2
|
Napolitano F, Montuori N. Role of Plasminogen Activation System in Platelet Pathophysiology: Emerging Concepts for Translational Applications. Int J Mol Sci 2022; 23:ijms23116065. [PMID: 35682744 PMCID: PMC9181697 DOI: 10.3390/ijms23116065] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Traditionally, platelets have been exclusively considered for their procoagulant and antifibrinolytic effects during normal activation of hemostasis. Effectively, activated platelets secrete coagulation factors, expose phosphatidylserine, and promote thrombin and fibrin production. In addition to procoagulant activities, platelets confer resistance of thrombi to fibrinolysis by inducing clot retraction of the fibrin network and release of huge amounts of plasminogen activator inhibitor-1, which is the major physiologic inhibitor of the fibrinolytic cascade. However, the discovery of multiple relations with the fibrinolytic system, also termed Plasminogen Activation System (PAS), has introduced new perspectives on the platelet role in fibrinolysis. Indeed, the activated membrane surface of platelets provides binding sites on which fibrinolytic enzymes can be activated. This review discusses the evidence of the profibrinolytic properties of platelets through the description of PAS components and related proteins that are contained in or bind to platelets. Our analyses of literature data lead to the conclusion that in the initial phase of the hemostatic process, antifibrinolytic effects prevail over profibrinolytic activity, but at later stages, platelets might enhance fibrinolysis through the engagement of PAS components. A better understanding of spatial and temporal characteristics of platelet-mediated fibrinolysis during normal hemostasis could improve therapeutic options for bleeding and thrombotic disorders.
Collapse
|
3
|
Zhu L, Gao T, Huang Y, Jin J, Wang D, Zhang L, Jin Y, Li P, Hu Y, Wu Y, Liu H, Dong Q, Wang G, Zheng T, Song C, Bai Y, Zhang X, Liu Y, Yang W, Xu K, Zou G, Zhao L, Cao R, Zhong W, Xia X, Xiao G, Liu X, Cao C. Ebola virus VP35 hijacks the PKA-CREB1 pathway for replication and pathogenesis by AKIP1 association. Nat Commun 2022; 13:2256. [PMID: 35474062 PMCID: PMC9042921 DOI: 10.1038/s41467-022-29948-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/06/2022] [Indexed: 12/17/2022] Open
Abstract
Ebola virus (EBOV), one of the deadliest viruses, is the cause of fatal Ebola virus disease (EVD). The underlying mechanism of viral replication and EBOV-related hemorrhage is not fully understood. Here, we show that EBOV VP35, a cofactor of viral RNA-dependent RNA polymerase, binds human A kinase interacting protein (AKIP1), which consequently activates protein kinase A (PKA) and the PKA-downstream transcription factor CREB1. During EBOV infection, CREB1 is recruited into EBOV ribonucleoprotein complexes in viral inclusion bodies (VIBs) and employed for viral replication. AKIP1 depletion or PKA-CREB1 inhibition dramatically impairs EBOV replication. Meanwhile, the transcription of several coagulation-related genes, including THBD and SERPINB2, is substantially upregulated by VP35-dependent CREB1 activation, which may contribute to EBOV-related hemorrhage. The finding that EBOV VP35 hijacks the host PKA-CREB1 signal axis for viral replication and pathogenesis provides novel potential therapeutic approaches against EVD. Ebola virus virion protein 35 (VP35) is a cofactor of the viral RNA-dependent RNA polymerase, required for viral assembly and IFN antagonist. Here, Zhu et al. provide evidence that EBOV VP35 induces an AKIP1-mediated (human A kinase interacting protein) activation of the PKA-CREB1 signaling pathway and contributes to viral replication and pathogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Lin Zhu
- Beijing Institute of Biotechnology, Beijing, 100039, China
| | - Ting Gao
- Beijing Institute of Biotechnology, Beijing, 100039, China
| | - Yi Huang
- National Biosafety Laboratory, Chinese Academy of Sciences, Wuhan, Hubei, 430020, China
| | - Jing Jin
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Di Wang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Leike Zhang
- National Biosafety Laboratory, Chinese Academy of Sciences, Wuhan, Hubei, 430020, China
| | - Yanwen Jin
- Beijing Institute of Biotechnology, Beijing, 100039, China
| | - Ping Li
- Beijing Institute of Biotechnology, Beijing, 100039, China
| | - Yong Hu
- Beijing Institute of Biotechnology, Beijing, 100039, China
| | - Yan Wu
- National Biosafety Laboratory, Chinese Academy of Sciences, Wuhan, Hubei, 430020, China
| | - Hainan Liu
- Beijing Institute of Biotechnology, Beijing, 100039, China
| | - Qincai Dong
- Beijing Institute of Biotechnology, Beijing, 100039, China
| | - Guangfei Wang
- Beijing Institute of Biotechnology, Beijing, 100039, China
| | - Tong Zheng
- Beijing Institute of Biotechnology, Beijing, 100039, China
| | - Caiwei Song
- Beijing Institute of Biotechnology, Beijing, 100039, China
| | - Yu Bai
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Xun Zhang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Yaoning Liu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Weihong Yang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Ke Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gang Zou
- Insitut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lei Zhao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Gengfu Xiao
- National Biosafety Laboratory, Chinese Academy of Sciences, Wuhan, Hubei, 430020, China.
| | - Xuan Liu
- Beijing Institute of Biotechnology, Beijing, 100039, China.
| | - Cheng Cao
- Beijing Institute of Biotechnology, Beijing, 100039, China.
| |
Collapse
|
4
|
Sen P, Helmke A, Liao CM, Sörensen-Zender I, Rong S, Bräsen JH, Melk A, Haller H, von Vietinghoff S, Schmitt R. SerpinB2 Regulates Immune Response in Kidney Injury and Aging. J Am Soc Nephrol 2020; 31:983-995. [PMID: 32209589 DOI: 10.1681/asn.2019101085] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/09/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Expression of SerpinB2, a regulator of inflammatory processes, has been described in the context of macrophage activation and cellular senescence. Given that mechanisms for these processes interact and can shape kidney disease, it seems plausible that SerpinB2 might play a role in renal aging, injury, and repair. METHODS We subjected SerpinB2 knockout mice to ischemia-reperfusion injury or unilateral ureteral obstruction. We performed phagocyte depletion to study SerpinB2's role beyond the effects of macrophages and transplanted bone marrow from knockout mice to wild-type mice and vice versa to dissect cell type-dependent effects. Primary tubular cells and macrophages from SerpinB2 knockout and wild-type mice were used for functional studies and transcriptional profiling. RESULTS Cultured senescent tubular cells, kidneys of aged mice, and renal stress models exhibited upregulation of SerpinB2 expression. Functionally, lack of SerpinB2 in aged knockout mice had no effect on the magnitude of senescence markers but associated with enhanced kidney damage and fibrosis. In stress models, inflammatory cell infiltration was initially lower in knockout mice but later increased, leading to an accumulation of significantly more macrophages. SerpinB2 knockout tubular cells showed significantly reduced expression of the chemokine CCL2. Macrophages from knockout mice exhibited reduced phagocytosis and enhanced migration. Macrophage depletion and bone marrow transplantation experiments validated the functional relevance of these cell type-specific functions of SerpinB2. CONCLUSIONS SerpinB2 influences tubule-macrophage crosstalk by supporting tubular CCL2 expression and regulating macrophage phagocytosis and migration. In mice, SerpinB2 expression seems to be needed for coordination and timely resolution of inflammation, successful repair, and kidney homeostasis during aging. Implications of SerpinB2 in human kidney disease deserve further exploration.
Collapse
Affiliation(s)
- Payel Sen
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Germany
| | - Alexandra Helmke
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Germany
| | - Chieh Ming Liao
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Germany
| | - Inga Sörensen-Zender
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Germany
| | - Song Rong
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Germany
| | | | - Anette Melk
- Department of Pediatric Nephrology and Gastroenterology, Medical School Hannover, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Germany
| | | | - Roland Schmitt
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Germany
| |
Collapse
|
5
|
Valenzuela CA, Quintanilla R, Olate-Briones A, Venturini W, Mancilla D, Cayo A, Moore-Carrasco R, Brown NE. SASP-Dependent Interactions between Senescent Cells and Platelets Modulate Migration and Invasion of Cancer Cells. Int J Mol Sci 2019; 20:ijms20215292. [PMID: 31653055 PMCID: PMC6862446 DOI: 10.3390/ijms20215292] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022] Open
Abstract
Alterations in platelet aggregation are common in aging individuals and in the context of age-related pathologies such as cancer. So far, however, the effects of senescent cells on platelets have not been explored. In addition to serving as a barrier to tumor progression, cellular senescence can contribute to remodeling tissue microenvironments through the capacity of senescent cells to synthesize and secrete a plethora of bioactive factors, a feature referred to as the senescence-associated secretory phenotype (SASP). As senescent cells accumulate in aging tissues, sites of tissue injury, or in response to drugs, SASP factors may contribute to increase platelet activity and, through this mechanism, generate a microenvironment that facilitates cancer progression. Using in vitro models of drug-induced senescence, in which cellular senescence was induced following exposure of mammary epithelial cells (MCF-10A and MCF-7) and gastric cancer cells (AGS) to the CDK4/6 inhibitor Palbociclib, we show that senescent mammary and gastric cells display unique expression profiles of selected SASP factors, most of them being downregulated at the RNA level in senescent AGS cells. In addition, we observed cell-type specific differences in the levels of secreted factors, including IL-1β, in media conditioned by senescent cells. Interestingly, only media conditioned by senescent MCF-10A and MCF-7 cells were able to enhance platelet aggregation, although all three types of senescent cells were able to attract platelets in vitro. Nevertheless, the effects of factors secreted by senescent cells and platelets on the migration and invasion of non-senescent cells are complex. Overall, platelets have prominent effects on migration, while factors secreted by senescent cells tend to promote invasion. These differential responses likely reflect differences in the specific arrays of secreted senescence-associated factors, specific factors released by platelets upon activation, and the susceptibility of target cells to respond to these agents.
Collapse
Affiliation(s)
- Claudio A Valenzuela
- Center for Medical Research, Medical School, University of Talca, Talca 3460000, Chile.
- Núcleo Científico Multidisciplinario, Universidad de Talca, Talca 3460000, Chile.
| | - Ricardo Quintanilla
- Center for Medical Research, Medical School, University of Talca, Talca 3460000, Chile.
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile.
| | | | - Whitney Venturini
- Center for Medical Research, Medical School, University of Talca, Talca 3460000, Chile.
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile.
| | - Daniel Mancilla
- Center for Medical Research, Medical School, University of Talca, Talca 3460000, Chile.
| | - Angel Cayo
- Center for Medical Research, Medical School, University of Talca, Talca 3460000, Chile.
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile.
| | - Rodrigo Moore-Carrasco
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile.
- Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Talca 3460000, Chile.
| | - Nelson E Brown
- Center for Medical Research, Medical School, University of Talca, Talca 3460000, Chile.
- Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Talca 3460000, Chile.
| |
Collapse
|
6
|
Schroder WA, Hirata TD, Le TT, Gardner J, Boyle GM, Ellis J, Nakayama E, Pathirana D, Nakaya HI, Suhrbier A. SerpinB2 inhibits migration and promotes a resolution phase signature in large peritoneal macrophages. Sci Rep 2019; 9:12421. [PMID: 31455834 PMCID: PMC6712035 DOI: 10.1038/s41598-019-48741-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
SerpinB2 (plasminogen activator inhibitor type 2) has been called the "undecided serpin" with no clear consensus on its physiological role, although it is well described as an inhibitor of urokinase plasminogen activator (uPA). In macrophages, pro-inflammatory stimuli usually induce SerpinB2; however, expression is constitutive in Gata6+ large peritoneal macrophages (LPM). Interrogation of expression data from human macrophages treated with a range of stimuli using a new bioinformatics tool, CEMiTool, suggested that SerpinB2 is most tightly co- and counter-regulated with genes associated with cell movement. Using LPM from SerpinB2-/- and SerpinB2R380A (active site mutant) mice, we show that migration on Matrigel was faster than for their wild-type controls. Confocal microscopy illustrated that SerpinB2 and F-actin staining overlapped in focal adhesions and lamellipodia. Genes associated with migration and extracellular matrix interactions were also identified by RNA-Seq analysis of migrating RPM from wild-type and SerpinB2R380A mice. Subsequent gene set enrichment analyses (GSEA) suggested SerpinB2 counter-regulates many Gata6-regulated genes associated with migration. These data argue that the role of SerpinB2 in macrophages is inhibition of uPA-mediated plasmin generation during cell migration. GSEA also suggested that SerpinB2 expression (likely via ensuing modulation of uPA-receptor/integrin signaling) promotes the adoption of a resolution phase signature.
Collapse
Affiliation(s)
- Wayne A Schroder
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Thiago D Hirata
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Thuy T Le
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Joy Gardner
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Jonathan Ellis
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Dilan Pathirana
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Helder I Nakaya
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia.
| |
Collapse
|