages of follicles with γH2AX positive oocytes or granulosa cells of Gclm-/- females. We conclude that ovarian oxidative stress is the cause of accelerated primordial follicle decline, while GSH deficiency per se may be responsible for preimplantation embryonic mortality in Gclm-/- females.
Collapse
Affiliation(s)
- Jinhwan Lim
- Department of Medicine, University of California, Irvine, California, USA
| | - Samiha Ali
- Department of Medicine, University of California, Irvine, California, USA
| | - Lisa S Liao
- Department of Medicine, University of California, Irvine, California, USA
| | - Emily S Nguyen
- Department of Medicine, University of California, Irvine, California, USA
| | - Laura Ortiz
- Department of Medicine, University of California, Irvine, California, USA
| | - Samantha Reshel
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Ulrike Luderer
- Department of Medicine, University of California, Irvine, California, USA.,Department of Developmental and Cell Biology, University of California, Irvine, California, USA.,Program in Public Health, University of California, Irvine, California, USA
| |
Collapse
|
11
|
Gunyeli I, Saygin M, Ozmen O. Methotrexate-induced toxic effects and the ameliorating effects of astaxanthin on genitourinary tissues in a female rat model. Arch Gynecol Obstet 2021; 304:985-997. [PMID: 33608803 DOI: 10.1007/s00404-021-06000-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 02/02/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The purpose of the study was to explore the possible deleterious effects of Methotrexate (MTX) treatment on the urogenital tissues and the potential protective effects of Astaxanthin (AXA). METHODS Twenty-four female Wistar Albino rats (12 months old) were divided into 3 groups as follows: Group I (Control group): rats received a single dose of 0.1 ml saline by gavage and intraperitoneal injection. Group II (MTX group): rats received a single dose of 20 mg/kg MTX, i.p, on the 2nd day. Group III (MTX + AXA group): rats received 100 mg/kg AXA orally for 7 days in addition to a single dose of MTX. The levels of total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), and histopathological and immunohistochemical markers (Caspase-3, iNOS, CRP, G-CSF) were evaluated in urogenital tissues. RESULTS In ovarian tissues, a statistically significant increase in TOS levels (p = 0.001) and OSI index (p = 0.028) were observed in Group II compared to Group I. TAS level was significantly higher in Group III compared to Group II and I (p = 0.009 and 0.002, respectively). However, a significant decrease in OSI level was observed in Group III compared to Group II (p = 0.035). In fallopian tube tissues, TAS level was significantly decreased in Group II compared to Group I (p = 0.047). Histopathologically, marked hyperemia was observed in MTX group. AXA treatment ameliorated all the pathological findings. Immunohistochemically, all the studied markers were considerably increased in Group II, however, they were decreased by AXA. CONCLUSION These findings revealed that MTX treatment caused oxidative stress, apoptosis, and inflammation in the urogenital tissue. We found that AXA significantly ameliorated the damage caused by MTX in the urogenital tissue. The results of the study have indicated that AXA may be a promising nutritional support substance against the damage caused by chemotherapeutic and cytotoxic agents, such as MTX, to the urogenital tissue.
Collapse
Affiliation(s)
- Ilker Gunyeli
- Department of Gynecology and Obstetrics, Faculty of Medicine, Suleyman Demirel University, 32260, Cunur-Isparta, Turkey.
| | - Mustafa Saygin
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
12
|
Yang Y, Huang W, Yuan L. Effects of Environment and Lifestyle Factors on Premature Ovarian Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:63-111. [PMID: 33523430 DOI: 10.1007/978-981-33-4187-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Premature ovarian insufficiency (POI) or primary ovarian failure is defined as a cessation of the menstrual cycle in women younger than 40 years old. It is strictly defined as more than 4 months of oligomenorrhea or amenorrhea in a woman <40 years old, associated with at least two follicle-stimulating hormone (FSH) levels >25 U/L in the menopausal range, detected more than 4 weeks apart. It is estimated that POI was affected 1 and 2% of women. Although 80% of POI cases are of unknown etiology, it is suggested that genetic disorder, autoimmune origin, toxins, and environmental factors, as well as personal lifestyles, may be risk factors of developing POI. In this section, we will discuss the influences of environmental and lifestyle factors on POI. Moreover updated basic research findings regarding how these environmental factors affect female ovarian function via epigenetic regulations will also be discussed.
Collapse
Affiliation(s)
- Yihua Yang
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Weiyu Huang
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lifang Yuan
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
13
|
Dai H, Lv Z, Hu C, Shi Z, Wei X, Jin S, Yuan Y, Yu D, Shi F. Alpha-lipoic acid improves the reproduction performance of breeder hens during the late egg-laying period. J Anim Physiol Anim Nutr (Berl) 2020; 104:1788-1797. [PMID: 32881138 DOI: 10.1111/jpn.13423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/13/2020] [Accepted: 06/13/2020] [Indexed: 01/04/2023]
Abstract
Alpha-lipoic acid (ALA), a multifunctional antioxidant, can promote fatty acid mobilization, energy expenditure and scavenge free radicals. The effects of dietary ALA on the reproductive performance of breeder hens were investigated in the current study. In the 5-week experiment, 180 54-week-old Qiling breeder hens were randomly divided into three treatments with five replicates and supplemented with three levels of ALA (0, 300 and 600 mg/kg) in the basic corn-soya bean meal diets. 600 mg/kg ALA treatment group (HLA) significantly improved the eggshell thickness and strength (p < .05). ALA-treated groups improved egg-laying rate compared with the CON group, but with no statistically significant difference (p > .05). The levels of HDL-C, ALB and estradiol (E2) of the serum in the HLA group were elevated compared with the CON group (p < .05). In addition, ALA (600 mg/kg) treatment exhibited a reduced level of serum AST and TG (p < .05). Dietary ALA increased the activity of hepatic lipase in liver (p < .05). Supplemental 600 mg/kg ALA also improved the SOD activity and total antioxidant capacity level, along with a decreased MDA in ovarian tissue (p < .05). Furthermore, the mRNA expressions of ESR1, ESR2, VTG2 and ApoB in the liver and FSHR in follicles were upregulated in the HLA group (p < .05). In conclusion, dietary supplementation with 600 mg/kg ALA during the late egg-laying period could improve lipid metabolism and reproductive performance of breeder hens.
Collapse
Affiliation(s)
- Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zengpeng Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chenhui Hu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhicheng Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xihui Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Song Jin
- Changzhou Animal Disease Control Center, Bureau of Agriculture and Rural Affairs of Changzhou, Jiangsu, China
| | - Yunwei Yuan
- Jiangsu Hesheng Food Limited Company, Taizhou, China
| | - Debing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Jiang M, Wang W, Zhang J, Wang C, Bi Y, Li P, Yang S, Li J, Xu YT, Wang T. Protective Effects and Possible Mechanisms of Actions of Bushen Cuyun Recipe on Diminished Ovarian Reserve Induced by Cyclophosphamide in Rats. Front Pharmacol 2020; 11:546. [PMID: 32477106 PMCID: PMC7237638 DOI: 10.3389/fphar.2020.00546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
Backgrounds Diminished ovarian reserve (DOR) contributes significantly to female infertility. Bushen Cuyun Recipe (BCR, Tradename Yueliang Yin), a product marketed in China, has shown effects in the treatment of female infertility in clinical practices of traditional Chinese medicine (TCM). In this study, we aimed to investigate the chemical compositions of BCR and its efficacy based on scientific evidence and pharmacological mechanisms in DOR treatments. Methods The chemical compositions of BCR were determined by the UHPLC-LTQ-Orbitrap MS method. DOR was induced in a rat model by intraperitoneal injection of cyclophosphamide (CTX) 90 mg/kg once. After the CTX treatment for 14 days, rats were intragastrically administrated deionized water, dehydroepiandrosterone (DHEA), or BCR in low, middle, and high doses for 30 days. Ovarian index, ovarian morphology, follicle number, and anti-Müllerian hormone (AMH) in serum were determined to assess the effects of BCR. To investigate possible action mechanisms, network pharmacological analysis was used to predict possible pathways in the effects of BCR on female infertility. In experimental studies, the contents of hormones in the hypothalamic-pituitary-ovarian axis (HPOA, including estradiol (E2), follicle-stimulating hormone (FSH), and gonadotropin-releasing hormone (GnRH)) and pyroptosis-related proteins, including gasdermin D (GSDMD), caspase-1, and interleukin-18 (IL-18), in ovarian were detected by ELISA, immunofluorescence and Western blot. Results Chemical studies revealed a total 84 components in BCR, which included 43 flavonoids, 13 triterpenoids, 11 phenolic acids, 8 alkaloids, 1 coumarin, 1 anthraquinone, and 7 other components. After treatments with BCR, the ovarian morphology, ovarian index, estrous cycle, growing follicles and corpus luteum from last ovulation, and serum AMH in DOR rats were significantly improved. Network pharmacological analysis suggested that the NOD-like receptor signaling pathway ranked No. 1 among the mechanisms by which BCR affects female infertility. Experimental results demonstrated that the content of serum FSH in DOR rats was significantly decreased and the contents of serum GnRH and E2 were significantly elevated after BCR treatment and that the elevated level of GSDMD, caspase-1, and IL-18 was significantly reversed in BCR-treated rats. Conclusions The chemical compositions of BCR were first identified in the present study. BCR was demonstrated to show protective effects on DOR. The possible mechanisms of BCR on DOR might be mediated by regulating gonadal hormones of the HPOA and protecting granulosa cells in ovary against pyroptosis.
Collapse
Affiliation(s)
- Mei Jiang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Weiling Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingxuan Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yucong Bi
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Pin Li
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Song Yang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jialin Li
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan-Tong Xu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Hortu I, Ozceltik G, Ergenoglu AM, Yigitturk G, Atasoy O, Erbas O. Protective effect of oxytocin on a methotrexate-induced ovarian toxicity model. Arch Gynecol Obstet 2020; 301:1317-1324. [PMID: 32266527 DOI: 10.1007/s00404-020-05534-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/28/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Although cancer predominantly affects people at older ages, a substantial number of patients, like breast cancer patients, are diagnosed before they have completed their families or even before giving birth. Furthermore, cytotoxic chemotherapy may be required in addition to treat cancer survivors. The present study was conducted to investigate the protective effect of oxytocin (OT) on methotrexate (MTX)-induced ovarian toxicity in rats. METHODS Eighteen adult female Sprague-Dawley rats were used in the study. All rats were divided randomly into three groups. The control group (n = 6) received no treatment. The remaining 12 rats received a single dose of 20 mg/kg of MTX. Half of the rats (n = 6) were treated with 1 mg/kg/day of saline, and the other half (n = 6) were treated with 160 µg/kg/day of OT for 21 days. Then, blood samples were collected for biochemical analysis, and an ovariectomy was performed for histopathological examination. RESULTS Plasma malondialdehyde (MDA) and transforming growth factor-β (TGF-β) levels were significantly lower in the MTX + OT group compared to the MTX + saline group (p = 0.000036 for MDA; p = 0.0044 for TGF-β). AMH levels were also significantly higher in the MTX + OT group than in the MTX + saline group (p = 0.000036). The ovarian fibrosis percent was also notably lower in the MTX + OT group than in the MTX + saline group (p = 0.000036). CONCLUSION On the basis of these findings, OT is a promising agent for ameliorating harmful effects of MTX on rat ovaries in an experimental model.
Collapse
Affiliation(s)
- Ismet Hortu
- Department of Obstetrics and Gynecology, Ege University School of Medicine, Izmir, Turkey.
- Department of Stem Cell, Ege University Institute of Health Sciences, Izmir, Turkey.
| | - Gokay Ozceltik
- Department of Obstetrics and Gynecology, Ege University School of Medicine, Izmir, Turkey
| | - Ahmet Mete Ergenoglu
- Department of Obstetrics and Gynecology, Ege University School of Medicine, Izmir, Turkey
| | - Gurkan Yigitturk
- Department of Histology and Embryology, Mugla Sıtkı Kocman University School of Medicine, Mugla, Turkey
| | - Ozum Atasoy
- Department of Radiation Oncology, University of Health Sciences Kartal Lutfi Kırdar Education and Research Hospital, Istanbul, Turkey
| | - Oytun Erbas
- Department of Physiology, Demiroglu Bilim University School of Medicine, Istanbul, Turkey
| |
Collapse
|
16
|
Yeral I, Sayan CD, Karaca G, Simsek Y, Sagsoz N, Ozkan ZS, Atasoy P, Sahin Y, Neselioglu S, Erel O. What is the protective effect of krill oil on rat ovary against ischemia-reperfusion injury? J Obstet Gynaecol Res 2018; 45:592-599. [DOI: 10.1111/jog.13876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/02/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Ilkin Yeral
- Department of Obstetrics and Gynecology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Cemile D. Sayan
- Department of Obstetrics and Gynecology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Gökhan Karaca
- Department of General Surgery; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Yavuz Simsek
- Yavuz Simsek Women's Health Center; Kırıkkale Turkey
| | - Nevin Sagsoz
- Department of Obstetrics and Gynecology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Zehra S. Ozkan
- Department of Obstetrics and Gynecology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Pınar Atasoy
- Department of Pathology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Yasar Sahin
- Kırıkkale University Faculty of Veterinary Medicine; Kırıkkale Turkey
| | - Salim Neselioglu
- Department of Clinical Biochemistry; Yıldırım Beyazıt University Faculty of Medicine; Ankara Turkey
| | - Ozcan Erel
- Department of Clinical Biochemistry; Yıldırım Beyazıt University Faculty of Medicine; Ankara Turkey
| |
Collapse
|