1
|
Swieton J, Miklosz J, Bielicka N, Frackiewicz A, Depczynski K, Stolarek M, Bonarek P, Kaminski K, Rozga P, Yusa SI, Gromotowicz-Poplawska A, Szczubialka K, Pawlak D, Mogielnicki A, Kalaska B. Synthesis, Biological Evaluation and Reversal of Sulfonated Di- and Triblock Copolymers as Novel Parenteral Anticoagulants. Adv Healthc Mater 2024; 13:e2402191. [PMID: 39370656 DOI: 10.1002/adhm.202402191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Despite targeting different coagulation cascade sites, all Food and Drug Administration-approved anticoagulants present an elevated risk of bleeding, including potentially life-threatening intracranial hemorrhage. Existing studies have not thoroughly investigated the efficacy and safety of sulfonate polymers in animal models and fully elucidate the precise mechanisms by which these polymers act. The activity and safety of sulfonated di- and triblock copolymers containing poly(sodium styrenesulfonate) (PSSS), poly(sodium 2-acrylamido-2-methylpropanesulfonate) (PAMPS), poly(ethylene glycol) (PEG), poly(sodium methacrylate) (PMAAS), poly(acrylic acid) (PAA), and poly(sodium 11-acrylamidoundecanoate) (PAaU) blocks are synthesized and assessed. PSSS-based copolymers exhibit greater anticoagulant activity than PAMPS-based ones. Their activity is mainly affected by the total concentration of sulfonate groups and molecular weight. PEG-containing copolymers demonstrate a better safety profile than PAA-containing ones. The selected copolymer PEG47-PSSS32 exhibits potent anticoagulant activity in rodents after subcutaneous and intravenous administration. Heparin Binding Copolymer (HBC) completely reverses the anticoagulant activity of polymer in rat and human plasma. No interaction with platelets is observed. Selected copolymer targets mainly factor XII and fibrinogen, and to a lesser extent factors X, IX, VIII, and II, suggesting potential application in blood-contacting biomaterials for anticoagulation purposes. Further studies are needed to explore its therapeutic applications fully.
Collapse
Affiliation(s)
- Justyna Swieton
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Joanna Miklosz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Natalia Bielicka
- Department of Biopharmacy and Radiopharmacy, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Aleksandra Frackiewicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Karol Depczynski
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Marta Stolarek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 St., Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, prof. S. Lojasiewicza 11 St., Krakow, 30-348, Poland
| | - Piotr Bonarek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 St., Krakow, 30-387, Poland
| | - Kamil Kaminski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 St., Krakow, 30-387, Poland
| | - Piotr Rozga
- Drug Discovery and Early Development Department, Adamed Pharma S.A., Pienkow, Mariana Adamkiewicza 6A St., Czosnow, 05-152, Poland
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 167 Shosha, Himeji, 671-2280, Japan
| | - Anna Gromotowicz-Poplawska
- Department of Biopharmacy and Radiopharmacy, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Krzysztof Szczubialka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 St., Krakow, 30-387, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Andrzej Mogielnicki
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| |
Collapse
|
2
|
Ballard-Kordeliski A, Lee RH, O’Shaughnessy EC, Kim PY, Jones SR, Pawlinski R, Flick MJ, Paul DS, Mackman N, Adalsteinsson DA, Bergmeier W. 4D intravital imaging studies identify platelets as the predominant cellular procoagulant surface in a mouse hemostasis model. Blood 2024; 144:1116-1126. [PMID: 38820498 PMCID: PMC11406176 DOI: 10.1182/blood.2023022608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
ABSTRACT Interplay between platelets, coagulation factors, endothelial cells (ECs), and fibrinolytic factors is necessary for effective hemostatic plug formation. This study describes a 4-dimensional (4D) imaging platform to visualize and quantify hemostatic plug components in mice with high spatiotemporal resolution. Fibrin accumulation after laser-induced vascular injury was observed at the platelet plug-EC interface, controlled by the antagonistic balance between fibrin generation and breakdown. We observed less fibrin accumulation in mice expressing low levels of tissue factor or F12-/-mice compared with controls, whereas increased fibrin accumulation, including on the vasculature adjacent to the platelet plug, was observed in plasminogen-deficient mice or wild-type mice treated with tranexamic acid. Phosphatidylserine (PS), a membrane lipid critical for the assembly of coagulation factors, was first detected at the platelet plug-EC interface, followed by exposure across the endothelium. Impaired PS exposure resulted in a significant reduction in fibrin accumulation in cyclophilin D-/-mice. Adoptive transfer studies demonstrated a key role for PS exposure on platelets, and to a lesser degree on ECs, in fibrin accumulation during hemostatic plug formation. Together, these studies suggest that (1) platelets are the functionally dominant procoagulant cellular surface, and (2) plasmin is critical for limiting fibrin accumulation at the site of a forming hemostatic plug.
Collapse
Affiliation(s)
- Abigail Ballard-Kordeliski
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Robert H. Lee
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ellen C. O’Shaughnessy
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Paul Y. Kim
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | - Summer R. Jones
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rafal Pawlinski
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthew J. Flick
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David S. Paul
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Nigel Mackman
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David A. Adalsteinsson
- Department of Mathematics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
3
|
Gruionu G, Baish J, McMahon S, Blauvelt D, Gruionu LG, Lenco MO, Vakoc BJ, Padera TP, Munn LL. Experimental and theoretical model of microvascular network remodeling and blood flow redistribution following minimally invasive microvessel laser ablation. Sci Rep 2024; 14:8767. [PMID: 38627467 PMCID: PMC11021487 DOI: 10.1038/s41598-024-59296-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Overly dense microvascular networks are treated by selective reduction of vascular elements. Inappropriate manipulation of microvessels could result in loss of host tissue function or a worsening of the clinical problem. Here, experimental, and computational models were developed to induce blood flow changes via selective artery and vein laser ablation and study the compensatory collateral flow redistribution and vessel diameter remodeling. The microvasculature was imaged non-invasively by bright-field and multi-photon laser microscopy, and optical coherence tomography pre-ablation and up to 30 days post-ablation. A theoretical model of network remodeling was developed to compute blood flow and intravascular pressure and identify vessels most susceptible to changes in flow direction. The skin microvascular remodeling patterns were consistent among the five specimens studied. Significant remodeling occurred at various time points, beginning as early as days 1-3 and continuing beyond day 20. The remodeling patterns included collateral development, venous and arterial reopening, and both outward and inward remodeling, with variations in the time frames for each mouse. In a representative specimen, immediately post-ablation, the average artery and vein diameters increased by 14% and 23%, respectively. At day 20 post-ablation, the maximum increases in arterial and venous diameters were 2.5× and 3.3×, respectively. By day 30, the average artery diameter remained 11% increased whereas the vein diameters returned to near pre-ablation values. Some arteries regenerated across the ablation sites via endothelial cell migration, while veins either reconnected or rerouted flow around the ablation site, likely depending on local pressure driving forces. In the intact network, the theoretical model predicts that the vessels that act as collaterals after flow disruption are those most sensitive to distant changes in pressure. The model results correlate with the post-ablation microvascular remodeling patterns.
Collapse
Affiliation(s)
- Gabriel Gruionu
- Department of Medicine, Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, 46202, USA.
- Department of Radiation Oncology, Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, USA.
- Department of Mechanical Engineering, University of Craiova, 200585, Craiova, Romania.
| | - James Baish
- Department of Biomedical Engineering, Bucknell University, Lewisburg, 17837, USA
| | - Sean McMahon
- Department of Physics, Virginia Tech, Blacksburg, 24060, USA
| | - David Blauvelt
- Department of Anesthesia, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, 02115, USA
| | - Lucian G Gruionu
- Department of Mechanical Engineering, University of Craiova, 200585, Craiova, Romania
| | | | - Benjamin J Vakoc
- Department of Dermatology and Wellman Center of Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, 02114, USA
| | - Timothy P Padera
- Department of Radiation Oncology, Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, USA
| | - Lance L Munn
- Department of Radiation Oncology, Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, USA.
| |
Collapse
|
4
|
Teeraratkul C, Tomaiuolo M, Stalker TJ, Mukherjee D. Investigating clot-flow interactions by integrating intravital imaging with in silico modeling for analysis of flow, transport, and hemodynamic forces. Sci Rep 2024; 14:696. [PMID: 38184693 PMCID: PMC10771506 DOI: 10.1038/s41598-023-49945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024] Open
Abstract
As a blood clot forms, grows, deforms, and embolizes following a vascular injury, local clot-flow interactions lead to a highly dynamic flow environment. The local flow influences transport of biochemical species relevant for clotting, and determines the forces on the clot that in turn lead to clot deformation and embolization. Despite this central role, quantitative characterization of this dynamic clot-flow interaction and flow environment in the clot neighborhood remains a major challenge. Here, we propose an approach that integrates dynamic intravital imaging with computer geometric modeling and computational flow and transport modeling to develop a unified in silico framework to quantify the dynamic clot-flow interactions. We outline the development of the methodology referred to as Intravital Integrated In Silico Modeling or IVISim, and then demonstrate the method on a sample set of simulations comprising clot formation following laser injury in two mouse cremaster arteriole injury model data: one wild-type mouse case, and one diYF knockout mouse case. Simulation predictions are verified against experimental observations of transport of caged fluorescent Albumin (cAlb) in both models. Through these simulations, we illustrate how the IVISim methodology can provide insights into hemostatic processes, the role of flow and clot-flow interactions, and enable further investigations comparing and contrasting different biological model scenarios and parameter variations.
Collapse
Affiliation(s)
- Chayut Teeraratkul
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, USA
| | - Maurizio Tomaiuolo
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, USA
| | | | - Debanjan Mukherjee
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, USA.
| |
Collapse
|
5
|
Gruionu G, Baish J, McMahon S, Blauvelt D, Gruionu LG, Lenco MO, Vakoc BJ, Padera TP, Munn LL. Experimental and Theoretical Model of Single Vessel Minimally Invasive Micro-Laser Ablation: Inducing Microvascular Network Remodeling and Blood Flow Redistribution Without Compromising Host Tissue Function. RESEARCH SQUARE 2023:rs.3.rs-3754775. [PMID: 38196660 PMCID: PMC10775362 DOI: 10.21203/rs.3.rs-3754775/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Overly dense microvascular networks are treated by selective reduction of vascular elements. Inappropriate manipulation of microvessels could result in loss of host tissue function or a worsening of the clinical problem. Here, experimental, and computational models were developed to induce blood flow changes via selective artery and vein laser ablation and study the compensatory collateral flow redistribution and vessel diameter remodeling. The microvasculature was imaged non-invasively by bright-field and multi-photon laser microscopy, and Optical Coherence Tomography pre-ablation and up to 30 days post-ablation. A theoretical model of network remodeling was developed to compute blood flow and intravascular pressure and identify vessels most susceptible to changes in flow direction. The skin microvascular remodeling patterns were consistent among the five specimens studied. Significant remodeling occurred at various time points, beginning as early as days 1-3 and continuing beyond day 20. The remodeling patterns included collateral development, venous and arterial reopening, and both outward and inward remodeling, with variations in the time frames for each mouse. In a representative specimen, immediately post-ablation, the average artery and vein diameters increased by 14% and 23%, respectively. At day 20 post-ablation, the maximum increases in arterial and venous diameters were 2.5x and 3.3x, respectively. By day 30, the average artery diameter remained 11% increased whereas the vein diameters returned to near pre-ablation values. Some arteries regenerated across the ablation sites via endothelial cell migration, while veins either reconnected or rerouted flow around the ablation site, likely depending on local pressure driving forces. In the intact network, the theoretical model predicts that the vessels that act as collaterals after flow disruption are those most sensitive to distant changes in pressure. The model results match the post-ablation microvascular remodeling patterns.
Collapse
Affiliation(s)
- Gabriel Gruionu
- Indiana University School of Medicine, Krannert Cardiovascular Research Center, Department of Medicine, Indianapolis, 46202, USA
- Massachusetts General Hospital and Harvard Medical School, Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Boston, 02114, USA
- University of Craiova, Department of Mechanical Engineering, Craiova, 200585, Romania
| | - James Baish
- Bucknell University, Department of Biomedical Engineering, Lewisburg, 17837, USA
| | - Sean McMahon
- Virginia Tech, Department of Physics, Blacksburg, 24060, USA
| | - David Blauvelt
- Boston Children’s Hospital, Department of Anesthesia, Critical Care, and Pain Medicine, Boston, 02115, USA
| | - Lucian G. Gruionu
- University of Craiova, Department of Mechanical Engineering, Craiova, 200585, Romania
| | | | - Benjamin J. Vakoc
- Harvard Medical School and Massachusetts General Hospital, Department of Dermatology and Wellman Center of Photomedicine, Boston, 02114, USA
| | - Timothy P. Padera
- Massachusetts General Hospital and Harvard Medical School, Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Boston, 02114, USA
| | - Lance L. Munn
- Massachusetts General Hospital and Harvard Medical School, Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Boston, 02114, USA
| |
Collapse
|
6
|
Sakurai Y, Hardy ET, Lam WA. Hemostasis-on-a-chip / incorporating the endothelium in microfluidic models of bleeding. Platelets 2023; 34:2185453. [PMID: 36872890 PMCID: PMC10197822 DOI: 10.1080/09537104.2023.2185453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
Currently, point-of-care assays for human platelet function and coagulation are used to assess bleeding risks and drug testing, but they lack intact endothelium, a critical component of the human vascular system. Within these assays, the assessment of bleeding risk is typically indicated by the lack of or reduced platelet function and coagulation without true evaluation of hemostasis. Hemostasis is defined as the cessation of bleeding. Additionally, animal models of hemostasis also, by definition, lack human endothelium, which may limit their clinical relevance. This review discusses the current state-of-the-art of hemostasis-on-a-chip, specifically, human cell-based microfluidic models that incorporate endothelial cells, which function as physiologically relevant in vitro models of bleeding. These assays recapitulate the entire process of vascular injury, bleeding, and hemostasis, and provide real-time, direct observation, thereby serving as research-enabling tools that enhance our understanding of hemostasis and also as novel drug discovery platforms.
Collapse
Affiliation(s)
- Yumiko Sakurai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Center of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Elaissa T. Hardy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Center of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Center of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| |
Collapse
|
7
|
Activation of Most Toll-Like Receptors in Whole Human Blood Attenuates Platelet Deposition on Collagen under Flow. J Immunol Res 2023; 2023:1884439. [PMID: 36703865 PMCID: PMC9873445 DOI: 10.1155/2023/1884439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Platelets have toll-like receptors (TLRs); however, their function in thrombosis or hemostasis under flow conditions is not fully known. Thrombin-inhibited anticoagulated whole blood was treated with various TLR agonists and then perfused over fibrillar collagen using microfluidic assay at venous wall shear rate (100 s-1). Platelet deposition was imaged with fluorescent anti-CD61. For perfusion of whole blood without TLR agonist addition, platelets rapidly accumulated on collagen and eventually occluded the microchannels. Interestingly, most of the tested TLR agonists (Pam3CKS4, MALP-2, polyinosinic-polycytidylic acid HMW, imiquimod, and CpG oligodeoxynucleotides) strongly reduced platelet deposition on collagen, while only the TLR4 agonist endotoxin lipopolysaccharide (LPS) enhanced deposition. Following 90 sec of deposition under flow of untreated blood, the addition of various TLR-7 agonists (imiquimod, vesatolimod, and GSK2245035) all caused immediate blockade of further platelet deposition. Since TLR signaling can activate nuclear factor-kappaB (NF-κB), the IKK-inhibitor (IKK inhibitor VII) and NF-κB inhibitor (Bay 11-7082) were tested. The IKK/NF-κB inhibitors strongly inhibited platelet deposition under flow. Furthermore, addition of Pam3CSK4 (TLR1/2 ligand), MALP-2 (TLR2/6 ligand), and Imquimod (TLR7 ligand) reduced phosphotidylserine (PS) exposure. Activation of TLR1/2, TLR2/6, TLR3, TLR7, and TLR9 in whole blood reduced platelet deposition under flow on collagen; however, LPS (major Gram negative bacterial pathogenic component) activation of LTR4 was clearly prothrombotic.
Collapse
|
8
|
Bourne JH, Smith CW, Jooss NJ, Di Y, Brown HC, Montague SJ, Thomas MR, Poulter NS, Rayes J, Watson SP. CLEC-2 Supports Platelet Aggregation in Mouse but not Human Blood at Arterial Shear. Thromb Haemost 2022; 122:1988-2000. [PMID: 35817083 PMCID: PMC9718592 DOI: 10.1055/a-1896-6992] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/01/2022] [Indexed: 10/17/2022]
Abstract
C-type lectin-like receptor 2 (CLEC-2) is highly expressed on platelets and a subpopulation of myeloid cells, and is critical in lymphatic development. CLEC-2 has been shown to support thrombus formation at sites of inflammation, but to have a minor/negligible role in hemostasis. This identifies CLEC-2 as a promising therapeutic target in thromboinflammatory disorders, without hemostatic detriment. We utilized a GPIbα-Cre recombinase mouse for more restricted deletion of platelet-CLEC-2 than the previously used PF4-Cre mouse. clec1bfl/flGPIbα-Cre+ mice are born at a Mendelian ratio, with a mild reduction in platelet count, and present with reduced thrombus size post-FeCl3-induced thrombosis, compared to littermates. Antibody-mediated depletion of platelet count in C57BL/6 mice, to match clec1bfl/flGPIbα-Cre+ mice, revealed that the reduced thrombus size post-FeCl3-injury was due to the loss of CLEC-2, and not mild thrombocytopenia. Similarly, clec1bfl/flGPIbα-Cre+ mouse blood replenished with CLEC-2-deficient platelets ex vivo to match littermates had reduced aggregate formation when perfused over collagen at arterial flow rates. In contrast, platelet-rich thrombi formed following perfusion of human blood under flow conditions over collagen types I or III, atherosclerotic plaque, or inflammatory endothelial cells were unaltered in the presence of CLEC-2-blocking antibody, AYP1, or recombinant CLEC-2-Fc. The reduction in platelet aggregation observed in clec1bfl/flGPIbα-Cre+ mice during arterial thrombosis is mediated by the loss of CLEC-2 on mouse platelets. In contrast, CLEC-2 does not support thrombus generation on collagen, atherosclerotic plaque, or inflamed endothelial cells in human at arterial shear.
Collapse
Affiliation(s)
- Joshua H. Bourne
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher W. Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natalie J. Jooss
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helena C. Brown
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| | - Samantha J. Montague
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mark R. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- UHB and SWBH NHS Trusts, Birmingham, United Kingdom
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| |
Collapse
|
9
|
Zhao X, Cooper M, Michael JV, Yarman Y, Baltz A, Chuprun JK, Koch WJ, McKenzie SE, Tomaiuolo M, Stalker TJ, Zhu L, Ma P. GRK2 regulates ADP signaling in platelets via P2Y1 and P2Y12. Blood Adv 2022; 6:4524-4536. [PMID: 35793439 PMCID: PMC9636328 DOI: 10.1182/bloodadvances.2022007007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/10/2022] [Indexed: 11/20/2022] Open
Abstract
The critical role of G protein-coupled receptor kinase 2 (GRK2) in regulating cardiac function has been well documented for >3 decades. Targeting GRK2 has therefore been extensively studied as a novel approach to treating cardiovascular disease. However, little is known about its role in hemostasis and thrombosis. We provide here the first evidence that GRK2 limits platelet activation and regulates the hemostatic response to injury. Deletion of GRK2 in mouse platelets causes increased platelet accumulation after laser-induced injury in the cremaster muscle arterioles, shortens tail bleeding time, and enhances thrombosis in adenosine 5'-diphosphate (ADP)-induced pulmonary thromboembolism and in FeCl3-induced carotid injury. GRK2-/- platelets have increased integrin activation, P-selectin exposure, and platelet aggregation in response to ADP stimulation. Furthermore, GRK2-/- platelets retain the ability to aggregate in response to ADP restimulation, indicating that GRK2 contributes to ADP receptor desensitization. Underlying these changes in GRK2-/- platelets is an increase in Ca2+ mobilization, RAS-related protein 1 activation, and Akt phosphorylation stimulated by ADP, as well as an attenuated rise of cyclic adenosine monophosphate levels in response to ADP in the presence of prostaglandin I2. P2Y12 antagonist treatment eliminates the phenotypic difference in platelet accumulation between wild-type and GRK2-/- mice at the site of injury. Pharmacologic inhibition of GRK2 activity in human platelets increases platelet activation in response to ADP. Finally, we show that GRK2 binds to endogenous Gβγ subunits during platelet activation. Collectively, these results show that GRK2 regulates ADP signaling via P2Y1 and P2Y12, interacts with Gβγ, and functions as a signaling hub in platelets for modulating the hemostatic response to injury.
Collapse
Affiliation(s)
- Xuefei Zhao
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Matthew Cooper
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - James V. Michael
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Yanki Yarman
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Aiden Baltz
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - J. Kurt Chuprun
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Walter J. Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Steven E. McKenzie
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Maurizio Tomaiuolo
- Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, PA
| | - Timothy J. Stalker
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Li Zhu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Peisong Ma
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
10
|
Mutch NJ, Walters S, Gardiner EE, McCarty OJT, De Meyer SF, Schroeder V, Meijers JCM. Basic science research opportunities in thrombosis and hemostasis: Communication from the SSC of the ISTH. J Thromb Haemost 2022; 20:1496-1506. [PMID: 35352482 PMCID: PMC9325489 DOI: 10.1111/jth.15718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
Bleeding and thrombosis are major clinical problems with high morbidity and mortality. Treatment modalities for these diseases have improved in recent years, but there are many clinical questions remaining and a need to advance diagnosis, management, and therapeutic options. Basic research plays a fundamental role in understanding normal and disease processes, yet this sector has observed a steady decline in funding prospects thereby hindering support for studies of mechanisms of disease and therapeutic development opportunities. With the financial constraints faced by basic scientists, the ISTH organized a basic science task force (BSTF), comprising Scientific and Standardization Committee subcommittee chairs and co-chairs, to identify research opportunities for basic science in hemostasis and thrombosis. The goal of the BSTF was to develop a set of recommended priorities to build support in the thrombosis and hemostasis community and to inform ISTH basic science programs and policy making. The BSTF identified three principal opportunity areas that were of significant overarching relevance: mechanisms causing bleeding, innate immunity and thrombosis, and venous thrombosis. Within these, five fundamental research areas were highlighted: blood rheology, platelet biogenesis, cellular contributions to thrombosis and hemostasis, structure-function protein analyses, and visualization of hemostasis. This position paper discusses the importance and relevance of these opportunities and research areas, and the rationale for their inclusion. These findings have implications for the future of fundamental research in thrombosis and hemostasis to make transformative scientific discoveries and tackle key clinical questions. This will permit better understanding, prevention, diagnosis, and treatment of hemostatic and thrombotic conditions.
Collapse
Affiliation(s)
- Nicola J. Mutch
- Aberdeen Cardiovascular & Diabetes CentreInstitute of Medical SciencesSchool of MedicineMedical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | | | - Elizabeth E. Gardiner
- John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Owen J. T. McCarty
- Departments of Biomedical Engineering and MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Simon F. De Meyer
- Laboratory for Thrombosis ResearchKU Leuven Campus Kulak KortrijkKortrijkBelgium
| | - Verena Schroeder
- Department for BioMedical Research (DBMR)University of BernBernSwitzerland
| | - Joost C. M. Meijers
- Department of Molecular HematologySanquin ResearchAmsterdamthe Netherlands
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular SciencesAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
11
|
Constantinescu-Bercu A, Wang YA, Woollard KJ, Mangin P, Vanhoorelbeke K, Crawley JTB, Salles-Crawley II. The GPIbα intracellular tail - role in transducing VWF- and collagen/GPVI-mediated signaling. Haematologica 2022; 107:933-946. [PMID: 34134470 PMCID: PMC8968903 DOI: 10.3324/haematol.2020.278242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 11/09/2022] Open
Abstract
The GPIbT-VWF A1 domain interaction is essential for platelet tethering under high shear. Synergy between GPIbα and GPVI signaling machineries has been suggested previously, however its molecular mechanism remains unclear. We generated a novel GPIbα transgenic mouse (GpIbαΔsig/Δsig) by CRISPR-Cas9 technology to delete the last 24 residues of the GPIbα intracellular tail that harbors the 14-3-3 and phosphoinositide-3 kinase binding sites. GPIbαΔsig/Δsig platelets bound VWF normally under flow. However, they formed fewer filopodia on VWF/botrocetin in the presence of a oIIbI3 blocker, demonstrating that despite normal ligand binding, VWF-dependent signaling is diminished. Activation of GpIbαΔsig/Δsig platelets with ADP and thrombin was normal, but GpIbαΔsig/Δsig platelets stimulated with collagen-related-peptide (CRP) exhibited markedly decreased P-selectin exposure and eIIbI3 activation, suggesting a role for the GpIbaaintracellular tail in GPVI-mediated signaling. Consistent with this, while haemostasis was normal in GPIbαΔsig/Δsig mice, diminished tyrosine-phosphorylation, (particularly pSYK) was detected in CRP-stimulated GpIbαΔsig/Δsig platelets as well as reduced platelet spreading on CRP. Platelet responses to rhodocytin were also affected in GpIbαΔsig/Δsig platelets but to a lesser extent than those with CRP. GpIbαΔsig/Δsig platelets formed smaller aggregates than wild-type platelets on collagen-coated microchannels at low, medium and high shear. In response to both VWF and collagen binding, flow assays performed with plasma-free blood or in the presence of bIIbI3- or GPVI-blockers suggested reduced bIIbI3 activation contributes to the phenotype of the GpIbαΔsig/Δsig platelets. Together, these results reveal a new role for the intracellular tail of GPIbiiin transducing both VWF-GPIbGGand collagen-GPVI signaling events in platelets.
Collapse
Affiliation(s)
| | - Yuxiao A Wang
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Kevin J Woollard
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Pierre Mangin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | | | - James T B Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Isabelle I Salles-Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
12
|
Scanning laser-induced endothelial injury: a standardized and reproducible thrombosis model for intravital microscopy. Sci Rep 2022; 12:3955. [PMID: 35273275 PMCID: PMC8913794 DOI: 10.1038/s41598-022-07892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/21/2022] [Indexed: 11/08/2022] Open
Abstract
Vascular injury models are indispensable for studying thrombotic processes in vivo. Amongst the available methods for inducing thrombosis, laser-induced endothelial injury (LIEI) has several unique advantages. However, a lack of methodological standardization and expensive instrumentation remain significant problems decreasing reproducibility and impeding the adoption of LIEI in the wider scientific community. In this, study, we developed a standardized protocol for scanning laser-induced endothelial injury (scanning-LIEI) of murine mesenteric veins using the intrinsic 405 nm laser of a conventional laser scanning confocal microscope. We show that our model produces thrombi with prominent core-shell architectures and minimal radiation-related fluorescence artefacts. In comparison with previous methods, the scanning-LIEI model exhibits reduced experimental variability, enabling the demonstration of dose-response effects for anti-thrombotic drugs using small animal cohorts. Scanning-LIEI using the intrinsic 405 nm laser of a confocal laser scanning microscope represents a new method to induce standardized vascular injury with improved reproducibility of thrombus formation. The reduced need for instrument customisation and user experience means that this model could be more readily adopted in the research community.
Collapse
|
13
|
Smith CW. Release of α-granule contents during platelet activation. Platelets 2021; 33:491-502. [PMID: 34569425 DOI: 10.1080/09537104.2021.1913576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Upon activation, platelets release a plethora of factors which help to mediate their dynamic functions in hemostasis, inflammation, wound healing, tumor metastasis and angiogenesis. The majority of these bioactive molecules are released from α-granules, which are unique to platelets, and contain an incredibly diverse repertoire of cargo including; integral membrane proteins, pro-coagulant molecules, chemokines, mitogenic, growth and angiogenic factors, adhesion proteins, and microbicidal proteins. Clinically, activation of circulating platelets has increasingly been associated with various disease states. Biomarkers indicating the level of platelet activation in patients can therefore be useful tools to evaluate risk factors to predict future complications and determine treatment strategies or evaluate antiplatelet therapy. The irreversible nature of α-granule secretion makes it ideally suited as a marker of platelet activation. This review outlines the release and contents of platelet α-granules, as well as the membrane bound, and soluble α-granule cargo proteins that can be used as biomarkers of platelet activation.
Collapse
Affiliation(s)
- Christopher W Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| |
Collapse
|
14
|
Ha K, Zheng X, Kessinger CW, Mauskapf A, Li W, Kawamura Y, Orii M, Hilderbrand SA, Jaffer FA, McCarthy JR. In Vivo Platelet Detection Using a Glycoprotein IIb/IIIa-Targeted Near-Infrared Fluorescence Imaging Probe. ACS Sens 2021; 6:2225-2232. [PMID: 34056903 DOI: 10.1021/acssensors.1c00124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Platelets play a prominent role in multiple diseases, in particular arterial and venous thrombosis and also in atherosclerosis and cancer. To advance the in vivo study of the biological activity of this cell type from a basic experimental focus to a clinical focus, new translatable platelet-specific molecular imaging agents are required. Herein, we report the development of a near-infrared fluorescence probe based upon tirofiban, a clinically approved small-molecule glycoprotein IIb/IIIa inhibitor (GPIIb/IIIa). Through in vitro experiments with human platelets and in vivo ones in a murine model of deep-vein thrombosis, we demonstrate the avidity of the generated probe for activated platelets, with the added benefit of a short blood half-life, thereby enabling rapid in vivo visualization within the vasculature.
Collapse
Affiliation(s)
- Khanh Ha
- Masonic Medical Research Institute, Utica, New York 13501, United States
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Xiaoxin Zheng
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Chase W. Kessinger
- Masonic Medical Research Institute, Utica, New York 13501, United States
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Adam Mauskapf
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Wenzhu Li
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Yoichiro Kawamura
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Makoto Orii
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Scott A. Hilderbrand
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Farouc A. Jaffer
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jason R. McCarthy
- Masonic Medical Research Institute, Utica, New York 13501, United States
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
15
|
Weisel JW, Litvinov RI. Visualizing thrombosis to improve thrombus resolution. Res Pract Thromb Haemost 2021; 5:38-50. [PMID: 33537528 PMCID: PMC7845077 DOI: 10.1002/rth2.12469] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/05/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
The severity, course, and outcomes of thrombosis are determined mainly by the size and location of the thrombus, but studying thrombus structure and composition has been an important but challenging task. The substantial progress in determination of thrombus morphology has become possible due to new intravital imaging methodologies in combination with mechanical thrombectomy, which allows extraction of a fresh thrombus from a patient followed by microscopy. Thrombi have been found to contain various structural forms of fibrin along with platelet aggregates, leukocytes, and red blood cells, many of which acquire a polyhedral shape (polyhedrocytes) as a result of intravital platelet-driven contraction. The relative volume fractions of thrombus components and their structural forms vary substantially, depending on the clinical and pathogenic characteristics. This review summarizes recent research that describes quantitative and qualitative morphologic characteristics of arterial and venous thrombi that are relevant for the pathogenesis, prophylaxis, diagnosis, and treatment of thrombosis.
Collapse
Affiliation(s)
- John W. Weisel
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Rustem I. Litvinov
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
16
|
Intravital Assessment of Blood Platelet Function. A Review of the Methodological Approaches with Examples of Studies of Selected Aspects of Blood Platelet Function. Int J Mol Sci 2020; 21:ijms21218334. [PMID: 33172065 PMCID: PMC7664321 DOI: 10.3390/ijms21218334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 01/14/2023] Open
Abstract
Platelet biology owes to intravital studies not only a better understanding of platelets’ role in primary hemostasis but also findings that platelets are important factors in inflammation and atherosclerosis. Researchers who enter the field of intravital platelet studies may be confused by the heterogeneity of experimental protocols utilized. On the one hand, there are a variety of stimuli used to activate platelet response, and on the other hand there are several approaches to measure the outcome of the activation. A number of possible combinations of activation factors with measurement approaches result in the aforementioned heterogeneity. The aim of this review is to present the most often used protocols in a systematic way depending on the stimulus used to activate platelets. By providing examples of studies performed with each of the protocols, we attempt to explain why a particular combination of stimuli and measurement method was applied to study a given aspect of platelet biology.
Collapse
|
17
|
Chen X, Zhao X, Cooper M, Ma P. The Roles of GRKs in Hemostasis and Thrombosis. Int J Mol Sci 2020; 21:ijms21155345. [PMID: 32731360 PMCID: PMC7432802 DOI: 10.3390/ijms21155345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Along with cancer, cardiovascular and cerebrovascular diseases remain by far the most common causes of death. Heart attacks and strokes are diseases in which platelets play a role, through activation on ruptured plaques and subsequent thrombus formation. Most platelet agonists activate platelets via G protein-coupled receptors (GPCRs), which make these receptors ideal targets for many antiplatelet drugs. However, little is known about the mechanisms that provide feedback regulation on GPCRs to limit platelet activation. Emerging evidence from our group and others strongly suggests that GPCR kinases (GRKs) are critical negative regulators during platelet activation and thrombus formation. In this review, we will summarize recent findings on the role of GRKs in platelet biology and how one specific GRK, GRK6, regulates the hemostatic response to vascular injury. Furthermore, we will discuss the potential role of GRKs in thrombotic disorders, such as thrombotic events in COVID-19 patients. Studies on the function of GRKs during platelet activation and thrombus formation have just recently begun, and a better understanding of the role of GRKs in hemostasis and thrombosis will provide a fruitful avenue for understanding the hemostatic response to injury. It may also lead to new therapeutic options for the treatment of thrombotic and cardiovascular disorders.
Collapse
Affiliation(s)
- Xi Chen
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
| | - Xuefei Zhao
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
- Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China
| | - Matthew Cooper
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
| | - Peisong Ma
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
- Correspondence: ; Tel.: +1-215-955-3966
| |
Collapse
|