1
|
Kostin S, Giannakopoulos T, Richter M, Krizanic F, Sasko B, Ritter O, Pagonas N. Coronary microthrombi in the failing human heart: the role of von Willebrand factor and PECAM-1. Mol Cell Biochem 2024; 479:3437-3446. [PMID: 38381272 PMCID: PMC11511743 DOI: 10.1007/s11010-024-04942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/13/2024] [Indexed: 02/22/2024]
Abstract
The recognition of microthrombi in the heart microcirculation has recently emerged from studies in COVID-19 decedents. The present study investigated the ultrastructure of coronary microthrombi in heart failure (HF) due to cardiomyopathies that are unrelated to COVID-19 infection. In addition, we have investigated the role of von Willebrand factor (VWF) and PECAM-1 in microthrombus formation. We used electron microscopy to investigate the occurrence of microthrombi in patients with HF due to dilated (DCM, n = 7), inflammatory (MYO, n = 6) and ischemic (ICM, n = 7) cardiomyopathy and 4 control patients. VWF and PECAM-1 was studied by quantitative immunohistochemistry and Western blot. In comparison to control, the number of microthrombi was increased 7-9 times in HF. This was associated with a 3.5-fold increase in the number of Weibel-Palade bodies (WPb) in DCM and MYO compared to control. A fivefold increase in WPb in ICM was significantly different from control, DCM and MYO. In Western blot, VWF was increased twofold in DCM and MYO, and more than threefold in ICM. The difference between ICM and DCM and MYO was statistically significant. These results were confirmed by quantitative immunohistochemistry. Compared to control, PECAM-1 was by approximatively threefold increased in all groups of patients. This is the first study to demonstrate the occurrence of microthrombi in the failing human heart. The occurrence of microthrombi is associated with increased expression of VWF and the number of WPb, being more pronounced in ICM. These changes are likely not compensated by increases in PECAM-1 expression.
Collapse
Affiliation(s)
- Sawa Kostin
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany.
| | - Theodoros Giannakopoulos
- Department of Internal Medicine and Cardiology, Brandenburg Medical School Theodor Fontane, University Clinic Neuruppin-Brandenburg, Neuruppin, Germany
| | - Manfred Richter
- Department of Cardiac Surgery, Kerckhoff-Clinic, Bad Nauheim, Germany
| | - Florian Krizanic
- Department of Internal Medicine and Cardiology, Brandenburg Medical School Theodor Fontane, University Clinic Neuruppin-Brandenburg, Neuruppin, Germany
| | - Benjamin Sasko
- Medical Department II, Marien Hospital Herne, Ruhr-University of Bochum, Herne, Germany
| | - Oliver Ritter
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
- Department of Cardiology, University Hospital Brandenburg, Brandenburg an der Havel, Germany
| | - Nikolaos Pagonas
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
- Department of Internal Medicine and Cardiology, Brandenburg Medical School Theodor Fontane, University Clinic Neuruppin-Brandenburg, Neuruppin, Germany
| |
Collapse
|
2
|
Zhang T, Zhang M, Guo L, Liu D, Zhang K, Bi C, Zhang P, Wang J, Fan Y, He Q, Chang ACY, Zhang J. Angiopoietin-like protein 2 inhibits thrombus formation. Mol Cell Biochem 2024:10.1007/s11010-024-05034-9. [PMID: 38880861 DOI: 10.1007/s11010-024-05034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
Acute myocardial infarction is mainly caused by a lack of blood flood in the coronary artery. Angiopoietin-like protein 2 (ANGPTL2) induces platelet activation and thrombus formation in vitro through binding with immunoglobulin-like receptor B, an immunoglobulin superfamily receptor. However, the mechanism by which it regulates platelet function in vivo remains unclear. In this study, we investigated the role of ANGPTL2 during thrombosis in relationship with ST-segment elevation myocardial infarction (STEMI) with spontaneous recanalization (SR). In a cohort of 276 male and female patients, we measured plasma ANGPTL2 protein levels. Using male Angptl2-knockout and wild-type mice, we examined the inhibitory effect of Angptl2 on thrombosis and platelet activation both in vivo and ex vivo. We found that plasma and platelet ANGPTL2 levels were elevated in patients with STEMI with SR compared to those in non-SR (NSR) patients, and was an independent predictor of SR. Angptl2 deficiency accelerated mesenteric artery thrombosis induced by FeCl3 in Angptl2-/- compared to WT animals, promoted platelet granule secretion and aggregation induced by thrombin and collogen while purified ANGPTL2 protein supplementation reversed collagen-induced platelet aggregation. Angptl2 deficiency also increased platelet spreading on immobilized fibrinogen and clot contraction. In collagen-stimulated Angptl2-/- platelets, Src homology region 2 domain-containing phosphatase (Shp)1-Y564 and Shp2-Y580 phosphorylation were attenuated while Src, Syk, and Phospholipase Cγ2 (PLCγ2) phosphorylation increased. Our results demonstrate that ANGPTL2 negatively regulated thrombus formation by activating ITIM which can suppress ITAM signaling pathway. This new knowledge provides a new perspective for designing future antiplatelet aggregation therapies.
Collapse
Affiliation(s)
- Tiantian Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mingliang Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lingyu Guo
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Dongsheng Liu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Kandi Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Changlong Bi
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jin Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuqi Fan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qing He
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Alex C Y Chang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Junfeng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Manole CG, Soare C, Ceafalan LC, Voiculescu VM. Platelet-Rich Plasma in Dermatology: New Insights on the Cellular Mechanism of Skin Repair and Regeneration. Life (Basel) 2023; 14:40. [PMID: 38255655 PMCID: PMC10817627 DOI: 10.3390/life14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The skin's recognised functions may undergo physiological alterations due to ageing, manifesting as varying degrees of facial wrinkles, diminished tautness, density, and volume. Additionally, these functions can be disrupted (patho)physiologically through various physical and chemical injuries, including surgical trauma, accidents, or chronic conditions like ulcers associated with diabetes mellitus, venous insufficiency, or obesity. Advancements in therapeutic interventions that boost the skin's innate regenerative abilities could significantly enhance patient care protocols. The application of Platelet-Rich Plasma (PRP) is widely recognized for its aesthetic and functional benefits to the skin. Yet, the endorsement of PRP's advantages often borders on the dogmatic, with its efficacy commonly ascribed solely to the activation of fibroblasts by the factors contained within platelet granules. PRP therapy is a cornerstone of regenerative medicine which involves the autologous delivery of conditioned plasma enriched by platelets. This is achieved by centrifugation, removing erythrocytes while retaining platelets and their granules. Despite its widespread use, the precise sequences of cellular activation, the specific cellular players, and the molecular machinery that drive PRP-facilitated healing are still enigmatic. There is still a paucity of definitive and robust studies elucidating these mechanisms. In recent years, telocytes (TCs)-a unique dermal cell population-have shown promising potential for tissue regeneration in various organs, including the dermis. TCs' participation in neo-angiogenesis, akin to that attributed to PRP, and their role in tissue remodelling and repair processes within the interstitia of several organs (including the dermis), offer intriguing insights. Their potential to contribute to, or possibly orchestrate, the skin regeneration process following PRP treatment has elicited considerable interest. Therefore, pursuing a comprehensive understanding of the cellular and molecular mechanisms at work, particularly those involving TCs, their temporal involvement in structural recovery following injury, and the interconnected biological events in skin wound healing and regeneration represents a compelling field of study.
Collapse
Affiliation(s)
- Catalin G. Manole
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Cristina Soare
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Vlad M. Voiculescu
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
4
|
Yao Y, Liu F, Gu Z, Wang J, Xu L, Yu Y, Cai J, Ren R. Emerging diagnostic markers and therapeutic targets in post-stroke hemorrhagic transformation and brain edema. Front Mol Neurosci 2023; 16:1286351. [PMID: 38178909 PMCID: PMC10764516 DOI: 10.3389/fnmol.2023.1286351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024] Open
Abstract
Stroke is a devastating condition that can lead to significant morbidity and mortality. The aftermath of a stroke, particularly hemorrhagic transformation (HT) and brain edema, can significantly impact the prognosis of patients. Early detection and effective management of these complications are crucial for improving outcomes in stroke patients. This review highlights the emerging diagnostic markers and therapeutic targets including claudin, occludin, zonula occluden, s100β, albumin, MMP-9, MMP-2, MMP-12, IL-1β, TNF-α, IL-6, IFN-γ, TGF-β, IL-10, IL-4, IL-13, MCP-1/CCL2, CXCL2, CXCL8, CXCL12, CCL5, CX3CL1, ICAM-1, VCAM-1, P-selectin, E-selectin, PECAM-1/CD31, JAMs, HMGB1, vWF, VEGF, ROS, NAC, and AQP4. The clinical significance and implications of these biomarkers were also discussed.
Collapse
Affiliation(s)
- Ying Yao
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Liu
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaowen Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lintao Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yue Yu
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Cai
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Reng Ren
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Bielicka N, Stankiewicz A, Misztal T, Kocańda S, Chabielska E, Gromotowicz-Popławska A. PECAM-1/Thrombus Ratio Correlates with Blood Loss during Off-Pump Coronary Artery Bypass Grafting (OPCAB) Surgery: A Preliminary Study. Int J Mol Sci 2023; 24:13254. [PMID: 37686070 PMCID: PMC10487496 DOI: 10.3390/ijms241713254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Platelet endothelial cell adhesion molecule 1 (PECAM-1) is considered an antiplatelet molecule. Previously, we introduced a new parameter called the PECAM-1/thrombus ratio, which indicates the proportion of PECAM-1 in the thrombus and provides a precise description of human platelet activity (in vitro). The aim of this study was to determine whether the PECAM-1/thrombus ratio could serve as a predictive factor for bleeding events during off-pump coronary artery bypass grafting (OPCAB). To achieve this, we collected blood samples from 20 patients scheduled to undergo OPCAB surgery. We assessed the PECAM-1/thrombus ratio by evaluating thrombus formation on collagen fibers under flow conditions. Subsequently, we compared the ability of the PECAM-1/thrombus ratio in predicting bleeding risk with other methods that evaluate hemostasis activity. These methods included assessing platelet P-selectin secretion, platelet exposure of phosphatidylserine, plasma coagulation and fibrinolysis system activity, and thrombus formation using the T-TAS assay. Our findings revealed a positive correlation between the PECAM-1/thrombus ratio and the amount of blood component units transfused (BCUT) during the OPCAB surgery. Furthermore, BCUT did not show any significant correlation with other measured hemostasis parameters. This preliminary study suggests that the PECAM-1/thrombus ratio might be a good predictor of bleeding risk during the OPCAB procedure.
Collapse
Affiliation(s)
- Natalia Bielicka
- Department of Biopharmacy and Radiopharmacy, Medical University of Bialystok, 15-222 Bialystok, Poland; (E.C.); (A.G.-P.)
| | - Adrian Stankiewicz
- Department of Cardiosurgery, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (S.K.)
| | - Tomasz Misztal
- Department of Physical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Szymon Kocańda
- Department of Cardiosurgery, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (S.K.)
| | - Ewa Chabielska
- Department of Biopharmacy and Radiopharmacy, Medical University of Bialystok, 15-222 Bialystok, Poland; (E.C.); (A.G.-P.)
| | - Anna Gromotowicz-Popławska
- Department of Biopharmacy and Radiopharmacy, Medical University of Bialystok, 15-222 Bialystok, Poland; (E.C.); (A.G.-P.)
| |
Collapse
|
6
|
Sex-dependent effects of canagliflozin and dapagliflozin on hemostasis in normoglycemic and hyperglycemic mice. Sci Rep 2023; 13:932. [PMID: 36650229 PMCID: PMC9845220 DOI: 10.1038/s41598-023-28225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are antihyperglycemic drugs that decrease mortality from cardiovascular diseases. However, their effects on hemostasis in the cardioprotective effects have not been evaluated. Therefore, the effects of canagliflozin (CANA, 100 mg/kg, p.o.) and dapagliflozin (DAPA, 10 mg/kg, p.o.) on the parameters of hemostasis were investigated in female and male normoglycemic and streptozotocin (180 mg/kg, i.p.)-induced diabetic mice. CANA and DAPA reduced platelet activity in thrombus in male and female mice both normoglycemic and diabetic. CANA decreased thrombus formation in diabetic male mice, and platelet activation to ADP in diabetic female and male mice. Activation of fibrinolysis was observed in female mice, both normoglycemic and diabetic. DAPA reduced thrombus formation in diabetic male and female mice, and decreased platelet activation to ADP and fibrin formation in diabetic male mice. DAPA increased fibrin formation in normoglycemic female mice and activated fibrinolysis in diabetic female mice. CANA and DAPA exerted sex-specific effects, which were more pronounced in hyperglycemia. The antithrombotic effect of CANA and DAPA was more noticeable in male mice and could be due to platelet inhibition. The effect on coagulation and fibrinolysis was not clear since an increased coagulation and fibrinolysis were observed only in female mice.
Collapse
|
7
|
Le TQ, Pluemhathaikij L, Chankow K, Radtanakatikanon A, Rungsipipat A, Rattanapinyopituk K. Case report: BCL-2 and CD31 immunoexpression related to clinical and histopathological evaluation of renal dysplasia in a Welsh Corgi Puppy. Front Vet Sci 2022; 9:995765. [PMID: 36268045 PMCID: PMC9577014 DOI: 10.3389/fvets.2022.995765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/29/2022] [Indexed: 11/04/2022] Open
Abstract
A case of renal dysplasia (RD) in the Welsh Corgi dog has been reported. Clinically, the affected 3-month-old, female, Welsh Corgi dog showed unclear symptoms of chronic kidney disease. Grossly, both left and right kidneys revealed cystic hypoplasia. Histologically, the primary lesions included immature or fetal glomeruli/tubules, proliferative arterioles, persistent metanephric ducts, persistent mesenchyme, and atypical tubular epithelium were presented. A group of degenerative and inflammatory lesions consisting of interstitial nephritis, interstitial fibrosis, and mineralization of tubules were found. Immunohistochemically, the epithelial cells of immature (fetal) tubules had BCL-2 labeling whereas CD31 (PECAM-1) was labeled in the endothelial cells of the proliferative arterioles. The immunohistochemical findings were confirmed and consolidated with the routine histopathological findings. This study was the first demonstration of the clinical, histopathological, and immunohistochemical features of RD disease in a Welsh Corgi puppy.
Collapse
Affiliation(s)
- Trung Quang Le
- Center of Excellent for Companion Animal Cancer - (CECAC), Department of Veterinary Pathology, Chulalongkorn University, Bangkok, Thailand,Department of Veterinary Medicine, Can Tho University, Can Tho, Vietnam
| | | | - Katriya Chankow
- Department of Veterinary Pathology, Chulalongkorn University, Bangkok, Thailand
| | - Araya Radtanakatikanon
- Center of Excellent for Companion Animal Cancer - (CECAC), Department of Veterinary Pathology, Chulalongkorn University, Bangkok, Thailand
| | - Anudep Rungsipipat
- Center of Excellent for Companion Animal Cancer - (CECAC), Department of Veterinary Pathology, Chulalongkorn University, Bangkok, Thailand
| | - Kasem Rattanapinyopituk
- Center of Excellent for Companion Animal Cancer - (CECAC), Department of Veterinary Pathology, Chulalongkorn University, Bangkok, Thailand,*Correspondence: Kasem Rattanapinyopituk
| |
Collapse
|
8
|
Hamad MA, Krauel K, Schanze N, Gauchel N, Stachon P, Nuehrenberg T, Zurek M, Duerschmied D. Platelet Subtypes in Inflammatory Settings. Front Cardiovasc Med 2022; 9:823549. [PMID: 35463762 PMCID: PMC9021412 DOI: 10.3389/fcvm.2022.823549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
In addition to their essential role in hemostasis and thrombosis, platelets also modulate inflammatory reactions and immune responses. This is achieved by specialized surface receptors as well as secretory products including inflammatory mediators and cytokines. Platelets can support and facilitate the recruitment of leukocytes into inflamed tissue. The various properties of platelet function make it less surprising that circulating platelets are different within one individual. Platelets have different physical properties leading to distinct subtypes of platelets based either on their function (procoagulant, aggregatory, secretory) or their age (reticulated/immature, non-reticulated/mature). To understand the significance of platelet phenotypic variation, qualitatively distinguishable platelet phenotypes should be studied in a variety of physiological and pathological circumstances. The advancement in proteomics instrumentation and tools (such as mass spectrometry-driven approaches) improved the ability to perform studies beyond that of foundational work. Despite the wealth of knowledge around molecular processes in platelets, knowledge gaps in understanding platelet phenotypes in health and disease exist. In this review, we report an overview of the role of platelet subpopulations in inflammation and a selection of tools for investigating the role of platelet subpopulations in inflammation.
Collapse
Affiliation(s)
- Muataz Ali Hamad
- Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Krystin Krauel
- Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nancy Schanze
- Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadine Gauchel
- Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Peter Stachon
- Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Nuehrenberg
- Department of Cardiology and Angiology II, Heart Center, Faculty of Medicine, University of Freiburg, Bad Krozingen, Germany
| | - Mark Zurek
- Department of Cardiology and Angiology II, Heart Center, Faculty of Medicine, University of Freiburg, Bad Krozingen, Germany
| | - Daniel Duerschmied
- Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Mannheim, Germany
| |
Collapse
|
9
|
Marcinczyk N, Misztal T, Gromotowicz-Poplawska A, Zebrowska A, Rusak T, Radziwon P, Chabielska E. Utility of Platelet Endothelial Cell Adhesion Molecule 1 in the Platelet Activity Assessment in Mouse and Human Blood. Int J Mol Sci 2021; 22:ijms22179611. [PMID: 34502520 PMCID: PMC8431756 DOI: 10.3390/ijms22179611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
In our previous study, we introduced the platelet endothelial cell adhesion molecule 1 (PECAM-1)/thrombus ratio, which is a parameter indicating the proportion of PECAM-1 in laser-induced thrombi in mice. Because PECAM-1 is an antithrombotic molecule, the higher the PECAM-1/thrombus ratio, the less activated the platelets. In this study, we used an extracorporeal model of thrombosis (flow chamber model) to verify its usefulness in the assessment of the PECAM-1/thrombus ratio in animal and human studies. Using the lipopolysaccharide (LPS)-induced inflammation model, we also evaluated whether the PECAM-1/thrombus ratio determined in the flow chamber (without endothelium) differed from that calculated in laser-induced thrombosis (with endothelium). We observed that acetylsalicylic acid (ASA) decreased the area of the thrombus while increasing the PECAM-1/thrombus ratio in healthy mice and humans in a dose-dependent manner. In LPS-treated mice, the PECAM-1/thrombus ratio decreased as the dose of ASA increased in both thrombosis models, but the direction of change in the thrombus area was inconsistent. Our study demonstrates that the PECAM-1/thrombus ratio can more accurately describe the platelet activation status than commonly used parameters such as the thrombus area, and, hence, it can be used in both human and animal studies.
Collapse
Affiliation(s)
- Natalia Marcinczyk
- Department of Biopharmacy, Medical University of Bialystok, 15-222 Bialystok, Poland; (A.G.-P.); (E.C.)
- Correspondence: ; Tel.: +48-857-485-607
| | - Tomasz Misztal
- Department of Physical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland; (T.M.); (T.R.)
| | | | - Agnieszka Zebrowska
- Regional Centre for Transfusion Medicine, 15-950 Bialystok, Poland; (A.Z.); (P.R.)
| | - Tomasz Rusak
- Department of Physical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland; (T.M.); (T.R.)
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, 15-950 Bialystok, Poland; (A.Z.); (P.R.)
- Department of Haematology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Ewa Chabielska
- Department of Biopharmacy, Medical University of Bialystok, 15-222 Bialystok, Poland; (A.G.-P.); (E.C.)
| |
Collapse
|
10
|
Watson SP. Editorial: structure-function relationships of tyrosine kinase- and tyrosine phosphatase-linked receptors in platelets and megakaryocytes. Platelets 2021; 32:722-723. [PMID: 34053397 DOI: 10.1080/09537104.2021.1920309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|