1
|
Lu Y, Zhu Q, Wang Y, Luo M, Huang J, Liang Q, Huang L, Ouyang J, Li C, Tang N, Li Y, Kang T, Song Y, Xu X, Ye L, Zheng G, Chen C, Zhu C. Enhancement of PRMT6 binding to a novel germline GATA1 mutation associated with congenital anemia. Haematologica 2024; 109:2955-2968. [PMID: 38385251 PMCID: PMC11367199 DOI: 10.3324/haematol.2023.284183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
Mutations in the master hematopoietic transcription factor GATA1 are often associated with functional defects in erythropoiesis and megakaryopoiesis. In this study, we identified a novel GATA1 germline mutation (c.1162delGG, p.Leu387Leufs*62) in a patient with congenital anemia and occasional thrombocytopenia. The C-terminal GATA1, a rarely studied mutational region, undergoes frameshifting translation as a consequence of this double-base deletion mutation. To investigate the specific function and pathogenic mechanism of this mutant, in vitro mutant models of stable re-expression cells were generated. The mutation was subsequently validated to cause diminished transcriptional activity of GATA1 and defective differentiation of erythroid and megakaryocytes. Using proximity labeling and mass spectrometry, we identified selective alterations in the proximal protein networks of the mutant, revealing decreased binding to a set of normal GATA1-interaction proteins, including the essential co-factor FOG1. Notably, our findings further demonstrated enhanced recruitment of the protein arginine methyltransferase PRMT6, which mediates histone modification at H3R2me2a and represses transcription activity. We also found an enhanced binding of this mutant GATA1/PRMT6 complex to the transcriptional regulatory elements of GATA1's target genes. Moreover, treatment of the PRMT6 inhibitor MS023 could partially rescue the inhibited transcriptional and impaired erythroid differentiation caused by the GATA1 mutation. Taken together, our results provide molecular insights into erythropoiesis in which mutation leads to partial loss of GATA1 function, and the role of PRMT6 and its inhibitor MS023 in congenital anemia, highlighting PRMT6 binding as a negative factor of GATA1 transcriptional activity in aberrant hematopoiesis.
Collapse
Affiliation(s)
- Yingsi Lu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong
| | - Qingqing Zhu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong
| | - Yun Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong
| | - Meiling Luo
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong
| | - Junbin Huang
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong
| | - Qian Liang
- Department of Spine Surgery, the First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong
| | - Lifen Huang
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong
| | - Jing Ouyang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong
| | - Chenxin Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong
| | - Nannan Tang
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong
| | - Yan Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong
| | - Tingting Kang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong
| | - Yujia Song
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong
| | - Xiaoyu Xu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China; Department of Obstetrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong
| | - Liping Ye
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong
| | - Guoxing Zheng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong.
| | - Chun Chen
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong.
| | - Chengming Zhu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong.
| |
Collapse
|
2
|
A Novel GATA1 Variant in the C-Terminal Zinc Finger Compared with the Platelet Phenotype of Patients with A Likely Pathogenic Variant in the N-Terminal Zinc Finger. Cells 2022; 11:cells11203223. [PMID: 36291092 PMCID: PMC9600848 DOI: 10.3390/cells11203223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 01/19/2023] Open
Abstract
The GATA1 transcription factor is essential for normal erythropoiesis and megakaryocytic differentiation. Germline GATA1 pathogenic variants in the N-terminal zinc finger (N-ZF) are typically associated with X-linked thrombocytopenia, platelet dysfunction, and dyserythropoietic anemia. A few variants in the C-terminal ZF (C-ZF) domain are described with normal platelet count but altered platelet function as the main characteristic. Independently performed molecular genetic analysis identified a novel hemizygous variant (c.865C>T, p.H289Y) in the C-ZF region of GATA1 in a German patient and in a Spanish patient. We characterized the bleeding and platelet phenotype of these patients and compared these findings with the parameters of two German siblings carrying the likely pathogenic variant p.D218N in the GATA1 N-ZF domain. The main difference was profound thrombocytopenia in the brothers carrying the p.D218N variant compared to a normal platelet count in patients carrying the p.H289Y variant; only the Spanish patient occasionally developed mild thrombocytopenia. A functional platelet defect affecting αIIbβ3 integrin activation and α-granule secretion was present in all patients. Additionally, mild anemia, anisocytosis, and poikilocytosis were observed in the patients with the C-ZF variant. Our data support the concept that GATA1 variants located in the different ZF regions can lead to clinically diverse manifestations.
Collapse
|
3
|
Sharma T, Brunet JG, Tasneem S, Smith SA, Morrissey JH, Hayward CPM. Thrombin generation abnormalities in commonly encountered platelet function disorders. Int J Lab Hematol 2021; 43:1557-1565. [PMID: 34185390 PMCID: PMC8599625 DOI: 10.1111/ijlh.13638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/16/2021] [Accepted: 06/03/2021] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Studies of thrombin generation (TG) with platelet-rich plasma (PRP) and platelet-poor plasma (PPP) have provided insights on bleeding disorders. We studied TG for a cohort with commonly encountered platelet function disorders (PFD). METHODS Participants included 40 controls and 31 with PFD due to: nonsyndromic dense granule (DG) deficiency (PFD-DGD, n = 9), RUNX1 haploinsufficiency (n = 6) and aggregation defects from other, uncharacterized causes (n = 16). TG was tested with PRP and PPP samples. As DG store ADP and polyphosphate that enhance platelet-dependent TG, PFD-DGD PRP TG was tested for correction with ADP, polyphosphate and combined additives. Tissue factor pathway inhibitor (TFPI), platelet factor V (FV), and platelet TFPI and ANO6 transcript levels were also evaluated. Findings were tested for associations with TG endpoints and bleeding. RESULTS PFD samples had impaired PRP TG, but also impaired PPP TG, with strong associations between their PRP and PPP TG endpoints (P ≤ .005). PFD-DGD PRP TG endpoints showed associations to PPP TG endpoints but not to DG counts, and were improved, but not fully corrected, by adding polyphosphate and agonists. PFD participants had increased plasma TFPI and reduced platelet TFPI (P ≤ .02) but normal levels of platelet FV, and platelet TFPI and ANO6 transcripts levels. PFD plasma TFPI levels showed significant association to several PPP TG endpoints (P ≤ .04). Several PFD PRP TG endpoints showed significant associations to bleeding symptoms, including wound healing problems and prolonged bleeding from minor cuts (P ≤ .04). CONCLUSION TG is impaired in commonly encountered PFD, with their PRP TG findings showing interesting associations to symptoms.
Collapse
Affiliation(s)
- Tanmya Sharma
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Justin G Brunet
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | - Catherine P M Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton, ON, Canada
| |
Collapse
|
4
|
Poscablo DM, Worthington AK, Smith-Berdan S, Forsberg EC. Megakaryocyte progenitor cell function is enhanced upon aging despite the functional decline of aged hematopoietic stem cells. Stem Cell Reports 2021; 16:1598-1613. [PMID: 34019813 PMCID: PMC8190594 DOI: 10.1016/j.stemcr.2021.04.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
Age-related morbidity is associated with a decline in hematopoietic stem cell (HSC) function, but the mechanisms of HSC aging remain unclear. We performed heterochronic HSC transplants followed by quantitative analysis of cell reconstitution. Although young HSCs outperformed old HSCs in young recipients, young HSCs unexpectedly failed to outcompete the old HSCs of aged recipients. Interestingly, despite substantial enrichment of megakaryocyte progenitors (MkPs) in old mice in situ and reported platelet (Plt) priming with age, transplanted old HSCs were deficient in reconstitution of all lineages, including MkPs and Plts. We therefore performed functional analysis of young and old MkPs. Surprisingly, old MkPs displayed unmistakably greater regenerative capacity compared with young MkPs. Transcriptome analysis revealed putative molecular regulators of old MkP expansion. Collectively, these data demonstrated that aging affects HSCs and megakaryopoiesis in fundamentally different ways: whereas old HSCs functionally decline, MkPs gain expansion capacity upon aging. Reconstitution deficit by old HSCs was observed by chimerism and absolute cell numbers Young HSCs did not outcompete resident HSCs in aged recipient mice Old MkPs display remarkable capacity to engraft, expand, and reconstitute platelets Aging is associated with changes in MkP genome-wide expression signatures
Collapse
Affiliation(s)
- Donna M Poscablo
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, USA; Program in Biomedical Sciences and Engineering, Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Atesh K Worthington
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, USA; Program in Biomedical Sciences and Engineering, Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Stephanie Smith-Berdan
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, USA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, USA; Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
5
|
Bellissimo DC, Chen CH, Zhu Q, Bagga S, Lee CT, He B, Wertheim GB, Jordan M, Tan K, Worthen GS, Gilliland DG, Speck NA. Runx1 negatively regulates inflammatory cytokine production by neutrophils in response to Toll-like receptor signaling. Blood Adv 2020; 4:1145-1158. [PMID: 32208490 PMCID: PMC7094023 DOI: 10.1182/bloodadvances.2019000785] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/13/2020] [Indexed: 01/14/2023] Open
Abstract
RUNX1 is frequently mutated in myeloid and lymphoid malignancies. It has been shown to negatively regulate Toll-like receptor 4 (TLR4) signaling through nuclear factor κB (NF-κB) in lung epithelial cells. Here we show that RUNX1 regulates TLR1/2 and TLR4 signaling and inflammatory cytokine production by neutrophils. Hematopoietic-specific RUNX1 loss increased the production of proinflammatory mediators, including tumor necrosis factor-α (TNF-α), by bone marrow neutrophils in response to TLR1/2 and TLR4 agonists. Hematopoietic RUNX1 loss also resulted in profound damage to the lung parenchyma following inhalation of the TLR4 ligand lipopolysaccharide (LPS). However, neutrophils with neutrophil-specific RUNX1 loss lacked the inflammatory phenotype caused by pan-hematopoietic RUNX1 loss, indicating that dysregulated TLR4 signaling is not due to loss of RUNX1 in neutrophils per se. Rather, single-cell RNA sequencing indicates the dysregulation originates in a neutrophil precursor. Enhanced inflammatory cytokine production by neutrophils following pan-hematopoietic RUNX1 loss correlated with increased degradation of the inhibitor of NF-κB signaling, and RUNX1-deficient neutrophils displayed broad transcriptional upregulation of many of the core components of the TLR4 signaling pathway. Hence, early, pan-hematopoietic RUNX1 loss de-represses an innate immune signaling transcriptional program that is maintained in terminally differentiated neutrophils, resulting in their hyperinflammatory state. We hypothesize that inflammatory cytokine production by neutrophils may contribute to leukemia associated with inherited RUNX1 mutations.
Collapse
Affiliation(s)
- Dana C Bellissimo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Chia-Hui Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Qin Zhu
- Graduate Group in Genomics and Computational Biology
| | - Sumedha Bagga
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Chung-Tsai Lee
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bing He
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Gerald B Wertheim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, and
| | - Martha Jordan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, and
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - G Scott Worthen
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Asnafi AA, Mohammadi MB, Rezaeeyan H, Davari N, Saki N. Prognostic significance of mutated genes in megakaryocytic disorders. Oncol Rev 2019; 13:408. [PMID: 31410247 PMCID: PMC6661530 DOI: 10.4081/oncol.2019.408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/28/2019] [Indexed: 01/19/2023] Open
Abstract
Megakaryopoiesis is a process during which platelets that play a major role in hemostasis are produced due to differentiation and maturation of megakaryocytic precursors. Several genes, including oncogenes and tumor suppressor genes, play a role in the regulation of this process. This study was conducted to investigate the oncogenes and tumor suppressor genes as well as their mutations during the megakaryopoiesis process, which can lead to megakaryocytic disorders. Relevant literature was identified by a PubMed search (1998-2019) of English language papers using the terms ‘Megakaryopoiesis’, ‘Mutation’, ‘oncogenes’, and ‘Tumor Suppressor’. According to investigations, several mutations occur in the genes implicated in megakaryopoiesis, which abnormally induce or inhibit megakaryocyte production, differentiation, and maturation, leading to platelet disorders. GATA-1 is one of the important genes in megakaryopoiesis and its mutations can be considered among the factors involved in the incidence of these disorders. Considering the essential role of these genes (such as GATA- 1) in megakaryopoiesis and the involvement of their mutations in platelet disorders, study and examination of these changes can be a positive step in the diagnosis and prognosis of these diseases.
Collapse
Affiliation(s)
- Ali Amin Asnafi
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Bagher Mohammadi
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Rezaeeyan
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Nava T, Rivard GE, Bonnefoy A. Challenges on the diagnostic approach of inherited platelet function disorders: Is a paradigm change necessary? Platelets 2017; 29:148-155. [PMID: 29090587 DOI: 10.1080/09537104.2017.1356918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inherited platelet function disorders (IPFD) have been assessed for more than 50 years by aggregation- and secretion-based tests. Several decision trees are available intending to standardize the investigation of IPFD. A large variability of approaches is still in use among the laboratories across the world. In spite of costly and lengthy laboratory evaluation, the results have been found inconclusive or negative in a significant part of patients having bleeding manifestations. Molecular investigation of newly identified IPFD has recently contributed to a better understanding of the complexity of platelet function. Once considered "classic" IPFDs, Glanzmann thrombasthenia and Bernard-Soulier syndrome have each had their pathophysiology reassessed and their diagnosis made more precise and informative. Megakaryopoiesis, platelet formation, and function have been found tightly interlinked, with several genes being involved in both inherited thrombocytopenias and impaired platelet function. Moreover, genetic approaches have moved from being used as confirmatory diagnostic tests to being tools for identification of genetic variants associated with bleeding disorders, even in the absence of a clear phenotype in functional testing. In this study, we aim to address some limits of the conventional tests used for the diagnosis of IPFD, and to highlight the potential contribution of recent molecular tools and opportunities to rethink the way we should approach the investigation of IPFD.
Collapse
Affiliation(s)
- Tiago Nava
- a Centre Hospitalier Universitaire Sainte-Justine , Hematology and Oncology Division , Montréal , QC , Canada.,b Child and Adolescent Health, School of Medicine , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brazil
| | - Georges-Etienne Rivard
- a Centre Hospitalier Universitaire Sainte-Justine , Hematology and Oncology Division , Montréal , QC , Canada
| | - Arnaud Bonnefoy
- a Centre Hospitalier Universitaire Sainte-Justine , Hematology and Oncology Division , Montréal , QC , Canada
| |
Collapse
|
8
|
Rao AK, Poncz M. Defective acid hydrolase secretion in RUNX1 haplodeficiency: Evidence for a global platelet secretory defect. Haemophilia 2017; 23:784-792. [PMID: 28662545 PMCID: PMC5623153 DOI: 10.1111/hae.13280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND RUNX1 haplodeficiency is associated with thrombocytopenia, platelet dysfunction and a predisposition to acute leukaemia. Platelets possess three distinct types of granules and secretory processes involving dense granules (DG), α-granules and vesicles or lysosomes containing acid hydrolases (AH). Dense granules and granule deficiencies have been reported in patients with RUNX1 mutations. Little is known regarding the secretion from AH-containing vesicles. METHODS AND RESULTS We studied two related patients with a RUNX1 mutation, easy bruising, and mild thrombocytopenia. Platelet aggregation and 14 C serotonin in platelet-rich plasma (PRP) were impaired in response to ADP, epinephrine, collagen and arachidonic acid. Contents of DG (ATP, ADP), α-granules (β-thromboglobulin) and AH-containing vesicles (β-glucuronidase, β-hexosaminidase, α-mannosidase) were normal or minimally decreased. Dense granules secretion on stimulation of gel-filtered platelets with thrombin and divalent ionophore A23187 (4-12 μmol L-1 ) were diminished. β-thromboglobulin and AH secretion was impaired in response to thrombin or A23187. We studied thromboxane-related pathways. The incorporation of 14 C -arachidonic acid into phospholipids and subsequent arachidonic acid release on thrombin activation was normal. Platelet thromboxane A2 production in whole blood serum and on thrombin stimulation of PRP was normal, suggesting that the defective secretion was not due to impaired thromboxane production. CONCLUSIONS These studies provide the first evidence in patients with a RUNX1 mutation for a defect in AH (lysosomal) secretion, and for a global defect in secretion involving all three types of platelet granules that is unrelated to a granule content deficiency. They highlight the pleiotropic effects and multiple platelet defects associated with RUNX1 mutations.
Collapse
Affiliation(s)
- A K Rao
- Sol Sherry Thrombosis Research Center and the Hematology Division, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - M Poncz
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
9
|
Melazzini F, Zaninetti C, Balduini CL. Bleeding is not the main clinical issue in many patients with inherited thrombocytopaenias. Haemophilia 2017; 23:673-681. [PMID: 28594466 DOI: 10.1111/hae.13255] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2017] [Indexed: 02/01/2023]
Abstract
Bleeding diathesis has been considered for a long time the main clinical issue impacting the lives of patients affected by inherited thrombocytopaenias. However, the number of known inherited thrombocytopaenias greatly increased in recent years, and careful evaluation of hundreds of patients affected by these 'new' disorders revealed that most of them are at risk of developing additional life-threatening disorders during childhood or adult life. These additional disorders are usually more serious and dangerous than low platelet count. For instance, it is known that mutations in RUNX1, ANKRD26 and ETV6 cause congenital thrombocytopaenia, but we now know that they also predispose to haematological malignancies. Similarly, MYH9 mutations result in congenital thrombocytopaenia and increase the risk of developing kidney failure, cataracts and hearing loss at a later stage, while MPL mutations cause a congenital thrombocytopaenia that almost always evolves into deadly bone marrow failure. Thus, identification of patients with these disorders is essential for evaluation of their prognosis, enabling effective genetic counselling, personalizing follow-up and giving appropriate treatments in case of development of additional diseases. Careful clinical evaluation and peripheral blood film examination are extremely useful tools in guiding the diagnostic process and identifying the candidate genes to be sequenced.
Collapse
Affiliation(s)
- F Melazzini
- IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - C Zaninetti
- IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - C L Balduini
- IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
Anguita E, Candel FJ, Chaparro A, Roldán-Etcheverry JJ. Transcription Factor GFI1B in Health and Disease. Front Oncol 2017; 7:54. [PMID: 28401061 PMCID: PMC5368270 DOI: 10.3389/fonc.2017.00054] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
Many human diseases arise through dysregulation of genes that control key cell fate pathways. Transcription factors (TFs) are major cell fate regulators frequently involved in cancer, particularly in leukemia. The GFI1B gene, coding a TF, was identified by sequence homology with the oncogene growth factor independence 1 (GFI1). Both GFI1 and GFI1B have six C-terminal C2H2 zinc fingers and an N-terminal SNAG (SNAIL/GFI1) transcriptional repression domain. Gfi1 is essential for neutrophil differentiation in mice. In humans, GFI1 mutations are associated with severe congenital neutropenia. Gfi1 is also required for B and T lymphopoiesis. However, knockout mice have demonstrated that Gfi1b is required for development of both erythroid and megakaryocytic lineages. Consistent with this, human mutations of GFI1B produce bleeding disorders with low platelet count and abnormal function. Loss of Gfi1b in adult mice increases the absolute numbers of hematopoietic stem cells (HSCs) that are less quiescent than wild-type HSCs. In keeping with this key role in cell fate, GFI1B is emerging as a gene involved in cancer, which also includes solid tumors. In fact, abnormal activation of GFI1B and GFI1 has been related to human medulloblastoma and is also likely to be relevant in blood malignancies. Several pieces of evidence supporting this statement will be detailed in this mini review.
Collapse
Affiliation(s)
- Eduardo Anguita
- Hematology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Francisco J Candel
- Microbiology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC) , Madrid , Spain
| | - Alberto Chaparro
- Hematology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Juan J Roldán-Etcheverry
- Hematology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
11
|
Saultier P, Vidal L, Canault M, Bernot D, Falaise C, Pouymayou C, Bordet JC, Saut N, Rostan A, Baccini V, Peiretti F, Favier M, Lucca P, Deleuze JF, Olaso R, Boland A, Morange PE, Gachet C, Malergue F, Fauré S, Eckly A, Trégouët DA, Poggi M, Alessi MC. Macrothrombocytopenia and dense granule deficiency associated with FLI1 variants: ultrastructural and pathogenic features. Haematologica 2017; 102:1006-1016. [PMID: 28255014 PMCID: PMC5451332 DOI: 10.3324/haematol.2016.153577] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/24/2017] [Indexed: 12/20/2022] Open
Abstract
Congenital macrothrombocytopenia is a family of rare diseases, of which a significant fraction remains to be genetically characterized. To analyze cases of unexplained thrombocytopenia, 27 individuals from a patient cohort of the Bleeding and Thrombosis Exploration Center of the University Hospital of Marseille were recruited for a high-throughput gene sequencing study. This strategy led to the identification of two novel FLI1 variants (c.1010G>A and c.1033A>G) responsible for macrothrombocytopenia. The FLI1 variant carriers’ platelets exhibited a defect in aggregation induced by low-dose adenosine diphosphate (ADP), collagen and thrombin receptor-activating peptide (TRAP), a defect in adenosine triphosphate (ATP) secretion, a reduced mepacrine uptake and release and a reduced CD63 expression upon TRAP stimulation. Precise ultrastructural analysis of platelet content was performed using transmission electron microscopy and focused ion beam scanning electron microscopy. Remarkably, dense granules were nearly absent in the carriers’ platelets, presumably due to a biogenesis defect. Additionally, 25–29% of the platelets displayed giant α-granules, while a smaller proportion displayed vacuoles (7–9%) and autophagosome-like structures (0–3%). In vitro study of megakaryocytes derived from circulating CD34+ cells of the carriers revealed a maturation defect and reduced proplatelet formation potential. The study of the FLI1 variants revealed a significant reduction in protein nuclear accumulation and transcriptional activity properties. Intraplatelet flow cytometry efficiently detected the biomarker MYH10 in FLI1 variant carriers. Overall, this study provides new insights into the phenotype, pathophysiology and diagnosis of FLI1 variant-associated thrombocytopenia.
Collapse
Affiliation(s)
- Paul Saultier
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
| | - Léa Vidal
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
| | | | - Denis Bernot
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
| | - Céline Falaise
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | - Catherine Pouymayou
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | | | - Noémie Saut
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France.,APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | - Agathe Rostan
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France.,APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | - Véronique Baccini
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France.,APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | | | - Marie Favier
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
| | - Pauline Lucca
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France.,Inserm, UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), UMR_S 1166, France
| | | | - Robert Olaso
- Centre National de Génotypage, Institut de Génomique, CEA, Evry, France
| | - Anne Boland
- Centre National de Génotypage, Institut de Génomique, CEA, Evry, France
| | - Pierre Emmanuel Morange
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France.,APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | - Christian Gachet
- UMR_S949 INSERM, Strasbourg, France.,Etablissement Français du Sang (EFS)-Alsace, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), France.,Université de Strasbourg, Marseille, France
| | - Fabrice Malergue
- Beckman Coulter Immunotech, Life Sciences Global Assay and Applications Development, Marseille, France
| | - Sixtine Fauré
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
| | - Anita Eckly
- UMR_S949 INSERM, Strasbourg, France.,Etablissement Français du Sang (EFS)-Alsace, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), France.,Université de Strasbourg, Marseille, France
| | - David-Alexandre Trégouët
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France.,Inserm, UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), UMR_S 1166, France
| | - Marjorie Poggi
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
| | - Marie-Christine Alessi
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France.,APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| |
Collapse
|
12
|
Rao AK. Editorial: Platelet Genomics and Disorders of Platelet Number and Function. Platelets 2017; 28:2. [PMID: 28095213 DOI: 10.1080/09537104.2016.1262013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- A Koneti Rao
- a Sol Sherry Thrombosis Research Center and Department of Medicine , Lewis Katz School of Medicine at Temple University , Philadelphia , PA , USA
| |
Collapse
|