1
|
Gentilini F, Turba ME, Giancola F, Chiocchetti R, Bernardini C, Dajbychova M, Jagannathan V, Drögemüller M, Drögemüller C. A large deletion in the GP9 gene in Cocker Spaniel dogs with Bernard-Soulier syndrome. PLoS One 2019; 14:e0220625. [PMID: 31484196 PMCID: PMC6726462 DOI: 10.1371/journal.pone.0220625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/20/2019] [Indexed: 12/16/2022] Open
Abstract
Inherited bleeding disorders including abnormalities of platelet number and function rarely occur in a variety of dog breeds, but are probably underdiagnosed. Genetically characterized canine forms of platelet disorders provide valuable large animal models for understanding similar platelet disorders in people. Breed-specific disease associated genetic variants in only eight different genes are known to cause intrinsic platelet disorders in dogs. However, the causative genetic variant in many dog breeds has until now remained unknown. Four cases of a mild to severe bleeding disorder in Cocker Spaniel dogs are herein presented. The affected dogs showed a platelet adhesion defect characterized by macrothrombocytopenia with variable platelet counts resembling human Bernard-Soulier syndrome (BSS). Furthermore, the lack of functional GPIb-IX-V was demonstrated by immunocytochemistry. Whole genome sequencing of one affected dog and visual inspection of the candidate genes identified a deletion in the glycoprotein IX platelet (GP9) gene. The GP9 gene encodes a subunit of a platelet surface membrane glycoprotein complex; this functions as a receptor for von Willebrand factor, which initiates the maintenance of hemostasis after injury. Variants in human GP9 are associated with Bernard-Soulier syndrome, type C. The deletion spanned 2460 bp, and included a significant part of the single coding exon of the canine GP9 gene on dog chromosome 20. The variant results in a frameshift and premature stop codon which is predicted to truncate almost two-thirds of the encoded protein. PCR-based genotyping confirmed recessive inheritance. The homozygous variant genotype seen in affected dogs did not occur in 98 control Cocker Spaniels. Thus, it was concluded that the structural variant identified in the GP9 gene was most likely causative for the BSS-phenotype in the dogs examined. These findings provide the first large animal GP9 model for this group of inherited platelet disorders and greatly facilitate the diagnosis and identification of affected and/or normal carriers in Cocker Spaniels.
Collapse
Affiliation(s)
- Fabio Gentilini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
- * E-mail:
| | | | - Fiorella Giancola
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Chen J, Schroeder JA, Luo X, Montgomery RR, Shi Q. The impact of GPIbα on platelet-targeted FVIII gene therapy in hemophilia A mice with pre-existing anti-FVIII immunity. J Thromb Haemost 2019; 17:449-459. [PMID: 30609275 PMCID: PMC6397061 DOI: 10.1111/jth.14379] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 01/13/2023]
Abstract
Essentials Platelet-specific FVIII gene therapy is effective in hemophilia A mice even with inhibitors. The impact of platelet adherence via VWF/GPIbα binding on platelet gene therapy was investigated. GPIbα does not significantly affect platelet gene therapy of hemophilia A with inhibitors. Platelet gene therapy induces immune tolerance in hemophilia A mice with pre-existing immunity. SUMMARY: Background We have previously demonstrated that von Willebrand factor (VWF) is essential in platelet-specific FVIII (2bF8) gene therapy of hemophilia A (HA) with inhibitory antibodies (inhibitors). At the site of injury, platelet adherence is initiated by VWF binding to the platelet GPIb complex. Objective To investigate the impact of GPIbα on platelet gene therapy of HA with inhibitors. Methods Platelet-FVIII expression was introduced by 2bF8 lentivirus (2bF8LV) transduction of hematopoietic stem cells (HSCs) from GPIbαnull (Ibnull ) mice or rhF8-primed FVIIInull (F8null ) mice followed by transplantation into lethally irradiated rhF8-primed F8null recipients. Animals were analyzed by flow cytometry, FVIII assays and the tail bleeding test. Results After transplantation, 99% of platelets were derived from donors. The macrothrombocytopenia phenotype was maintained in F8null mice that received 2bF8LV-transduced Ibnull HSCs (2bF8-Ibnull /F8null ). The platelet-FVIII expression level in 2bF8-Ibnull /F8null recipients was similar to that obtained from F8null mice that received 2bF8LV-transduced F8null HSCs (2bF8-F8null /F8null ). The tail bleeding test showed that the remaining hemoglobin level in the 2bF8-Ibnull /F8null group was significantly higher than in the F8null control group, but there was no significant difference between the 2bF8-Ibnull /F8null and 2bF8-F8null /F8null groups. The half-life of inhibitor disappearance time was comparable between the 2bF8-Ibnull /F8null and 2bF8-F8null /F8null groups. The rhF8 re-challenge did not elicit a memory immune response once inhibitor titers dropped to undetectable levels after 2bF8 gene therapy. Conclusion GPIbα does not significantly impact platelet gene therapy of HA with inhibitors. 2bF8 gene therapy restores hemostasis and promotes immune tolerance in HA mice with pre-existing immunity.
Collapse
Affiliation(s)
- Juan Chen
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Jocelyn A. Schroeder
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
- MACC Fund Research Center, Milwaukee, WI, USA
| | - Xiaofeng Luo
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Robert R. Montgomery
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
- MACC Fund Research Center, Milwaukee, WI, USA
| | - Qizhen Shi
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
- MACC Fund Research Center, Milwaukee, WI, USA
| |
Collapse
|
3
|
Grainger JD, Thachil J, Will AM. How we treat the platelet glycoprotein defects; Glanzmann thrombasthenia and Bernard Soulier syndrome in children and adults. Br J Haematol 2018; 182:621-632. [DOI: 10.1111/bjh.15409] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- John D. Grainger
- Faculty of Medical & Human Sciences; University of Manchester; England UK
- Department of Paediatric Haematology; Royal Manchester Children's Hospital; Manchester University NHS Foundation Trust; Manchester UK
| | - Jecko Thachil
- Department of Haematology; Manchester Royal Infirmary; Manchester University NHS Foundation Trust; Manchester UK
| | - Andrew M. Will
- Department of Paediatric Haematology; Royal Manchester Children's Hospital; Manchester University NHS Foundation Trust; Manchester UK
| |
Collapse
|
4
|
Affiliation(s)
- Maha Othman
- a Department of Biomedical and Molecular Sciences, Faculty of Medicine , Queen's University , Kingston , Canada.,b School of Baccalaureate Nursing , St. Lawrence College , Kingston , Canada
| | - Jonas Emsley
- c School of Pharmacy, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , UK
| |
Collapse
|