1
|
Xu X, Xu S, Zhang Y, Wang L, Yan C, Xu Z, Zhao Q, Qi X. Neutrophil extracellular traps formation may be involved in the association of propranolol with the development of portal vein thrombosis. Thromb Res 2024; 238:208-221. [PMID: 38733693 DOI: 10.1016/j.thromres.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND & AIMS Nonselective β blockers (NSBBs) facilitate the development of portal vein thrombosis (PVT) in liver cirrhosis. Considering the potential effect of NSBBs on neutrophils and neutrophil extracellular traps (NETs), we speculated that NSBBs might promote the development of PVT by stimulating neutrophils to release NETs. MATERIALS AND METHODS Serum NETs biomarkers were measured, use of NSBBs was recorded, and PVT was evaluated in cirrhotic patients. Carbon tetrachloride and ferric chloride (FeCl3) were used to induce liver fibrosis and PVT in mice, respectively. After treatment with propranolol and DNase I, neutrophils in peripheral blood, colocalization and expression of NETs in PVT specimens, and NETs biomarkers in serum were measured. Ex vivo clots lysis analysis was performed and portal vein velocity and coagulation parameters were tested. RESULTS Serum MPO-DNA level was significantly higher in cirrhotic patients treated with NSBBs, and serum H3Cit and MPO-DNA levels were significantly higher in those with PVT. In fibrotic mice, following treatment with propranolol, DNase I significantly shortened the time of FeCl3-induced PVT formation, lowered the peripheral blood neutrophils labelled by CD11b/Ly6G, inhibited the positive staining of H3Cit and the expression of H3Cit and MPO proteins in PVT tissues, and reduced serum nucleosome level. Furthermore, the addition of DNase I to tissue plasminogen activator (tPA) significantly accelerated clots lysis as compared with tPA alone. Propranolol reduced portal vein velocity in fibrotic mice, but did not influence coagulation parameters. CONCLUSION Our study provides a clue to the potential impact of NETs formation on the association of NSBBs with the development of PVT.
Collapse
Affiliation(s)
- Xiangbo Xu
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shixue Xu
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yiyan Zhang
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
| | - Le Wang
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, China
| | - Zihua Xu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qingchun Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
2
|
Shirai T, Tsukiji N, Sasaki T, Oishi S, Yokomori R, Takano K, Suzuki-Inoue K. Cancer-associated fibroblasts promote venous thrombosis through podoplanin/CLEC-2 interaction in podoplanin-negative lung cancer mouse model. J Thromb Haemost 2023; 21:3153-3165. [PMID: 37473844 DOI: 10.1016/j.jtha.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/12/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Cancer-associated thrombosis (CAT) is the leading cause of morbidity and mortality. Cancer-associated fibroblasts (CAFs) are a prominent component of the tumor microenvironment that contributes to cancer progression through direct cell-cell interactions and the release of extracellular vesicles (EVs). However, the role of CAFs in CAT remains unclear. OBJECTIVE This study aims to investigate whether CAFs aggravate CAT and the underlying molecular mechanism using a preclinical mouse lung cancer model. METHODS We designed a Lewis lung carcinoma (LLC) tumor-bearing mouse model. CAFs were characterized using fluorescence immunohistostaining. The presence of podoplanin, a platelet-activating membrane protein through C-type lectin-like receptor 2 (CLEC-2), in EVs isolated from primary CAFs or LLC tumor tissues was assessed by immunoblotting. The platelet activation and aggregation abilities of the EVs were quantified using flow cytometry. Podoplanin plasma levels were measured by enzyme-linked immunosorbent assay. Venous thrombosis was induced in the femoral vein using 2.5% ferric chloride. The anti-CLEC-2 monoclonal antibody 2A2B10 was used to deplete CLEC-2 on the surface of the platelets. RESULTS CAFs expressing CD90, PDGFRβ, HSP47, CD34, and vimentin, co-expressed podoplanin and induced platelet activation and aggregation in a CLEC-2-dependent manner. Tumor-bearing mice showed elevated podoplanin plasma levels. CAF-EV injection and tumor-bearing mice showed shorter occlusion time in the venous thrombosis model. Although tumor growth was not altered, antibody-induced CLEC-2 depletion suppressed venous thrombosis in the tumor-bearing state but not in the healthy condition. CONCLUSION CAFs and CAF-derived EVs induce CLEC-2-dependent platelet aggregation and aggravate venous thrombosis.
Collapse
Affiliation(s)
- Toshiaki Shirai
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Nagaharu Tsukiji
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Tomoyuki Sasaki
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Saori Oishi
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Ryohei Yokomori
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Katsuhiro Takano
- Department of Transfusion and Cell Therapy, University of Yamanashi Hospital, Chuo, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan; Department of Transfusion and Cell Therapy, University of Yamanashi Hospital, Chuo, Japan.
| |
Collapse
|
3
|
Kawano T, Hisada Y, Grover SP, Schug WJ, Paul DS, Bergmeier W, Mackman N. Decreased Platelet Reactivity and Function in a Mouse Model of Human Pancreatic Cancer. Thromb Haemost 2023; 123:501-509. [PMID: 36716775 PMCID: PMC10820933 DOI: 10.1055/s-0043-1761419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cancer patients have increased thrombosis and bleeding compared with the general population. Cancer is associated with activation of both platelets and coagulation. Mouse models have been used to study the dysregulation of platelets and coagulation in cancer. We established a mouse model of pancreatic cancer in which tissue factor-expressing human pancreatic tumors (BxPC-3) are grown in nude mice. Tumor-bearing mice have an activated coagulation system and increased venous thrombosis compared to control mice. We also showed that tumor-derived, tissue factor-positive extracellular vesicles activated platelets ex vivo and in vivo. In this study, we determined the effect of tumors on a platelet-dependent arterial thrombosis model. Unexpectedly, we observed significantly reduced carotid artery thrombosis in tumor-bearing mice compared to controls. In addition, we observed significantly increased tail bleeding in tumor-bearing mice compared to controls. These results suggested that the presence of the tumor affected platelets. Indeed, tumor-bearing mice exhibited a significant decrease in platelet count and an increase in mean platelet volume and percentage of reticulated platelets, findings that are consistent with increased platelet turnover. Levels of the platelet activation marker platelet factor 4 were also increased in tumor-bearing mice. We also observed decreased platelet receptor expression in tumor-bearing mice and reduced levels of active αIIb/β3 integrin in response to PAR4 agonist peptide and convulxin in platelets from tumor-bearing mice compared with platelets from control mice. In summary, our study suggests that in tumor-bearing mice there is chronic platelet activation, leading to thrombocytopenia, decreased receptor expression, and impaired platelet adhesive function.
Collapse
Affiliation(s)
- Tomohiro Kawano
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Yohei Hisada
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Steven P. Grover
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Wyatt J. Schug
- Department of Biochemistry and Biophysics, UNC Blood Research Center, University of North Carolina at Chapel Hill, North Carolina, United States
| | - David S. Paul
- Department of Biochemistry and Biophysics, UNC Blood Research Center, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, UNC Blood Research Center, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
4
|
Beckman JD, DaSilva A, Aronovich E, Nguyen A, Nguyen J, Hargis G, Reynolds D, Vercellotti GM, Betts B, Wood DK. JAK-STAT inhibition reduces endothelial prothrombotic activation and leukocyte-endothelial proadhesive interactions. J Thromb Haemost 2023; 21:1366-1380. [PMID: 36738826 PMCID: PMC10246778 DOI: 10.1016/j.jtha.2023.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Vascular activation is characterized by increased proinflammatory, pro thrombotic, and proadhesive signaling. Several chronic and acute conditions, including Bcr-abl-negative myeloproliferative neoplasms (MPNs), graft-vs-host disease, and COVID-19 have been noted to have increased activation of the janus kinase (JAK)-signal transducer and downstream activator of transcription (STAT) pathways. Two notable inhibitors of the JAK-STAT pathway are ruxolitinib (JAK1/2 inhibitor) and fedratinib (JAK2 inhibitor), which are currently used to treat MPN patients. However, in some conditions, it has been noted that JAK inhibitors can increase the risk of thromboembolic complications. OBJECTIVES We sought to define the anti-inflammatory and antithrombotic effects of JAK-STAT inhibitors in vascular endothelial cells. METHODS We assessed endothelial activation in the presence or absence of ruxolitinib or fedratinib by using immunoblots, immunofluorescence, qRT-PCR, and function coagulation assays. Finally, we used endothelialized microfluidics perfused with blood from normal and JAK2V617F+ individuals to evaluate whether ruxolitinib and fedratinib changed cell adhesion. RESULTS We found that both ruxolitinib and fedratinib reduced endothelial cell phospho-STAT1 and STAT3 signaling and attenuated nuclear phospho-NK-κB and phospho-c-Jun localization. JAK-STAT inhibition also limited secretion of proadhesive and procoagulant P-selectin and von Willebrand factor and proinflammatory IL-6. Likewise, we found that JAK-STAT inhibition reduced endothelial tissue factor and urokinase plasminogen activator expression and activity. CONCLUSIONS By using endothelialized microfluidics perfused with whole blood samples, we demonstrated that endothelial treatment with JAK-STAT inhibitors prevented rolling of both healthy control and JAK2V617F MPN leukocytes. Together, these findings demonstrate that JAK-STAT inhibitors reduce the upregulation of critical prothrombotic pathways and prevent increased leukocyte-endothelial adhesion.
Collapse
Affiliation(s)
- Joan D Beckman
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA.
| | - Angelica DaSilva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elena Aronovich
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aithanh Nguyen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia Nguyen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Geneva Hargis
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Reynolds
- Department of Biomedical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory M Vercellotti
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian Betts
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - David K Wood
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Bourne JH, Smith CW, Jooss NJ, Di Y, Brown HC, Montague SJ, Thomas MR, Poulter NS, Rayes J, Watson SP. CLEC-2 Supports Platelet Aggregation in Mouse but not Human Blood at Arterial Shear. Thromb Haemost 2022; 122:1988-2000. [PMID: 35817083 PMCID: PMC9718592 DOI: 10.1055/a-1896-6992] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/01/2022] [Indexed: 10/17/2022]
Abstract
C-type lectin-like receptor 2 (CLEC-2) is highly expressed on platelets and a subpopulation of myeloid cells, and is critical in lymphatic development. CLEC-2 has been shown to support thrombus formation at sites of inflammation, but to have a minor/negligible role in hemostasis. This identifies CLEC-2 as a promising therapeutic target in thromboinflammatory disorders, without hemostatic detriment. We utilized a GPIbα-Cre recombinase mouse for more restricted deletion of platelet-CLEC-2 than the previously used PF4-Cre mouse. clec1bfl/flGPIbα-Cre+ mice are born at a Mendelian ratio, with a mild reduction in platelet count, and present with reduced thrombus size post-FeCl3-induced thrombosis, compared to littermates. Antibody-mediated depletion of platelet count in C57BL/6 mice, to match clec1bfl/flGPIbα-Cre+ mice, revealed that the reduced thrombus size post-FeCl3-injury was due to the loss of CLEC-2, and not mild thrombocytopenia. Similarly, clec1bfl/flGPIbα-Cre+ mouse blood replenished with CLEC-2-deficient platelets ex vivo to match littermates had reduced aggregate formation when perfused over collagen at arterial flow rates. In contrast, platelet-rich thrombi formed following perfusion of human blood under flow conditions over collagen types I or III, atherosclerotic plaque, or inflammatory endothelial cells were unaltered in the presence of CLEC-2-blocking antibody, AYP1, or recombinant CLEC-2-Fc. The reduction in platelet aggregation observed in clec1bfl/flGPIbα-Cre+ mice during arterial thrombosis is mediated by the loss of CLEC-2 on mouse platelets. In contrast, CLEC-2 does not support thrombus generation on collagen, atherosclerotic plaque, or inflamed endothelial cells in human at arterial shear.
Collapse
Affiliation(s)
- Joshua H. Bourne
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher W. Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natalie J. Jooss
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helena C. Brown
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| | - Samantha J. Montague
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mark R. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- UHB and SWBH NHS Trusts, Birmingham, United Kingdom
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| |
Collapse
|
6
|
Loss of α4A- and β1-tubulins leads to severe platelet spherocytosis and strongly impairs hemostasis in mice. Blood 2022; 140:2290-2299. [PMID: 36026602 DOI: 10.1182/blood.2022016729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
Native circulating blood platelets present with a discoid flat morphology maintained by a submembranous peripheral ring of microtubules, named marginal band. The functional importance of this particular shape is still debated, but it was initially hypothesized to facilitate platelet interaction with the injured vessel wall and to contribute to hemostasis. The importance of the platelet discoid morphology has since been questioned on the absence of clear bleeding tendency in mice lacking the platelet-specific β1-tubulin isotype, which exhibits platelets with a thinner marginal band and an ovoid shape. Here, we generated a mouse model inactivated for β1-tubulin and α4A-tubulin, an α-tubulin isotype strongly enriched in platelets. These mice present with fully spherical platelets completely devoid of a marginal band. In contrast to the single knockouts, the double deletion resulted in a severe bleeding defect in a tail-clipping assay, which was not corrected by increasing the platelet count to normal values by the thrombopoietin-analog romiplostim. In vivo, thrombus formation was almost abolished in a ferric chloride-injury model, with only a thin layer of loosely packed platelets, and mice were protected against death in a model of thromboembolism. In vitro, platelets adhered less efficiently and formed smaller-sized and loosely assembled aggregates when perfused over von Willebrand factor and collagen matrices. In conclusion, this study shows that blood platelets require 2 unique α- and β-tubulin isotypes to acquire their characteristic discoid morphology. Lack of these 2 isotypes has a deleterious effect on flow-dependent aggregate formation and stability, leading to a severe bleeding disorder.
Collapse
|
7
|
Harbi MH, Smith CW, Alenazy FO, Nicolson PLR, Tiwari A, Watson SP, Thomas MR. Antithrombotic Effects of Fostamatinib in Combination with Conventional Antiplatelet Drugs. Int J Mol Sci 2022; 23:6982. [PMID: 35805988 PMCID: PMC9266367 DOI: 10.3390/ijms23136982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/03/2023] Open
Abstract
New antithrombotic medications with less effect on haemostasis are needed for the long-term treatment of acute coronary syndromes (ACS). The platelet receptor glycoprotein VI (GPVI) is critical in atherothrombosis, mediating platelet activation at atherosclerotic plaque. The inhibition of spleen tyrosine kinase (Syk) has been shown to block GPVI-mediated platelet function. The aim of our study was to investigate if the Syk inhibitor fostamatinib could be repurposed as an antiplatelet drug, either alone or in combination with conventional antiplatelet therapy. The effect of the active metabolite of fostamatinib (R406) was assessed on platelet activation and function induced by atherosclerotic plaque and a range of agonists in the presence and absence of the commonly used antiplatelet agents aspirin and ticagrelor. The effects were determined ex vivo using blood from healthy volunteers and aspirin- and ticagrelor-treated patients with ACS. Fostamatinib was also assessed in murine models of thrombosis. R406 mildly inhibited platelet responses induced by atherosclerotic plaque homogenate, likely due to GPVI inhibition. The anti-GPVI effects of R406 were amplified by the commonly-used antiplatelet medications aspirin and ticagrelor; however, the effects of R406 were concentration-dependent and diminished in the presence of plasma proteins, which may explain why fostamatinib did not significantly inhibit thrombosis in murine models. For the first time, we demonstrate that the Syk inhibitor R406 provides mild inhibition of platelet responses induced by atherosclerotic plaque and that this is mildly amplified by aspirin and ticagrelor.
Collapse
Affiliation(s)
- Maan H. Harbi
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.H.H.); (C.W.S.); (F.O.A.); (P.L.R.N.); (S.P.W.)
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Christopher W. Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.H.H.); (C.W.S.); (F.O.A.); (P.L.R.N.); (S.P.W.)
| | - Fawaz O. Alenazy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.H.H.); (C.W.S.); (F.O.A.); (P.L.R.N.); (S.P.W.)
| | - Phillip L. R. Nicolson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.H.H.); (C.W.S.); (F.O.A.); (P.L.R.N.); (S.P.W.)
| | - Alok Tiwari
- Department of Vascular Surgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK;
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.H.H.); (C.W.S.); (F.O.A.); (P.L.R.N.); (S.P.W.)
| | - Mark R. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.H.H.); (C.W.S.); (F.O.A.); (P.L.R.N.); (S.P.W.)
- Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK
| |
Collapse
|
8
|
Carminita E, Crescence L, Panicot-Dubois L, Dubois C. Role of Neutrophils and NETs in Animal Models of Thrombosis. Int J Mol Sci 2022; 23:ijms23031411. [PMID: 35163333 PMCID: PMC8836215 DOI: 10.3390/ijms23031411] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Thrombosis is one of the major causes of mortality worldwide. Notably, it is not only implicated in cardiovascular diseases, such as myocardial infarction (MI), stroke, and pulmonary embolism (PE), but also in cancers. Understanding the cellular and molecular mechanisms involved in platelet thrombus formation is a major challenge for scientists today. For this purpose, new imaging technologies (such as confocal intravital microscopy, electron microscopy, holotomography, etc.) coupled with animal models of thrombosis (mouse, rat, rabbit, etc.) allow a better overview of this complex physiopathological process. Each of the cellular components is known to participate, including the subendothelial matrix, the endothelium, platelets, circulating cells, and, notably, neutrophils. Initially known as immune cells, neutrophils have been considered to be part of the landscape of thrombosis for more than a decade. They participate in this biological process through their expression of tissue factor (TF) and protein disulfide isomerase (PDI). Moreover, highly activated neutrophils are described as being able to release their DNA and thus form chromatin networks known as “neutrophil extracellular traps” (NETs). Initially, described as “dead sacrifices for a good cause” that prevent the dissemination of bacteria in the body, NETs have also been studied in several human pathologies, such as cardiovascular and respiratory diseases. Many articles suggest that they are involved in platelet thrombus formation and the activation of the coagulation cascade. This review presents the models of thrombosis in which neutrophils and NETs are involved and describes their mechanisms of action. We have even highlighted the medical diagnostic advances related to this research.
Collapse
Affiliation(s)
- Estelle Carminita
- Aix Marseille Univ, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (E.C.); (L.C.); (C.D.)
- Aix Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
| | - Lydie Crescence
- Aix Marseille Univ, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (E.C.); (L.C.); (C.D.)
- Aix Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
| | - Laurence Panicot-Dubois
- Aix Marseille Univ, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (E.C.); (L.C.); (C.D.)
- Aix Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
- Correspondence:
| | - Christophe Dubois
- Aix Marseille Univ, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (E.C.); (L.C.); (C.D.)
- Aix Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
| |
Collapse
|
9
|
Alkarithi G, Duval C, Shi Y, Macrae FL, Ariëns RAS. Thrombus Structural Composition in Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2021; 41:2370-2383. [PMID: 34261330 PMCID: PMC8384252 DOI: 10.1161/atvbaha.120.315754] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thrombosis is a major complication of cardiovascular disease, leading to myocardial infarction, acute ischemic stroke, or venous thromboembolism. Thrombosis occurs when a thrombus forms inside blood vessels disrupting blood flow. Developments in thrombectomy to remove thrombi from vessels have provided new opportunities to study thrombus composition which may help to understand mechanisms of disease and underpin improvements in treatments. We aimed to review thrombus compositions, roles of components in thrombus formation and stability, and methods to investigate thrombi. Also, we summarize studies on thrombus structure obtained from cardiovascular patients and animal models. Thrombi are composed of fibrin, red blood cells, platelets, leukocytes, and neutrophil extracellular traps. These components have been analyzed by several techniques, including scanning electron microscopy, laser scanning confocal microscopy, histochemistry, and immunohistochemistry; however, each technique has advantages and limitations. Thrombi are heterogenous in composition, but overall, thrombi obtained from myocardial infarction are composed of mainly fibrin and other components, including platelets, red blood cells, leukocytes, and cholesterol crystals. Thrombi from patients with acute ischemic stroke are characterized by red blood cell- and platelet-rich regions. Thrombi from patients with venous thromboembolism contain mainly red blood cells and fibrin with some platelets and leukocytes. Thrombus composition from patients with myocardial infarction is influenced by ischemic time. Animal thrombosis models are crucial to gain further mechanistic information about thrombosis and thrombus structure, with thrombi being similar in composition compared with those from patients. Further studies on thrombus composition and function are key to improve treatment and clinical outcome of thrombosis.
Collapse
Affiliation(s)
- Ghadir Alkarithi
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (G.A., C.D., Y.S., F.L.M., R.A.S.A.).,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia (G.A.)
| | - Cédric Duval
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (G.A., C.D., Y.S., F.L.M., R.A.S.A.)
| | - Yu Shi
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (G.A., C.D., Y.S., F.L.M., R.A.S.A.)
| | - Fraser L Macrae
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (G.A., C.D., Y.S., F.L.M., R.A.S.A.)
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (G.A., C.D., Y.S., F.L.M., R.A.S.A.)
| |
Collapse
|
10
|
Understanding the Pathophysiology of Thrombotic APS through Animal Models. Int J Mol Sci 2021; 22:ijms22052588. [PMID: 33806694 PMCID: PMC7961365 DOI: 10.3390/ijms22052588] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Antiphospholipid syndrome (APS) is a leading acquired cause of thrombotic events, with a notable tendency to promote thrombosis in vascular beds of all sizes, including both arterial and venous circuits. While pathogenic antiphospholipid antibodies circulate at relatively stable levels in blood, thrombosis tends to manifest as discrete and acute events, suggesting the requirement for a “second hit.” While this two-hit model is generally accepted, much remains to be learned about exactly how antiphospholipid antibodies predispose to thrombosis in vivo and exactly how this predisposition interacts with the second hit. To this end, investigators have turned to animal models. Numerous approaches for modeling APS in animals have been described to date, each with potential advantages and disadvantages. This review will attempt to describe the most common APS models employed so far while discussing some pros and cons of each. Mechanisms of thrombotic APS that have thus far been explored in animal models will also be briefly addressed.
Collapse
|
11
|
Hosseini V, Mallone A, Nasrollahi F, Ostrovidov S, Nasiri R, Mahmoodi M, Haghniaz R, Baidya A, Salek MM, Darabi MA, Orive G, Shamloo A, Dokmeci MR, Ahadian S, Khademhosseini A. Healthy and diseased in vitro models of vascular systems. LAB ON A CHIP 2021; 21:641-659. [PMID: 33507199 DOI: 10.1039/d0lc00464b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Irregular hemodynamics affects the progression of various vascular diseases, such atherosclerosis or aneurysms. Despite the extensive hemodynamics studies on animal models, the inter-species differences between humans and animals hamper the translation of such findings. Recent advances in vascular tissue engineering and the suitability of in vitro models for interim analysis have increased the use of in vitro human vascular tissue models. Although the effect of flow on endothelial cell (EC) pathophysiology and EC-flow interactions have been vastly studied in two-dimensional systems, they cannot be used to understand the effect of other micro- and macro-environmental parameters associated with vessel wall diseases. To generate an ideal in vitro model of the vascular system, essential criteria should be included: 1) the presence of smooth muscle cells or perivascular cells underneath an EC monolayer, 2) an elastic mechanical response of tissue to pulsatile flow pressure, 3) flow conditions that accurately mimic the hemodynamics of diseases, and 4) geometrical features required for pathophysiological flow. In this paper, we review currently available in vitro models that include flow dynamics and discuss studies that have tried to address the criteria mentioned above. Finally, we critically review in vitro fluidic models of atherosclerosis, aneurysm, and thrombosis.
Collapse
Affiliation(s)
- Vahid Hosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Anna Mallone
- Institute of Regenerative Medicine, University of Zurich, Zurich CH-8952, Switzerland
| | - Fatemeh Nasrollahi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Serge Ostrovidov
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and Department of Radiological Sciences, University of California-Los Angeles, CA 90095, USA
| | - Rohollah Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Department of Mechanical Engineering, Sharif University of Technology, Tehran 1136511155, Iran
| | - Mahboobeh Mahmoodi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd 8915813135, Iran
| | - Reihaneh Haghniaz
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Avijit Baidya
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA
| | - M Mehdi Salek
- School of Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain and Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01007, Spain
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 1136511155, Iran
| | - Mehmet R Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| |
Collapse
|
12
|
Sun M, Miyazawa K, Pendekanti T, Razmi A, Firlar E, Yang S, Shokuhfar T, Li O, Li W, Sen Gupta A. Combination targeting of 'platelets + fibrin' enhances clot anchorage efficiency of nanoparticles for vascular drug delivery. NANOSCALE 2020; 12:21255-21270. [PMID: 33063812 PMCID: PMC8112300 DOI: 10.1039/d0nr03633a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Occlusive thrombosis is a central pathological event in heart attack, stroke, thromboembolism, etc. Therefore, pharmacological thrombolysis or anticoagulation is used for treating these diseases. However, systemic administration of such drugs causes hemorrhagic side-effects. Therefore, there is significant clinical interest in strategies for enhanced drug delivery to clots while minimizing systemic effects. One such strategy is by using drug-carrying nanoparticles surface-decorated with clot-binding ligands. Efforts in this area have focused on binding to singular targets in clots, e.g. platelets, fibrin, collagen, vWF or endothelium. Targeting vWF, collagen or endothelium maybe sub-optimal since in vivo these entities will be rapidly covered by platelets and leukocytes, and thus inaccessible for sufficient nanoparticle binding. In contrast, activated platelets and fibrin are majorly accessible for particle-binding, but their relative distribution in clots is highly heterogeneous. We hypothesized that combination-targeting of 'platelets + fibrin' will render higher clot-binding efficacy of nanoparticles, compared to targeting platelets or fibrin singularly. To test this, we utilized liposomes as model nanoparticles, decorated their surface with platelet-binding peptides (PBP) or fibrin-binding peptides (FBP) or combination (PBP + FBP) at controlled compositions, and evaluated their binding to human blood clots in vitro and in a mouse thrombosis model in vivo. In parallel, we developed a computational model of nanoparticle binding to single versus combination entities in clots. Our studies indicate that combination targeting of 'platelets + fibrin' enhances the clot-anchorage efficacy of nanoparticles while utilizing lower ligand densities, compared to targeting platelets or fibrin only. These findings provide important insights for vascular nanomedicine design.
Collapse
Affiliation(s)
- Michael Sun
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Intravital Assessment of Blood Platelet Function. A Review of the Methodological Approaches with Examples of Studies of Selected Aspects of Blood Platelet Function. Int J Mol Sci 2020; 21:ijms21218334. [PMID: 33172065 PMCID: PMC7664321 DOI: 10.3390/ijms21218334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 01/14/2023] Open
Abstract
Platelet biology owes to intravital studies not only a better understanding of platelets’ role in primary hemostasis but also findings that platelets are important factors in inflammation and atherosclerosis. Researchers who enter the field of intravital platelet studies may be confused by the heterogeneity of experimental protocols utilized. On the one hand, there are a variety of stimuli used to activate platelet response, and on the other hand there are several approaches to measure the outcome of the activation. A number of possible combinations of activation factors with measurement approaches result in the aforementioned heterogeneity. The aim of this review is to present the most often used protocols in a systematic way depending on the stimulus used to activate platelets. By providing examples of studies performed with each of the protocols, we attempt to explain why a particular combination of stimuli and measurement method was applied to study a given aspect of platelet biology.
Collapse
|
14
|
Vara D, Tarafdar A, Celikag M, Patinha D, Gulacsy CE, Hounslea E, Warren Z, Ferreira B, Koeners MP, Caggiano L, Pula G. NADPH oxidase 1 is a novel pharmacological target for the development of an antiplatelet drug without bleeding side effects. FASEB J 2020; 34:13959-13977. [PMID: 32851720 DOI: 10.1096/fj.202001086rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022]
Abstract
Growing evidence supports a central role of NADPH oxidases (NOXs) in the regulation of platelets, which are circulating cells involved in both hemostasis and thrombosis. Here, the use of Nox1-/- and Nox1+/+ mice as experimental models of human responses demonstrated a critical role of NOX1 in collagen-dependent platelet activation and pathological arterial thrombosis, as tested in vivo by carotid occlusion assays. In contrast, NOX1 does not affect platelet responses to thrombin and normal hemostasis, as assayed in tail bleeding experiments. Therefore, as NOX1 inhibitors are likely to have antiplatelet effects without associated bleeding risks, the NOX1-selective inhibitor 2-acetylphenothiazine (2APT) and a series of its derivatives generated to increase inhibitory potency and drug bioavailability were tested. Among the 2APT derivatives, 1-(10H-phenothiazin-2-yl)vinyl tert-butyl carbonate (2APT-D6) was selected for its high potency. Both 2APT and 2APT-D6 inhibited collagen-dependent platelet aggregation, adhesion, thrombus formation, superoxide anion generation, and surface activation marker expression, while responses to thrombin or adhesion to fibrinogen were not affected. In vivo administration of 2APT or 2APT-D6 led to the inhibition of mouse platelet aggregation, oxygen radical output, and thrombus formation, and carotid occlusion, while tail hemostasis was unaffected. Differently to in vitro experiments, 2APT-D6 and 2APT displayed similar potency in vivo. In summary, NOX1 inhibition with 2APT or its derivative 2APT-D6 is a viable strategy to control collagen-induced platelet activation and reduce thrombosis without deleterious effects on hemostasis. These compounds should, therefore, be considered for the development of novel antiplatelet drugs to fight cardiovascular diseases in humans.
Collapse
Affiliation(s)
- Dina Vara
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Anuradha Tarafdar
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Meral Celikag
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Daniela Patinha
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | | | - Ellie Hounslea
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Zach Warren
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Barbara Ferreira
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Maarten P Koeners
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Lorenzo Caggiano
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Giordano Pula
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|