1
|
Han N, Chang XY, Yuan ZL, Wang YZ. Expression and correlation analysis of silent information regulator 1 (SIRT1), sterol regulatory element-binding protein-1 (SREBP1), and pyroptosis factor in gestational diabetes mellitus. J Matern Fetal Neonatal Med 2024; 37:2311809. [PMID: 38326276 DOI: 10.1080/14767058.2024.2311809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND AND AIM Globally, the prevalence of gestational diabetes mellitus (GDM) is rising each year, yet its pathophysiology is still unclear. To shed new light on the pathogenesis of gestational diabetes mellitus and perhaps uncover new therapeutic targets, this study looked at the expression levels and correlations of SIRT1, SREBP1, and pyroptosis factors like NLRP3, Caspase-1, IL-1, and IL-18 in patients with GDM. METHODS This study involved a comparative analysis between two groups. The GDM group consisted of 50 GDM patients and the control group included 50 pregnant women with normal pregnancies. Detailed case data were collected for all participants. We utilized real-time quantitative PCR and Western Blot techniques to assess the expression levels of SIRT1 and SREBP1 in placental tissues from both groups. Additionally, we employed an enzyme-linked immunosorbent assay to measure the serum levels of SIRT1, SREBP1, and pyroptosis factors, namely NLRP3, Caspase-1, IL-1β, and IL-18, in the patients of both groups. Subsequently, we analyzed the correlations between these factors and clinical. RESULTS The results showed that there were significantly lower expression levels of SIRT1 in both GDM group placental tissue and serum compared to the control group (p < 0.01). In contrast, the expression of SREBP1 was significantly higher in the GDM group than in the control group (p < 0.05). Additionally, the serum levels of NLRP3, Caspase-1, IL-1β, and IL-18 were significantly elevated in the GDM group compared to the control group (p < 0.01). The expression of SIRT1 exhibited negative correlations with the expression of FPG, OGTT-1h, FINS, HOMA-IR, SREBP1, IL-1β, and IL-18. However, there was no significant correlation between SIRT1 expression and OGTT-2h, NLRP3, or Caspase-1. On the other hand, the expression of SREBP1 was positively correlated with the expression of IL-1β, Caspase-1, and IL-18, but has no apparent correlation with NLRP3. CONCLUSIONS Low SIRT1 levels and high SREBP1 levels in placental tissue and serum, coupled with elevated levels of pyroptosis factors NLRP3, Caspase-1, IL-1β, and IL-18 in serum, may be linked to the development of gestational diabetes mellitus. Furthermore, these three factors appear to correlate with each other in the pathogenesis of GDM, offering potential directions for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Ning Han
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xin-Yuan Chang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Zi-Li Yuan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yi-Zhan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Yuen N, Lemaire M, Wilson SL. Cell-free placental DNA: What do we really know? PLoS Genet 2024; 20:e1011484. [PMID: 39652523 PMCID: PMC11627368 DOI: 10.1371/journal.pgen.1011484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Cell-free placental DNA (cfpDNA) is present in maternal circulation during gestation. CfpDNA carries great potential as a research and clinical tool as it provides a means to investigate the placental (epi)genome across gestation, which previously required invasive placenta sampling procedures. CfpDNA has been widely implemented in the clinical setting for noninvasive prenatal testing (NIPT). Despite this, the basic biology of cfpDNA remains poorly understood, limiting the research and clinical utility of cfpDNA. This review will examine the current knowledge of cfpDNA, including origins and molecular characteristics, highlight gaps in knowledge, and discuss future research directions.
Collapse
Affiliation(s)
- Natalie Yuen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Melanie Lemaire
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Samantha L. Wilson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Berkel C. Inducers and Inhibitors of Pyroptotic Death of Granulosa Cells in Models of Premature Ovarian Insufficiency and Polycystic Ovary Syndrome. Reprod Sci 2024; 31:2972-2992. [PMID: 39026050 PMCID: PMC11438836 DOI: 10.1007/s43032-024-01643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Granulosa cells (GCs), the largest cell population and primary source of steroid hormones in the ovary, are the important somatic ovarian components. They have critical roles in folliculogenesis by supporting oocyte, facilitating its growth, and providing a microenvironment suitable for follicular development and oocyte maturation, thus having essential functions in maintaining female fertility and in reproductive health in general. Pyroptotic death of GCs and associated inflammation have been implicated in the pathogenesis of several reproductive disorders in females including Premature Ovarian Insufficiency (POI) and Polycystic Ovary Syndrome (PCOS). Here, I reviewed factors, either intrinsic or extrinsic, that induce or inhibit pyroptosis in GCs in various models of these disorders, both in vitro and in vivo, and also covered associated molecular mechanisms. Most of these studied factors influence NLRP3 inflammasome- and GSDMD (Gasdermin D)-mediated pyroptosis in GCs, compared to other inflammasomes and gasdermins (GSDMs). I conclude that a more complete mechanistic understanding of these factors in terms of GC pyroptosis is required to be able to develop novel strategies targeting inflammatory cell death in the ovary.
Collapse
Affiliation(s)
- Caglar Berkel
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Türkiye.
| |
Collapse
|
4
|
Xie X, Liu J, Gao J, Shang C, Jiang Y, Chen L, Qian Z, Liu L, Wu D, Zhang Y, Ru Z, Zhang Y. The crosstalk between cell death and pregnancy related diseases: A narrative review. Biomed Pharmacother 2024; 176:116815. [PMID: 38788598 DOI: 10.1016/j.biopha.2024.116815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
Programmed cell death is intricately linked to various physiological phenomena such as growth, development, and metabolism, as well as the proper function of the pancreatic β cell and the migration and invasion of trophoblast cells in the placenta during pregnancy. Traditional and recently identified programmed cell death include apoptosis, autophagy, pyroptosis, necroptosis, and ferroptosis. In addition to cancer and degenerative diseases, abnormal activation of cell death has also been implicated in pregnancy related diseases like preeclampsia, gestational diabetes mellitus, intrahepatic cholestasis of pregnancy, fetal growth restriction, and recurrent miscarriage. Excessive or insufficient cell death and pregnancy related diseases may be mutually determined, ultimately resulting in adverse pregnancy outcomes. In this review, we systematically describe the characteristics and mechanisms underlying several types of cell death and their roles in pregnancy related diseases. Moreover, we discuss potential therapeutic strategies that target cell death signaling pathways for pregnancy related diseases, hoping that more meaningful treatments will be applied in clinical practice in the future.
Collapse
Affiliation(s)
- Xiaowen Xie
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, Wuxi, Jiangsu 214002, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Jiayu Liu
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214002, China
| | - Jingyi Gao
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chenwei Shang
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, Wuxi, Jiangsu 214002, China; The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ying Jiang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214002, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, Wuxi, Jiangsu 214002, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, Wuxi, Jiangsu 214002, China
| | - Lu Liu
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214002, China
| | - Danping Wu
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214002, China
| | - Yun Zhang
- Wuxi Maternal and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214002, China.
| | - Zhu Ru
- Anqing Medical College Clinical Research Center, Anqing Municipal Hospital, Anqing 246003, Anhui, China.
| | - Yan Zhang
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, Wuxi, Jiangsu 214002, China; Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214002, China.
| |
Collapse
|
5
|
Bi K, Yang J, Wei X. Alternative splicing variants involved in pyroptosis and cuproptosis contribute to phenotypic remodeling of the tumor microenvironment in cervical cancer. Reprod Sci 2023; 30:3648-3660. [PMID: 37434062 DOI: 10.1007/s43032-023-01284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/04/2023] [Indexed: 07/13/2023]
Abstract
Cervical cancer (CC) remains a prevalent gynecological malignancy, posing a significant health burden among women worldwide. With the remarkable discoveries of cellular pyroptosis and cuproptosis, there has been a growing focus on exploring the intricate relationship between these two forms of cell death and their impact on tumor progression. In recent years, alternative splicing has emerged as a significant field in cancer research. Thus, the integration of alternative splicing, pyroptosis, and cuproptosis holds immense value in studying their collective impact on the occurrence and progression of cervical cancer. In this study, alternative splicing data of pyroptosis- and cuproptosis-associated genes were integrated with public databases, including TCGA, to establish a prognostic model for cervical cancer based on COX regression modeling. Subsequently, the tumor microenvironment (TME) phenotypes in the high-risk and low-risk patient groups were characterized through a comprehensive bioinformatics analysis. The findings of this study revealed that the low-risk group exhibited a predominant immune-active TME phenotype, while the high-risk group displayed a tumor-favoring metabolic phenotype. These results indicate that the alternative splicing of pyroptosis- and cuproptosis-associated genes plays a pivotal role in remodeling the phenotypic landscape of the cervical cancer TME by modulating immune responses and metabolic pathways. This study provides valuable insights into the interplay between alternative splicing variants involved in pyroptosis and cuproptosis and the TME, contributing to a deeper understanding of cervical cancer pathogenesis and potential therapeutic avenues.
Collapse
Affiliation(s)
- Kewei Bi
- Department of Physiology, College of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Jialin Yang
- Department of Pathology, College of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Xuge Wei
- Department of Bioinformatics, Faculty of Biology, College of Basic Medicine, Shenyang Medical College, Shenyang, China.
| |
Collapse
|
6
|
Xiang Y, Wang H, Ding H, Xu T, Liu X, Huang Z, Wu H, Ge H. Hyperandrogenism drives ovarian inflammation and pyroptosis: A possible pathogenesis of PCOS follicular dysplasia. Int Immunopharmacol 2023; 125:111141. [PMID: 37918087 DOI: 10.1016/j.intimp.2023.111141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Hyperandrogenemia and persistent chronic inflammation, two main striking features of polycystic ovary syndrome (PCOS), have been proven involved in follicular dysgenesis in PCOS. However, the association between hyperandrogenism and inflammation activation in PCOS is not fully understood. Excess testosterone(T) induces inflammation and pyroptosis activation in a mouse model of PCOS, leading to ovarian dysfunction and fibrosis. Excessive endoplasmic reticulum (ER) stress is present in ovarian granulosa cells (GCs), testosterone-induced PCOS mouse and cellular models. This study found higher levels of interleukin (IL)-1β, IL-8, IL-17, and IL-18 in the follicular fluid of PCOS patients with hyperandrogenemia undergoing IVF treatment. In addition, pyroptosis in GCs was demonstrated, which was significantly elevated in PCOS patients. To clarify the association of hyperandrogenism, inflammation, and pyroptosis activation in PCOS, dehydroepiandrosterone(DHEA)-treated mouse PCOS model and T-treated KGN cell line were explored for PCOS mechanism. Markers of inflammatory activation and pyroptosis were significantly increased after DHEA treatment in mice and T treatment in KGN cells. In addition, ER stress sensor proteins were increased simultaneously. However, suppression of inflammation by genipin(GP) led to decreased pyroptosis in KGN cells but no variation in ER stress sensor proteins. In contrast, when treated with tauroursodeoxycholic acid(TUDCA) to attenuate ER stress, the markers of inflammatory factors were significantly reduced, accompanied by a reduction in pyroptosis. Our results suggest that persistent hyperandrogenemia of PCOS promotes local inflammatory activation of the ovary, and the imbalanced inflammatory microenvironment leads to pyroptosis of GCs, which is mediated by ER stress activation.
Collapse
Affiliation(s)
- Yu Xiang
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Hua Wang
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Third Clinical Medical College, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Huimin Ding
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Tianyue Xu
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Xiu Liu
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Dalian Medical University, Liaoning, China
| | - Zichao Huang
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Honghui Wu
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Dalian Medical University, Liaoning, China
| | - Hongshan Ge
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China; Graduate School, Dalian Medical University, Liaoning, China.
| |
Collapse
|
7
|
Zheng X, Zhao D, Jin Y, Liu Y, Liu D. Role of the NLRP3 inflammasome in gynecological disease. Biomed Pharmacother 2023; 166:115393. [PMID: 37660654 DOI: 10.1016/j.biopha.2023.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The NLR family pyrin domain containing 3 (NLRP3) inflammasome is involved in the innate immune system and is a three-part macromolecular complex comprising the NLRP3 protein, apoptosis-associated speck-like protein containing a CARD (ASC) and the cysteine protease pro-caspase-1. When the NLRP3 inflammasome is activated, it can produce interleukin (IL)- 1β and IL-18 and eventually lead to inflammatory cell pyroptosis. Related studies have demonstrated that the NLRP3 inflammasome can induce an immune response and is related to the occurrence and development of gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer. NLRP3 inflammasome inhibitors are beneficial for maintaining cellular homeostasis and tissue health and have been found effective in targeting some gynecological diseases. However, excessive inhibitor concentrations have been found to cause adverse effects. Therefore, proper control of NLRP3 inflammasome activity is critical. This paper summarizes the structure and function of the NLRP3 inflammasome and highlights the therapeutic potential of targeting it in gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer The application of NLRP3 inflammasome inhibitors is also discussed.
Collapse
Affiliation(s)
- Xu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Dan Zhao
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Yang Liu
- Acupuncture department,Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| |
Collapse
|
8
|
Wu Y, Liang L, Li Q, Shu L, Wang P, Huang S. The role of pyroptosis-related lncRNA risk signature in ovarian cancer prognosis and immune system. Discov Oncol 2023; 14:149. [PMID: 37597098 PMCID: PMC10439870 DOI: 10.1007/s12672-023-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
Ovarian cancer is a leading cause of death in females with gynecologic cancers. Pyroptosis is a relatively new discovered programmed cell death that is believed to be associated with inflammation. However, studies on pyroptosis-related lncRNAs in ovarian cancer are limited. In this study, we identified 29 pyroptosis-related genes and screened out 72 pyroptosis-related lncRNAs. Furthermore, the 72 lncRNAs were eliminated to 2 survival-related lncRNAs using Cox regression and Lasso regression to build an ovarian cancer prognostic prediction signature and were further validated on the test set. We adopted a riskscore from the two-gene signature, and the survival in low-risk group was higher than the high-risk group. Functional enrichment analysis indicated that the differentially expressed genes (DEGs) between two risk groups were associated with tumor immunity. This study implies that pyroptosis-related genes are closely related to tumor immunity and could be potential therapeutic factors for ovarian cancer treatment.
Collapse
Affiliation(s)
- Yanling Wu
- Department of Gynecology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Lei Liang
- Department of Gynecology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Qin Li
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China
| | - Lilu Shu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China
| | - Peter Wang
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China.
| | - Shufeng Huang
- Department of Gynecology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China.
| |
Collapse
|
9
|
Monti P, Solazzo G, Accurti V, Gambitta B, Iodice S, Boito S, Cantone L, Manenti A, Dioni L, Montomoli E, Persico N, Bollati V. Pyroptosis: A Promising Mechanism Linking SARS-CoV-2 Infection to Adverse Pregnancy Outcomes. Int J Mol Sci 2023; 24:ijms24119278. [PMID: 37298229 DOI: 10.3390/ijms24119278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Pregnancy is characterized by a delicate immune balance; therefore, infectious diseases might increase the risk of adverse pregnancy outcomes (APOs). Here, we hypothesize that pyroptosis, a unique cell death pathway mediated by the NLRP3 inflammasome, could link SARS-CoV-2 infection, inflammation, and APOs. Two blood samples were collected from 231 pregnant women at 11-13 weeks of gestation and in the perinatal period. At each time point, SARS-CoV-2 antibodies and neutralizing antibody titers were measured by ELISA and microneutralization (MN) assays, respectively. Plasmatic NLRP3 was determined by ELISA. Fourteen miRNAs selected for their role in inflammation and/or pregnancy were quantified by qPCR and further investigated by miRNA-gene target analysis. NLRP3 levels were positively associated with nine circulating miRNAs, of which miR-195-5p was increased only in MN+ women (p-value = 0.017). Pre-eclampsia was associated with a decrease in miR-106a-5p (p-value = 0.050). miR-106a-5p (p-value = 0.026) and miR-210-3p (p-value = 0.035) were increased in women with gestational diabetes. Women giving birth to small for gestational age babies had lower miR-106a-5p and miR-21-5p (p-values = 0.001 and 0.036, respectively), and higher miR-155-5p levels (p-value = 0.008). We also observed that neutralizing antibodies and NLRP3 concentrations could affect the association between APOs and miRNAs. Our findings suggest for the first time a possible link between COVID-19, NLRP3-mediated pyroptosis, inflammation, and APOs. Circulating miRNAs might be suitable candidates to gain a comprehensive view of this complex interplay.
Collapse
Affiliation(s)
- Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Giulia Solazzo
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Veronica Accurti
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Bianca Gambitta
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Simona Iodice
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Simona Boito
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Laura Cantone
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | | | - Laura Dioni
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Emanuele Montomoli
- VisMederi Srl, 53100 Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Nicola Persico
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- CRC, Center for Environmental Health, University of Milan, 20122 Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- CRC, Center for Environmental Health, University of Milan, 20122 Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
10
|
Chen J, Zhu Z, Xu S, Li J, Huang L, Tan W, Zhang Y, Zhao Y. HDAC1 participates in polycystic ovary syndrome through histone modification to regulate H19/miR-29a-3p/NLRP3-mediated granulosa cell pyroptosis. Mol Cell Endocrinol 2023; 573:111950. [PMID: 37207962 DOI: 10.1016/j.mce.2023.111950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Histone deacetylase 1 (HDAC1) is known to participate in the molecular etiology of polycystic ovary syndrome (PCOS). However, its role in granulosa cell (GC) pyroptosis remains unclear. This study sought to investigate the mechanism of HDAC1 in PCOS-induced GC pyroptosis through histone modification. Clinical serum samples and the general data of study subjects were collected. PCOS mouse models were established using dehydroepiandrosterone and cell models were established in HGL5 cells using dihydrotestosterone. Expressions of HDAC1, H19, miR-29a-3p, and NLR family pyrin domain containing 3 (NLRP3) and pyroptosis-related proteins and levels of hormones and inflammatory cytokines were determined. Ovarian damage was observed by hematoxylin-eosin staining. Functional rescue experiments were conducted to verify the role of H19/miR-29a-3p/NLRP3 in GC pyroptosis in PCOS. HDAC1 and miR-29a-3p were downregulated whereas H19 and NLRP3 were upregulated in PCOS. HDAC1 upregulation attenuated ovarian damage and hormone disorders in PCOS mice and suppressed pyroptosis in ovarian tissues and HGL5 cells. HDAC1 inhibited H3K9ac on the H19 promoter and H19 competitively bound to miR-29a-3p to improve NLRP3 expression. Overexpressed H19 or NLRP3 or inhibited miR-29a-3p reversed the inhibition of GC pyroptosis by HDAC1 upregulation. Overall, HDAC1 suppressed GC pyroptosis in PCOS through deacetylation to regulate the H19/miR-29a-3p/NLRP3 axis.
Collapse
Affiliation(s)
- Jiying Chen
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China.
| | - Zhiying Zhu
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Shi Xu
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Jing Li
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Lilan Huang
- Department of General Practice, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Wenqing Tan
- Department of General Practice, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Yonggang Zhang
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Yanli Zhao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| |
Collapse
|
11
|
Parker J. Pathophysiological Effects of Contemporary Lifestyle on Evolutionary-Conserved Survival Mechanisms in Polycystic Ovary Syndrome. Life (Basel) 2023; 13:life13041056. [PMID: 37109585 PMCID: PMC10145572 DOI: 10.3390/life13041056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is increasingly being characterized as an evolutionary mismatch disorder that presents with a complex mixture of metabolic and endocrine symptoms. The Evolutionary Model proposes that PCOS arises from a collection of inherited polymorphisms that have been consistently demonstrated in a variety of ethnic groups and races. In utero developmental programming of susceptible genomic variants are thought to predispose the offspring to develop PCOS. Postnatal exposure to lifestyle and environmental risk factors results in epigenetic activation of developmentally programmed genes and disturbance of the hallmarks of health. The resulting pathophysiological changes represent the consequences of poor-quality diet, sedentary behaviour, endocrine disrupting chemicals, stress, circadian disruption, and other lifestyle factors. Emerging evidence suggests that lifestyle-induced gastrointestinal dysbiosis plays a central role in the pathogenesis of PCOS. Lifestyle and environmental exposures initiate changes that result in disturbance of the gastrointestinal microbiome (dysbiosis), immune dysregulation (chronic inflammation), altered metabolism (insulin resistance), endocrine and reproductive imbalance (hyperandrogenism), and central nervous system dysfunction (neuroendocrine and autonomic nervous system). PCOS can be a progressive metabolic condition that leads to obesity, gestational diabetes, type two diabetes, metabolic-associated fatty liver disease, metabolic syndrome, cardiovascular disease, and cancer. This review explores the mechanisms that underpin the evolutionary mismatch between ancient survival pathways and contemporary lifestyle factors involved in the pathogenesis and pathophysiology of PCOS.
Collapse
Affiliation(s)
- Jim Parker
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
12
|
Ma W, Liu Y, Xu L, Gai X, Sun Y, Qiao S, Liu P, Liu Q, Zhang Z. The role of selenoprotein M in nickel-induced pyroptosis in mice spleen tissue via oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34270-34281. [PMID: 36504304 DOI: 10.1007/s11356-022-24597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Nickel (Ni) is a heavy metal element and a pollutant that threatens the organism's health. Melatonin (Mel) is an antioxidant substance that can be secreted by the organism and has a protective effect against heavy metals. Selenoprotein M (SelM) is a selenoprotein widely distributed of the body, and its role is to protect these tissues from oxidative damage. To study the mechanism of Ni, Mel, and SelM in mouse spleen, 80 SelM+/+ wild-type and 80 SelM-/- homozygous mice were divided into 8 groups with 20 mice in each group. The Ni group was intragastric at a concentration of 10 mg/kg, while the Mel group was intragastric at 2 mg/kg. Mice were injected with 0.1 mL/10 g body weight for 21 days. Histopathological and ultrastructural observations showed the changes in Ni, such as the destruction of white and red pulp and the appearance of pyroptosomes. SelM knockout showed more severe injury, while Mel could effectively interfere with Ni-induced spleen toxicity. The results of antioxidant capacity determination showed that Ni could cause oxidative stress in the spleen, and Mel could also effectively reduce oxidative stress. Finally, Ni exposure increased the expression levels of the pyroptotic genes, including apoptosis-associated speck protein (ASC), absent in melanoma-2 (AIM2), NOD-like receptor thermal protein domain-associated protein 3 (NLRP3), Caspase-1, interleukin- (IL-) 18, and IL-1β (p < 0.05). Loss of SelM significantly increased these (p < 0.05), while Mel decreased the alleviated impact of Ni. In conclusion, the loss of SelM aggravated Ni-induced pyroptosis of the spleen via activating oxidative stress, which was alleviated by Mel, but the effect of Mel was not obvious in the absence of SelM, which reflected the important role of SelM in Ni-induced pyroptosis.
Collapse
Affiliation(s)
- Wenxue Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yue Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Lihua Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaoxue Gai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Pinnan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China.
| |
Collapse
|
13
|
Sun J, Gan L, Sun J. Identification and Validation of Three m6A Regulators: FTO, HNRNPC, and HNRNPA2B1 as Potential Biomarkers for Endometriosis. Genes (Basel) 2022; 14:genes14010086. [PMID: 36672827 PMCID: PMC9858668 DOI: 10.3390/genes14010086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND N6-methyladenosine is involved in numerous biological processes. However, the significance of m6A regulators in endometriosis is still unclear. METHODS We extracted three significant m6A regulators between non-endometriosis and endometriosis patients from GSE6364 and then we used the random forest model to obtain significant m6A regulators. In addition, we used the nomogram model to evaluate the prevalence of endometriosis. The predictive ability of the candidate genes was evaluated through the receiver operating characteristic curves, while the expression of candidate biomarkers was validated via Western blotting. Additionally, according to candidate genes, we identified m6A subtypes based on which functional enrichment analysis and immune infiltration were performed. RESULTS Three significant m6A regulators (fat mass and obesity-associated protein, heterogeneous nuclear ribonucleoprotein A2/B1, and heterogeneous nuclear ribonucleoprotein C) were discovered. We identified three m6A subtypes, including clusterA, clusterB, and clusterC. ClusterB was demonstrated to be correlated with significantly overexpressed VEGF and notably downregulated ESR1 and PGR, which are convincing biomarkers of endometriosis. Furthermore, we discovered that patients in clusterB were associated with high levels of neutrophil infiltration, a reduced Treg/Th17 ratio, and overexpressed pyroptosis-related genes, which also indicated that clusterB was highly linked to endometriosis. CONCLUSION In conclusion, m6A regulators are of great significance for the occurrence and process of endometriosis. The findings of our study provide novel insights into the underlying molecular mechanism of endometriosis. The novel investigation of m6A patterns and their correlation with immunity may also help to guide the clinical diagnosis, provide prognostic significance, and develop immunotherapy strategies for endometriosis patients.
Collapse
Affiliation(s)
- Jiani Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Lei Gan
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo 315010, China
| | - Jing Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Correspondence:
| |
Collapse
|
14
|
Pyroptosis and Its Role in Cervical Cancer. Cancers (Basel) 2022; 14:cancers14235764. [PMID: 36497244 PMCID: PMC9739612 DOI: 10.3390/cancers14235764] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Pyroptosis, an inflammatory programmed cell death, is characterized by the caspase-mediated pore formation of plasma membranes and the release of large quantities of inflammatory mediators. In recent years, the morphological characteristics, induction mechanism and action process of pyroptosis have been gradually unraveled. As a malignant tumor with high morbidity and mortality, cervical cancer is seriously harmful to women's health. It has been found that pyroptosis is closely related to the initiation and development of cervical cancer. In this review the mechanisms of pyroptosis and its role in the initiation, progression and treatment application of cervical cancer are summarized and discussed.
Collapse
|
15
|
Huang Y, Li R, Yang Y. Role of Pyroptosis in Gynecological Oncology and Its Therapeutic Regulation. Biomolecules 2022; 12:biom12070924. [PMID: 35883480 PMCID: PMC9313147 DOI: 10.3390/biom12070924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
With the continuous advances in molecular biotechnology, many new cell death methods have been discovered. Pyroptosis is a programmed cell death process that differs from apoptosis and autophagy in cell morphology and function. Compared with apoptosis and autophagy, pyroptosis is primarily mediated by intracellular inflammasome and gasdermin D of the gasdermin protein family and involves the release of numerous inflammatory factors. Pyroptosis has been found to be involved in the occurrence and development of infectious diseases and other diseases involving the nervous system and the cardiovascular system. Recent studies have also reported the occurrence of pyroptosis in tumor cells. Accordingly, exploring its effect on tumors has become one of the research hotspots. Herein, recent research progress on pyroptosis is reviewed, especially its role in the development of gynecological tumors. As the pathogenesis of gynecological tumor is better understood, new targets have been introduced for the prevention and clinical treatment of gynecological tumors.
Collapse
Affiliation(s)
- Yi Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.H.); (R.L.)
| | - Ruiyun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.H.); (R.L.)
| | - Yuan Yang
- The Reproductive Medicine Center, The 1st Hospital of Lanzhou University, Lanzhou 730000, China
- Correspondence:
| |
Collapse
|
16
|
Semen Modulates Cell Proliferation and Differentiation-Related Transcripts in the Pig Peri-Ovulatory Endometrium. BIOLOGY 2022; 11:biology11040616. [PMID: 35453814 PMCID: PMC9029625 DOI: 10.3390/biology11040616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 04/16/2022] [Indexed: 01/18/2023]
Abstract
Simple Summary Homeostasis of the uterus after mating is crucial for the subsequent reproductive events. The post-mating inflammatory response is restricted to the uterus, but semen also modulates the expression of other genes involved in regulation along the female reproductive tract, including the oviduct. This study aims to determine if several ejaculate fractions of the pig may modulate cell proliferation and differentiation-related transcripts in different sections of the peri-ovulatory sow reproductive tract. Our data demonstrate that most of the mRNA expression changes of the 144 transcripts tested were induced by mating. Additionally, spermatozoa and seminal plasma also triggered differential expression of the transcripts tested. Finally, our data imply that spermatozoa, seminal plasma components, and the act of mating induce differential mechanisms in the peri-ovulatory female reproductive tract, which are essential for tissue repair. Abstract Uterine homeostasis is maintained after mating by eliminating pathogens, foreign cells, and proteins by a transient inflammation of the uterus. Such inflammation does not occur in the oviductal sperm reservoir (utero-tubal junction, UTJ), colonized by a population of potentially fertile spermatozoa before the inflammatory changes are triggered. Semen entry (spermatozoa and/or seminal plasma) modifies the expression of regulatory genes, including cell proliferation and differentiation-related transcripts. Considering pigs display a fractionated ejaculation, this study aims to determine whether different ejaculate fractions differentially modulate cell proliferation and differentiation-related transcripts in the sow reproductive tract during the peri-ovulatory stage. Using species-specific microarray analyses, the differential expression of 144 cell proliferation and differentiation-related transcripts was studied in specific segments: cervix (Cvx), distal and proximal uterus (DistUt, ProxUt), UTJ, isthmus (Isth), ampulla (Amp), and infundibulum (Inf) of the peri-ovulatory sow reproductive tract in response to semen and/or seminal plasma cervical deposition. Most mRNA expression changes were induced by mating. In addition, while mating upregulates the fibroblast growth factor 1 (FGF1, p-value DistUt = 0.0007; ProxUt = 0.0253) transcript in the endometrium, both its receptor, the fibroblast growth factor receptor 1 (FGFR1, p-value DistUt = 2.14 e−06; ProxUt = 0.0027; UTJ = 0.0458) transcript, and a potentiator of its biological effect, the fibroblast growth factor binding protein 1 (FGFBP1), were downregulated in the endometrium (p-value DistUt = 0.0068; ProxUt = 0.0011) and the UTJ (p-value UTJ = 0.0191). The FGFBP1 was downregulated in the whole oviduct after seminal depositions (p-value Isth = 0.0007; Amp = 0.0007; Inf = 6.87 e−05) and, interestingly, FGFR1 was downregulated in the endometrium in the absence of semen (p-value DistUt = 0.0097; ProxUt = 0.0456). In conclusion, the findings suggest that spermatozoa, seminal components, and the act of mating trigger, besides inflammation, differential mechanisms in the peri-ovulatory female reproductive tract, relevant for tissue repair.
Collapse
|
17
|
Fu D, Ju Y, Zhu C, Pan Y, Zhang S. LncRNA NEAT1 Promotes TLR4 Expression to Regulate Lipopolysaccharide-Induced Trophoblastic Cell Pyroptosis as a Molecular Sponge of miR-302b-3p. Mol Biotechnol 2022; 64:670-680. [PMID: 35064469 DOI: 10.1007/s12033-021-00436-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
Pyroptosis is an inflammation-triggered cell death caused by certain inflammasomes, and long non-coding RNAs (lncRNAs) are related to cell pyroptosis. This study evaluated the mechanism of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) on lipopolysaccharide (LPS)-induced trophoblastic cells pyroptosis. HTR-8/Svneo trophoblastic cells were treated with LPS. The expression of lncRNA NEAT1 was decreased using siRNAs, followed by the evaluation of cell proliferation, Caspase-1 activity, levels of Cleaved Caspase-1 and gasdermin D-N, and the concentrations of Interleukin (IL)-1β and IL-18. We found that LPS promoted the pyroptosis of HTR-8/Svneo cells, and lncRNA NEAT1 was highly expressed in LPS-treated HTR-8/Svneo cells while silencing lncRNA NEAT1 inhibited LPS-induced trophoblastic cells pyroptosis. The subcellular localization of lncRNA NEAT1 was detected. Dual-luciferase gene experiment and RNA pull-down assay detected that lncRNA NEAT1 bound to miR-302b-3p and could inhibit miR-302b-3p, and toll-like receptor 4 (TLR4) was the target gene of miR-302b-3p. Then, a joint experiment was designed for detection, which found that miR-302b-3p downregulation partially reversed the inhibition of silencing lncRNA NEAT1 on LPS-induced trophoblastic cells pyroptosis and overexpression of TLR4 annulled the inhibition of silencing lncRNA NEAT1 on LPS-induced trophoblastic cells pyroptosis. Therefore, lncRNA NEAT1 promoted the transcription of TLR4 by competitively binding to miR-302b-3p, thus promoting LPS-induced trophoblastic cells pyroptosis.
Collapse
Affiliation(s)
- Dan Fu
- Department of Prenatal Diagnosis, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, No. 98 Nantong West Road, Guangling District, Yangzhou, Jiangsu Province, 225001, China
| | - Yun Ju
- Department of Prenatal Diagnosis, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, No. 98 Nantong West Road, Guangling District, Yangzhou, Jiangsu Province, 225001, China
| | - Chunhui Zhu
- Reproductive Medicine Center, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, No. 98 Nantong West Road, Guangling District, Yangzhou, Jiangsu Province, 225001, China
| | - Yu Pan
- Reproductive Medicine Center, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, No. 98 Nantong West Road, Guangling District, Yangzhou, Jiangsu Province, 225001, China
| | - Suhua Zhang
- Department of Prenatal Diagnosis, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, No. 98 Nantong West Road, Guangling District, Yangzhou, Jiangsu Province, 225001, China.
| |
Collapse
|