1
|
Blanco J, García Alonso A, Hermida-Nogueira L, Castro AB. How to explain the beneficial effects of leukocyte- and platelet-rich fibrin. Periodontol 2000 2024. [PMID: 38923566 DOI: 10.1111/prd.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 06/28/2024]
Abstract
The survival of an organism relies on its ability to repair the damage caused by trauma, toxic agents, and inflammation. This process involving cell proliferation and differentiation is driven by several growth factors and is critically dependent on the organization of the extracellular matrix. Since autologous platelet concentrates (APCs) are fibrin matrices in which cells, growth factors, and cytokines are trapped and delivered over time, they are able to influence that response at different levels. The present review thoroughly describes the molecular components present in one of these APCs, leukocyte- and platelet-rich fibrin (L-PRF), and summarizes the level of evidence regarding the influence of L-PRF on anti-inflammatory reactions, analgesia, hemostasis, antimicrobial capacity, and its biological mechanisms on bone/soft tissue regeneration.
Collapse
Affiliation(s)
- Juan Blanco
- Department of Surgery (Stomatology, Unit of Periodontology), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel García Alonso
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Santiago de Compostela University, Santiago de Compostela, Spain
| | - Lidia Hermida-Nogueira
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Santiago de Compostela University, Santiago de Compostela, Spain
| | - Ana B Castro
- Department of Oral Health Sciences, Section of Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Rath P, Mandal S, Das P, Sahoo SN, Mandal S, Ghosh D, Nandi SK, Roy M. Effects of the multiscale porosity of decellularized platelet-rich fibrin-loaded zinc-doped magnesium phosphate scaffolds in bone regeneration. J Mater Chem B 2024; 12:5869-5883. [PMID: 38775079 DOI: 10.1039/d3tb02981f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
In recent years, metallic ion-doped magnesium phosphate (MgP)-based degradable bioceramics have emerged as alternative bone substitute materials owing to their excellent biocompatibility, bone-forming ability, bioactivity, and controlled degradability. Conversely, incorporating a biomolecule such as decellularized platelet-rich fibrin (d-PRF) on scaffolds has certain advantages for bone tissue regeneration, particularly in enhanced osteogenesis and angiogenesis. The present study focuses on the impact of d-PRF-loaded multiscale porous zinc-doped magnesium phosphate (Zn-MgP) scaffolds on biodegradability, biocompatibility, and bone regeneration. Scaffolds were fabricated through the powder-metallurgy route utilizing naphthalene as a porogen (porosity = 5-43%). With the inclusion of a higher porogen, a higher fraction of macro-porosity (>20 μm) and pore interconnectivity were observed. X-ray diffraction (XRD) studies confirmed the formation of the farringtonite phase. The developed scaffolds exhibited a minimum ultimate compressive strength (UCS) of 8.5 MPa (for 40 Naph), which lies within the range of UCS of the cancellous bone of humans (2-12 MPa). The in vitro assessment via immersion in physiological fluid yielded a higher deposition of the calcium phosphate (CaP) compound in response to increased macro-porosity and interconnectivity (40 Naph). Cytocompatibility assessed using MC3T3-E1 cells showed that the incorporation of d-PRF coupled with increased porosity resulted the highest cell attachment, proliferation, and viability. For further evaluation, the developed scaffolds were implanted in in vivo rabbit femur condylar defects. Radiography, SEM, OTC labelling, and histology analysis after 2 months of implantation revealed the better invasion of mature osteoblastic cells into the scaffolds with enhanced angiogenesis and superior and accelerated healing of bone defects in d-PRF-incorporated higher porosity scaffolds (40 Naph). Finally, it is hypothesized that the combination of d-PRF incorporation with multiscale porosity and increased interconnectivity facilitated better bone-forming ability, good biocompatibility, and controlled degradability within and around the Zn-doped MgP scaffolds.
Collapse
Affiliation(s)
- Pritish Rath
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, India.
| | - Santanu Mandal
- School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar, Argul, 752050, India
| | - Pratik Das
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, India.
| | - Satyabrata Nigamananda Sahoo
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology - Kharagpur, Kharagpur, 721302, India.
| | - Samiran Mandal
- Department of Veterinary Pathology, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, India
| | - Debaki Ghosh
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, India.
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, India.
| | - Mangal Roy
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology - Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
3
|
Liu B, Hu C, Huang X, Qin K, Wang L, Wang Z, Liang J, Xie F, Fan Z. 3D printing nacre powder/sodium alginate scaffold loaded with PRF promotes bone tissue repair and regeneration. Biomater Sci 2024; 12:2418-2433. [PMID: 38511973 DOI: 10.1039/d3bm01936e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Bone defects are a common complication of bone diseases, which often affect the quality of life and mental health of patients. The use of biomimetic bone scaffolds loaded with bioactive substances has become a focal point in the research on bone defect repair. In this study, composite scaffolds resembling bone tissue were created using nacre powder (NP) and sodium alginate (SA) through 3D printing. These scaffolds exhibit several physiological structural and mechanical characteristics of bone tissue, such as suitable porosity, an appropriate pore size, applicable degradation performance and satisfying the mechanical requirements of cancellous bone, etc. Then, platelet-rich fibrin (PRF), containing a mass of growth factors, was loaded on the NP/SA scaffolds. This was aimed to fully maximize the synergistic effect with NP, thereby accelerating bone tissue regeneration. Overall, this study marks the first instance of preparing a bionic bone structure scaffold containing NP by 3D printing technology, which is combined with PRF to further accelerate bone regeneration. These findings offer a new treatment strategy for bone tissue regeneration in clinical applications.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
- Department of Oral and Maxillofacial Surgery, 2nd Hospital of Lanzhou University, Lanzhou 730030, P. R. China.
| | - Cewen Hu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xinyue Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Kaiqi Qin
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Lei Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Zhilong Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jiachen Liang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Fuqiang Xie
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
- Department of Oral and Maxillofacial Surgery, 2nd Hospital of Lanzhou University, Lanzhou 730030, P. R. China.
| | - Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
4
|
Moghimi N, Kamaraj M, Zehtabi F, Amin Yavari S, Kohandel M, Khademhosseini A, John JV. Development of bioactive short fiber-reinforced printable hydrogels with tunable mechanical and osteogenic properties for bone repair. J Mater Chem B 2024; 12:2818-2830. [PMID: 38411556 DOI: 10.1039/d3tb02924g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Personalized bone-regenerative materials have attracted substantial interest in recent years. Modern clinical settings demand the use of engineered materials incorporating patient-derived cells, cytokines, antibodies, and biomarkers to enhance the process of regeneration. In this work, we formulated short microfiber-reinforced hydrogels with platelet-rich fibrin (PRF) to engineer implantable multi-material core-shell bone grafts. By employing 3D bioprinting technology, we fabricated a core-shell bone graft from a hybrid composite hydroxyapatite-coated poly(lactic acid) (PLA) fiber-reinforced methacryolyl gelatin (GelMA)/alginate hydrogel. The overall concept involves 3D bioprinting of long bone mimic microstructures that resemble a core-shell cancellous-cortical structure, with a stiffer shell and a softer core with our engineered biomaterial. We observed a significantly enhanced stiffness in the hydrogel scaffold incorporated with hydroxyapatite (HA)-coated PLA microfibers compared to the pristine hydrogel construct. Furthermore, HA non-coated PLA microfibers were mixed with PRF and GelMA/alginate hydrogel to introduce a slow release of growth factors which can further enhance cell maturation and differentiation. These patient-specific bone grafts deliver cytokines and growth factors with distinct spatiotemporal release profiles to enhance tissue regeneration. The biocompatible and bio-responsive bone mimetic core-shell multi-material structures enhance osteogenesis and can be customized to have materials at a specific location, geometry, and material combination.
Collapse
Affiliation(s)
- Nafiseh Moghimi
- Terasaki Institute for Biomedical Innovations, Los Angeles, California, USA.
- Mathematical Medicine Lab, University of Waterloo, Ontario, Canada
| | - Meenakshi Kamaraj
- Terasaki Institute for Biomedical Innovations, Los Angeles, California, USA.
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovations, Los Angeles, California, USA.
| | - Saber Amin Yavari
- Terasaki Institute for Biomedical Innovations, Los Angeles, California, USA.
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovations, Los Angeles, California, USA.
| | - Johnson V John
- Terasaki Institute for Biomedical Innovations, Los Angeles, California, USA.
| |
Collapse
|
5
|
Shanbhag S, Al-Sharabi N, Kampleitner C, Mohamed-Ahmed S, Kristoffersen EK, Tangl S, Mustafa K, Gruber R, Sanz M. The use of mesenchymal stromal cell secretome to enhance guided bone regeneration in comparison with leukocyte and platelet-rich fibrin. Clin Oral Implants Res 2024; 35:141-154. [PMID: 37964421 DOI: 10.1111/clr.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVES Secretomes of mesenchymal stromal cells (MSC) represent a novel strategy for growth-factor delivery for tissue regeneration. The objective of this study was to compare the efficacy of adjunctive use of conditioned media of bone-marrow MSC (MSC-CM) with collagen barrier membranes vs. adjunctive use of conditioned media of leukocyte- and platelet-rich fibrin (PRF-CM), a current growth-factor therapy, for guided bone regeneration (GBR). METHODS MSC-CM and PRF-CM prepared from healthy human donors were subjected to proteomic analysis using mass spectrometry and multiplex immunoassay. Collagen membranes functionalized with MSC-CM or PRF-CM were applied on critical-size rat calvaria defects and new bone formation was assessed via three-dimensional (3D) micro-CT analysis of total defect volume (2 and 4 weeks) and 2D histomorphometric analysis of central defect regions (4 weeks). RESULTS While both MSC-CM and PRF-CM revealed several bone-related proteins, differentially expressed proteins, especially extracellular matrix components, were increased in MSC-CM. In rat calvaria defects, micro-CT revealed greater total bone coverage in the MSC-CM group after 2 and 4 weeks. Histologically, both groups showed a combination of regular new bone and 'hybrid' new bone, which was formed within the membrane compartment and characterized by incorporation of mineralized collagen fibers. Histomorphometry in central defect sections revealed greater hybrid bone area in the MSC-CM group, while the total new bone area was similar between groups. CONCLUSION Based on the in vitro and in vivo investigations herein, functionalization of membranes with MSC-CM represents a promising strategy to enhance GBR.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Niyaz Al-Sharabi
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Carina Kampleitner
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Einar K Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Reinhard Gruber
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
6
|
Xiao H, Wen B, Yan D, Li Q, Yang Y, Yin X, Chen D, Liu J. Hot spots and frontiers in bone-tendon interface research: a bibliometric analysis and visualization from 2000 to 2023. Front Surg 2024; 10:1326564. [PMID: 38327873 PMCID: PMC10847327 DOI: 10.3389/fsurg.2023.1326564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024] Open
Abstract
Objective In this research, we investigated the current status, hotspots, frontiers, and trends of research in the field of bone-tendon interface (BTI) from 2000 to 2023, based on bibliometrics and visualization and analysis in CiteSpace, VOSviewer, and a bibliometric package in R software. Methods We collected and organized the papers in the Web of Science core collection (WoSCC) for the past 23 years (2000-2023), and extracted and analyzed the papers related to BTI. The extracted papers were bibliometrically analyzed using CiteSpace for overall publication trends, authors, countries/regions, journals, keywords, research hotspots, and frontiers. Results A total of 1,995 papers met the inclusion criteria. The number of papers published and the number of citations in the field of BTI have continued to grow steadily over the past 23 years. In terms of research contribution, the United States leads in terms of the number and quality of publications, number of citations, and collaborations with other countries, while the United Kingdom and the Netherlands lead in terms of the average number of citations. The University of Leeds publishes the largest number of papers, and among the institutions hosting the 100 most cited papers Hospital for Special Surgery takes the top spot. MCGONAGLE D has published the highest number of papers (73) in the last 10 years. The top three clusters include #0 "psoriatic arthritis", #1 "rotator cuff repair", and #2 "tissue engineering". The structure and function of the BTI and its key mechanisms in the healing process are the key to research, while new therapies such as mechanical stimulation, platelet-rich plasma, mesenchymal stem cells, and biological scaffolds are hot topics and trends in research. Conclusion Over the past 23 years, global research on the BTI has expanded in both breadth and depth. The focus of research has shifted from studies concentrating on the structure of the BTI and the disease itself to new therapies such as biomaterial-based alternative treatments, mechanical stimulation, platelet-rich plasma, etc.
Collapse
Affiliation(s)
- Hao Xiao
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Boyuan Wen
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Dong Yan
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Quansi Li
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Yujie Yang
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Xianye Yin
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Deyu Chen
- School of Journalism and Communication, Hunan University, Changsha, China
| | - Jiachen Liu
- XiangYa School of Medicine, Central South University, Changsha, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of System Biology and Data Information, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Liu M, Liu Y, Luo F. The role and mechanism of platelet-rich fibrin in alveolar bone regeneration. Biomed Pharmacother 2023; 168:115795. [PMID: 37918253 DOI: 10.1016/j.biopha.2023.115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Platelet-rich fibrin (PRF), as an autologous blood preparation, has been receiving increasing attention in recent years and has been successfully applied in various clinical treatments for alveolar bone regeneration in the oral field. This review focuses on analyzing and summarizing the role and mechanism of PRF in alveolar bone regeneration. We first provide a brief introduction to PRF, then summarize the mechanisms by which PRF promotes alveolar bone regeneration from three aspects: osteogenesis mechanism, bone induction mechanism, and bone conduction mechanism, involving multiple signaling pathways such as Smad, ERK1/2, PI3K/Akt, and Wnt/β-catenin. We also explore the various roles of PRF as a scaffold, filler, and in combination with bone graft materials, detailing how PRF promotes alveolar bone regeneration and provides a wealth of experimental evidence. Finally, we summarize the current applications of PRF in various oral fields. The role of PRF in alveolar bone regeneration is becoming increasingly important, and its role and mechanism are receiving more and more research and understanding. This article will provide a reference of significant value for research in related fields. The exploration of the role and mechanism of PRF in alveolar bone regeneration may lead to the discovery of new therapeutic targets and the development of more effective and efficient treatment strategies.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yu Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
8
|
M A, S T, P S, A G. Efficacy of mixture of injectable-platelet-rich fibrin and type-1 collagen particles on the closure of through-and-through periapical bone defects: A randomized controlled trial. Int Endod J 2023; 56:1197-1211. [PMID: 37418583 DOI: 10.1111/iej.13954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 05/31/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
AIM To determine the efficacy of a combination of injectable-platelet-rich fibrin and type-1 collagen particles on the healing of through-and-through periapical bone defect and subsequent closure of bony window. METHODOLOGY The clinical trial was registered in ClinicalTrials.gov (NCT04391725). Thirty-eight individuals with radiographic evidence of periapical radiolucency in maxillary anterior teeth and confirmed loss of palatal cortical plates in cone beam computed tomographic imaging were randomly assigned to either the experimental group (n = 19) or the control group (n = 19). A mixture of i-PRF and collagen as a graft was applied to the defect in adjunct to periapical surgery in the experimental group. No guided bone regeneration procedures were used in the control group. The healing was evaluated using Molven's (2D) and modified PENN 3D (3D) criteria. Percentage reduction of the buccal and palatal bony window area, and complete closure of through-and-through periapical bony window (tunnel defect) were assessed using Radiant Diacom viewer software (Version 4.0.2). The reduction in the periapical lesion area and volume was measured using Corel DRAW and ITK Snap software. RESULTS Thirty-four participants (18 and 16 in the experimental and control groups respectively) reported for follow-up at 12 months. There was 96.9% and 97.96% reduction of buccal bony window area in the experimental and control groups respectively. Similarly, palatal window showed 99.03% and 100% reduction in the experimental and control groups respectively. No significant difference in both buccal and palatal window reduction was noticed between the groups. A total of 14 cases (seven in the experimental group and seven in the control group) showed complete closure of through-and-through bony window. No significant difference in clinical, 2D and 3D radiographic healing, percentage reduction in area and volume was observed between the experimental and control groups (p > .05). Neither the area nor the volume of lesion, and the size of buccal or palatal window had significant effect on healing of through-and-through defects. CONCLUSION Endodontic microsurgery results in high success rate in large periapical lesions with through-and-through communication with more than 80% reduction in volume of lesion and size of both buccal and palatal window after 1 year. A mixture of type-1 collagen particles and i-PRF, adjunct to periapical micro-surgery did not improve the healing in through-and-through periapical defects.
Collapse
Affiliation(s)
- Arpitha M
- Department of Conservative Dentistry and Endodontics, Post Graduate Institute of Dental Sciences (PGIDS), Rohtak, India
| | - Tewari S
- Department of Conservative Dentistry and Endodontics, Post Graduate Institute of Dental Sciences (PGIDS), Rohtak, India
| | - Sangwan P
- Department of Conservative Dentistry and Endodontics, Post Graduate Institute of Dental Sciences (PGIDS), Rohtak, India
| | - Gupta A
- Department of Oral Medicine and Radiology, Post Graduate Institute of Dental Sciences (PGIDS), Rohtak, India
| |
Collapse
|
9
|
Al-Sharabi N, Gruber R, Sanz M, Mohamed-Ahmed S, Kristoffersen EK, Mustafa K, Shanbhag S. Proteomic Analysis of Mesenchymal Stromal Cells Secretome in Comparison to Leukocyte- and Platelet-Rich Fibrin. Int J Mol Sci 2023; 24:13057. [PMID: 37685865 PMCID: PMC10487446 DOI: 10.3390/ijms241713057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Secretomes of mesenchymal stromal cells (MSCs) are emerging as a novel growth factor (GF)-based strategy for periodontal and bone regeneration. The objective of this study was to compare the secretome of human bone marrow MSC (BMSC) to that of leukocyte- and platelet-rich fibrin (L-PRF), an established GF-based therapy, in the context of wound healing and regeneration. Conditioned media from human BMSCs (BMSC-CM) and L-PRF (LPRF-CM) were subjected to quantitative proteomic analysis using liquid chromatography with tandem mass spectrometry. Global profiles, gene ontology (GO) categories, differentially expressed proteins (DEPs), and gene set enrichment (GSEA) were identified using bioinformatic methods. Concentrations of selected proteins were determined using a multiplex immunoassay. Among the proteins identified in BMSC-CM (2157 proteins) and LPRF-CM (1420 proteins), 1283 proteins were common. GO analysis revealed similarities between the groups in terms of biological processes (cellular organization, protein metabolism) and molecular functions (cellular/protein-binding). Notably, more DEPs were identified in BMSC-CM (n = 550) compared to LPRF-CM (n = 118); these included several key GF, cytokines, and extracellular matrix (ECM) proteins involved in wound healing. GSEA revealed enrichment of ECM (especially bone ECM)-related processes in BMSC-CM and immune-related processes in LPRF-CM. Similar trends for intergroup differences in protein detection were observed in the multiplex analysis. Thus, the secretome of BMSC is enriched for proteins/processes relevant for periodontal and bone regeneration. The in vivo efficacy of this therapy should be evaluated in future studies.
Collapse
Affiliation(s)
- Niyaz Al-Sharabi
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, 28040 Madrid, Spain;
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
| | - Einar K. Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Clinical Science, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
| | - Siddharth Shanbhag
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
| |
Collapse
|
10
|
Khajehmohammadi M, Azizi Tafti R, Nikukar H. Effect of porosity on mechanical and biological properties of bioprinted scaffolds. J Biomed Mater Res A 2023; 111:245-260. [PMID: 36205372 DOI: 10.1002/jbm.a.37455] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 01/10/2023]
Abstract
Treatment of tissue defects commonly represents a major problem in clinics due to difficulties involving a shortage of donors, inappropriate sizes, abnormal shapes, and immunological rejection. While many scaffold parameters such as pore shape, porosity percentage, and pore connectivity could be adjusted to achieve desired mechanical and biological properties. These parameters are crucial scaffold parameters that can be accurately produced by 3D bioprinting technology based on the damaged tissue. In the present research, the effect of porosity percentage (40%, 50%, and 60%) and different pore shapes (square, star, and gyroid) on the mechanical (e.g., stiffness, compressive and tensile behavior) and biological (e.g., biodegradation, and cell viability) properties of porous polycaprolactone (PCL) scaffolds coated with gelatin have been investigated. Moreover, human foreskin fibroblast cells were cultured on the scaffolds in the in-vitro procedures. MTT assay (4, 7, and 14 days) was utilized to determine the cytotoxicity of the porous scaffolds. It is revealed that the porous scaffolds produced by the bioprinter did not produce a cytotoxic effect. Among all the porous scaffolds, scaffolds with a pore size of about 500 μm and porosity of 50% showed the best cell proliferation compared to the controls after 14 days. The results demonstrated that the pore shape, porosity percentage, and pore connectivity have an important role in improving the mechanical and biological properties of porous scaffolds. These 3D bioprinted biodegradable scaffolds exhibit potential for future application as polymeric scaffolds in hard tissue engineering applications.
Collapse
Affiliation(s)
| | | | - Habib Nikukar
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
11
|
Bahraminasab M, Doostmohammadi N, Talebi A, Arab S, Alizadeh A, Ghanbari A, Salati A. 3D printed polylactic acid/gelatin-nano-hydroxyapatite/platelet-rich plasma scaffold for critical-sized skull defect regeneration. Biomed Eng Online 2022; 21:86. [PMID: 36503442 PMCID: PMC9743557 DOI: 10.1186/s12938-022-01056-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Three-dimensional (3D) printing is a capable approach for the fabrication of bone tissue scaffolds. Nevertheless, a purely made scaffold such as polylactic acid (PLA) may suffer from shortcomings and be restricted due to its biological behavior. Gelatin, hydroxyapatite and platelet-rich plasma (PRP) have been revealed to be of potential to enhance the osteogenic effect. In this study, it was tried to improve the properties of 3D-printed PLA scaffolds by infilling them with gelatin-nano-hydroxyapatite (PLA/G-nHA) and subsequent coating with PRP. For comparison, bare PLA and PLA/G-nHA scaffolds were also fabricated. The printing accuracy, the scaffold structural characterizations, mechanical properties, degradability behavior, cell adhesion, mineralization, systemic effect of the scaffolds on the liver enzymes, osteocalcin level in blood serum and in vivo bone regeneration capability in rat critical-sized calvaria defect were evaluated. RESULTS High printing accuracy (printing error of < 11%) was obtained for all measured parameters including strut thickness, pore width, scaffold density and porosity%. The highest mean ultimate compression strength (UCS) was associated with PLA/G-nHA/PRP scaffolds, which was 10.95 MPa. A slow degradation rate was observed for all scaffolds. The PLA/G-nHA/PRP had slightly higher degradation rate, possibly due to PRP release, with burst release occurred at week 4. The MTT results showed that PLA/G-nHA/PRP provided the highest cell proliferation at all time points, and the serum biochemistry (ALT and AST level) results indicated no abnormal/toxic influence caused by scaffold biomaterials. Superior cell adhesion and mineralization were obtained for PLA/G-nHA/PRP. Furthermore, all the developed scaffolds showed bone repair capability. The PLA/G-nHA/PRP scaffolds could better support bone regeneration than bare PLA and PLA/G-nHA scaffolds. CONCLUSION The PLA/G-nHA/PRP scaffolds can be considered as potential for hard tissue repair.
Collapse
Affiliation(s)
- Marjan Bahraminasab
- grid.486769.20000 0004 0384 8779Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran ,grid.486769.20000 0004 0384 8779Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Nesa Doostmohammadi
- grid.486769.20000 0004 0384 8779Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran ,grid.412475.10000 0001 0506 807XFaculty of Metallurgical and Materials Engineering, Semnan University, Semnan, Iran
| | - Athar Talebi
- grid.486769.20000 0004 0384 8779Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Samaneh Arab
- grid.486769.20000 0004 0384 8779Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran ,grid.486769.20000 0004 0384 8779Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Akram Alizadeh
- grid.486769.20000 0004 0384 8779Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran ,grid.486769.20000 0004 0384 8779Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Ghanbari
- grid.486769.20000 0004 0384 8779Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Amir Salati
- grid.486769.20000 0004 0384 8779Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran ,grid.486769.20000 0004 0384 8779Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
12
|
Farmani AR, Nekoofar MH, Ebrahimi-Barough S, Azami M, Najafipour S, Moradpanah S, Ai J. Preparation and In Vitro Osteogenic Evaluation of Biomimetic Hybrid Nanocomposite Scaffolds Based on Gelatin/Plasma Rich in Growth Factors (PRGF) and Lithium-Doped 45s5 Bioactive Glass Nanoparticles. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 31:870-885. [PMID: 36373108 PMCID: PMC9638231 DOI: 10.1007/s10924-022-02615-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Bone tissue engineering is an emerging technique for repairing large bone lesions. Biomimetic techniques expand the use of organic-inorganic spongy-like nanocomposite scaffolds and platelet concentrates. In this study, a biomimetic nanocomposite scaffold was prepared using lithium-doped bioactive-glass nanoparticles and gelatin/PRGF. First, sol-gel method was used to prepare bioactive-glass nanoparticles that contain 0, 1, 3, and 5%wt lithium. The lithium content was then optimized based on antibacterial and MTT testing. By freeze-drying, hybrid scaffolds comprising 5, 10, and 20% bioglass were made. On the scaffolds, human endometrial stem cells (hEnSCs) were cultured for adhesion (SEM), survival, and osteogenic differentiation. Alkaline phosphatase activity and osteopontin, osteocalcin, and Runx2 gene expression were measured. The effect of bioactive-glass nanoparticles and PRGF on nanocomposites' mechanical characteristics and glass-transition temperature (T g) was also studied. An optimal lithium content in bioactive glass structure was found to be 3% wt. Nanoparticle SEM examination indicated grain deformation due to different sizes of lithium and sodium ions. Results showed up to 10% wt bioactive-glass and PRGF increased survival and cell adhesion. Also, Hybrid scaffolds revealed higher ALP-activity and OP, OC, and Runx2 gene expression. Furthermore, bioactive-glass has mainly increased ALP-activity and Runx2 expression, whereas PRGF increases the expression of OP and OC genes. Bioactive-glass increases scaffold modulus and T g continuously. Hence, the presence of both bioactive-glass and nanocomposite scaffold improves the expression of osteogenic differentiation biomarkers. Subsequently, it seems that hybrid scaffolds based on biopolymers, Li-doped bioactive-glass, and platelet extracts can be a good strategy for bone repair.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nekoofar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endodontics, School of Dentistry, Bahçeşehir University, Istanbul, Turkey
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sohrab Najafipour
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Microbiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Somayeh Moradpanah
- Department of Obstetrics and Gynecology, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Zhang C, Nie P. Application Value of Total Knee Arthroplasty plus Platelet-Rich Plasma Therapy in Traumatic Arthritis of the Knee. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5483101. [PMID: 36199774 PMCID: PMC9529441 DOI: 10.1155/2022/5483101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
Purpose This work is aimed at determining the application value of platelet-rich plasma (PRP) therapy plus total knee arthroplasty (TKA) in traumatic arthritis (TA) of the knee. Methods A retrospective study was conducted on 78 cases of TA of the knee admitted between March 2021 and January 2022 to the Quanzhou First Hospital Affiliated to Fujian Medical University. Based on different treatment methods, 38 cases treated with TKA were assigned to the control group, and 40 cases intervened by PRP+TKA were included in the observation group. The operation time (OT), drainage volume (DV), total blood loss (TBL), incision inflammatory reaction rate, and grade A healing rate were recorded. Besides, preoperative and postoperative knee joint Hospital for Special Surgery (HSS) scores, knee joint pain assessed by visual analogue scale (VAS), knee joint range of motion (ROM), and bone metabolism parameters (osteocalcin (OST), total N-terminal propeptide of type I procollagen (tPINP), and β-isomerized C-terminal telopeptides (β-CTX)) were recorded. Results The observation group showed reduced postoperative DV and TBL than the control group (P < 0.05). The two cohorts differed insignificantly in OT, incision inflammatory response rate, and grade A healing rate (P > 0.05). The observation group also had better improvement in the HSS score, pain VAS score, and knee ROM (P < 0.05). And higher postoperative OST and tPINP levels while lower β-CTX were determined in the observation group (P < 0.05). Conclusions PRP+TKA can validly improve the levels of bone metabolism markers in patients with TA of the knee and promote their knee functional recovery, with favorable safety.
Collapse
Affiliation(s)
- Canhong Zhang
- Department of Orthopedics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000 Fujian, China
| | - Pengfei Nie
- Department of Orthopedics, Ningbo Beilun People's Hospital, Ningbo, 315800, Zhejiang, China
| |
Collapse
|
14
|
Farmani AR, Salmeh MA, Golkar Z, Moeinzadeh A, Ghiasi FF, Amirabad SZ, Shoormeij MH, Mahdavinezhad F, Momeni S, Moradbeygi F, Ai J, Hardy JG, Mostafaei A. Li-Doped Bioactive Ceramics: Promising Biomaterials for Tissue Engineering and Regenerative Medicine. J Funct Biomater 2022; 13:162. [PMID: 36278631 PMCID: PMC9589997 DOI: 10.3390/jfb13040162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
Lithium (Li) is a metal with critical therapeutic properties ranging from the treatment of bipolar depression to antibacterial, anticancer, antiviral and pro-regenerative effects. This element can be incorporated into the structure of various biomaterials through the inclusion of Li chloride/carbonate into polymeric matrices or being doped in bioceramics. The biocompatibility and multifunctionality of Li-doped bioceramics present many opportunities for biomedical researchers and clinicians. Li-doped bioceramics (capable of immunomodulation) have been used extensively for bone and tooth regeneration, and they have great potential for cartilage/nerve regeneration, osteochondral repair, and wound healing. The synergistic effect of Li in combination with other anticancer drugs as well as the anticancer properties of Li underline the rationale that bioceramics doped with Li may be impactful in cancer treatments. The role of Li in autophagy may explain its impact in regenerative, antiviral, and anticancer research. The combination of Li-doped bioceramics with polymers can provide new biomaterials with suitable flexibility, especially as bio-ink used in 3D printing for clinical applications of tissue engineering. Such Li-doped biomaterials have significant clinical potential in the foreseeable future.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa 74615-168, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Mohammad Ali Salmeh
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14155-6619, Iran
| | - Zahra Golkar
- Department of Midwifery, Firoozabad Branch, Islamic Azad University, Firoozabad 74715-117, Iran
| | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Farzaneh Farid Ghiasi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Sara Zamani Amirabad
- Department of Chemical Engineering, Faculty of Engineering, Yasouj University, Yasouj 75918-74934, Iran
| | - Mohammad Hasan Shoormeij
- Emergency Medicine Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Forough Mahdavinezhad
- Anatomy Department, School of Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
- Department of Infertility, Velayat Hospital, Qazvin University of Medical Sciences, Qazvin 34199-15315, Iran
| | - Simin Momeni
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 83151-61355, Iran
| | - Fatemeh Moradbeygi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - John G. Hardy
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster LA1 4YB, UK
- Materials Science Institute, Lancaster University, Lancaster LA1 4YW, UK
| | - Amir Mostafaei
- Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, 10 W 32nd Street, Chicago, IL 60616, USA
| |
Collapse
|
15
|
Daliri Shadmehri F, Karimi E, Saburi E. Electrospun PCL/fibrin scaffold as a bone implant improved the differentiation of human adipose-derived mesenchymal stem cells into osteo-like cells. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2124253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Ehsan Karimi
- Department of biology, Mashhad branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Saburi
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Gholami K, Solhjoo S, Aghamir SMK. Application of Tissue-Specific Extracellular Matrix in Tissue Engineering: Focus on Male Fertility Preservation. Reprod Sci 2022; 29:3091-3099. [PMID: 35028926 DOI: 10.1007/s43032-021-00823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
In vitro spermatogenesis and xenotransplantation of the immature testicular tissues (ITT) are the experimental approaches that have been developed for creating seminiferous tubules-like functional structures in vitro and keeping the integrity of the ITTs in vivo, respectively. These strategies are rapidly developing in response to the growing prevalence of infertility in adolescent boys undergoing cancer treatment, by the logic that there is no sperm cryopreservation option for them. Recently, with the advances made in the field of tissue engineering and biomaterials, these methods have achieved promising results for fertility preservation. Due to the importance of extracellular matrix for the formation of vascular bed around the grafted ITTs and also the creation of spatial arrangements between Sertoli cells and germ cells, today it is clear that the scaffold plays a very important role in the success of these methods. Decellularized extracellular matrix (dECM) as a biocompatible, functionally graded, and biodegradable scaffold with having tissue-specific components and growth factors can support reorganization and physiologic processes of originated cells. This review discusses the common protocols for the tissue decellularization, sterilization, and hydrogel formation of the decellularized and lyophilized tissues as well as in vitro and in vivo studies on the use of the testis-derived dECM for testicular organoids.
Collapse
Affiliation(s)
- Keykavos Gholami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Solhjoo
- Department of Anatomy, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
17
|
REIS NTDA, João Lucas Carvalho PAZ, PARANHOS LR, BERNARDINO ÍDM, MOURA CCG, IRIE MS, SOARES PBF. Use of platelet-rich fibrin for bone repair: a systematic review and meta-analysis of preclinical studies. Braz Oral Res 2022; 36:e129. [DOI: 10.1590/1807-3107bor-2022.vol36.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
|