1
|
Liu T, Ma W, Wang J, Wei Y, Wang Y, Luo Z, Zhang Y, Zeng X, Guan W, Shao D, Chen F. Dietary Protease Supplementation Improved Growth Performance and Nutrients Digestion via Modulating Intestine Barrier, Immunological Response, and Microbiota Composition in Weaned Piglets. Antioxidants (Basel) 2024; 13:816. [PMID: 39061885 PMCID: PMC11273905 DOI: 10.3390/antiox13070816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Despite mounting evidence for dietary protease benefits, the mechanisms beyond enhanced protein degradation are poorly understood. This study aims to thoroughly investigate the impact of protease addition on the growth performance, intestinal function, and microbial composition of weaned piglets. Ninety 28-day-old weaned pigs were randomly assigned to the following three experimental diets based on their initial body weight for a 28-day experiment: (1) control (CC), a basic diet with composite enzymes without protease; (2) negative control (NC), a diet with no enzymes; and (3) dietary protease (PR), a control diet with protease. The results show that dietary proteases significantly enhanced growth performance and boosted antioxidant capacity, increasing the total antioxidant capacity (T-AOC) levels (p < 0.05) while reducing malonaldehyde levels (p < 0.05). Additionally, protease addition reduced serum levels of inflammatory markers TNF-α, IL-1β, and IL-6 (p < 0.05), suppressed mRNA expression of pro-inflammatory factors in the jejunum (p < 0.01), and inhibited MAPK and NF-κB signaling pathways. Moreover, protease-supplemented diets improved intestinal morphology and barrier integrity, including zonula occludens protein 1(ZO-1), Occludin, and Claudin-1 (p < 0.05). Microbiota compositions were also significantly altered by protease addition with increased abundance of beneficial bacteria (Lachnospiraceae_AC2044_group and Prevotellaceae_UCG-001) (p < 0.05) and reduced harmful Terrisporobacter (p < 0.05). Further correlation analysis revealed a positive link between beneficial bacteria and growth performance and a negative association with inflammatory factors and intestinal permeability. In summary, dietary protease addition enhanced growth performance in weaned piglets, beneficial effects which were associated with improved intestinal barrier integrity, immunological response, and microbiota composition.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Wen Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
| | - Jun Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
| | - Yulong Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
| | - Yibo Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
| | - Zheng Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, China
| | - Ying Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China;
| | - Wutai Guan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dan Shao
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Fang Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Li Y, Gao Y, Wang Y, Duan Y, Fu Y, Yang H, Xi J. Localization of an IgE epitope of glycinin A2 peptide chain. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3697-3704. [PMID: 38160247 DOI: 10.1002/jsfa.13254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION One of the main allergens in soybeans is glycinin, which seriously impacts the normal lives of allergic people. Previous studies have confirmed that thermal processing and thermal processing combined with ultrahigh-pressure processing could significantly reduce the antigenicity of glycinin. The dominant antigen region of acidic peptide chain A2 of G2 subunit was located by phage display experiment. METHODS In this paper, overlapping peptides and alanine substitution techniques were used to explore the key amino acids that significantly affect the antigenicity of A2 peptide chain. The purity of peptide 1, peptide 2 and peptide 3 was identified by mass spectrometry and high-performance liquid chromatography, and the results showed that the purity of the synthesized overlapping peptide was more than 90%. SDS-PAGE showed that the peptide was successfully coupled with bovine serum albumin. The antigenicity of the coupling peptide was tested by ELISA and Dot-Blot, and the allergenicity was detected by reacting with the serum of patients with soybean globulin allergy. CONCLUSION The results showed that peptide 3 has stronger antigenicity and sensitization. Alanine substitution technology allowed one to perform site-directed mutagenesis on peptide 3. Dot-Blot and ELISA tests showed that D259, E260, E261, Q263 and C266 may be the key amino acids that significantly affect the antigenicity of peptide 3. The research presented is of great significance for correctly guiding the production of safe food and preventing the occurrence of food allergic diseases. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingying Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yida Gao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yichao Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yuying Duan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yang Fu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Huanhuan Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Jun Xi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
3
|
Wang Y, Gao Y, Duan Y, Wu X, Huang P, Shui T, Xi J. Localization and identification of denatured antigenic sites of glycinin A3 subunit after using two processing technologies. Food Res Int 2023; 171:113082. [PMID: 37330838 DOI: 10.1016/j.foodres.2023.113082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
Glycinin is an important allergen in soybeans. In this study, molecular cloning and recombinant phage construction were performed to explore the antigenic sites of the glycinin A3 subunit that were denatured during processing. Next, the A-1-a fragment was located as the denatured antigenic sites by indirect ELISA. The combined UHP heat treatment showed better denaturation of this subunit than the single heat treatment assay. In addition, identification of the synthetic peptide showed that the A-1-a fragment was an amino acid sequence containing a conformational and linear IgE site, in which the first synthetic peptide (P1) being both an antigenic and allergenic site. The results of alanine-scanning showed that the key amino acids affecting antigenicity and allergenicity of A3 subunit were S28, K29, E32, L35 and N13. Our results could provide the basis for further development of more efficient methods to reduce the allergenicity of soybeans.
Collapse
Affiliation(s)
- Yichao Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yida Gao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yuying Duan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Xiao Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Pengbo Huang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Tianjiao Shui
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Jun Xi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| |
Collapse
|
4
|
Xi J, Li Y, Cheng H, Wang Y. Identification of allergenic epitopes destroyed by two processing technologies of glycinin A2 from soybean. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2700-2708. [PMID: 36335553 DOI: 10.1002/jsfa.12320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/25/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Glycinin is one of the most highly allergenic proteins in soybeans, and G2 is one of the five allergenic subunits of glycinin. Compared with the alkaline chain, the acidic chain A2 of the G2 subunit has strong allergenicity. However, the precise epitopes of A2 and the epitopes destroyed during processing are still unknown. RESULTS In the present study, preparation of two specific antibodies damaged by processing and phage display techniques were applied to locate the antigenic epitopes of glycinin A2 polypeptide chains disrupted by two processing techniques (thermal processing and ultra-high pressure combined thermal processing). Bioinformatics methods were used to predict the possible epitopes of the A2 chain. The A2 chain and its overlapping segments were introduced into T7 phages and expressed on phage shell by phage display. An indirect enzyme-linked immunosorbent assay was used to screen for antigenic epitopes that had been disrupted by the two processing technologies. The results showed that the dominant antigenic region disrupted by processing was located mainly in the A2-3-B fragment. The reacting experiment with the serum of allergic patients showed that the A2-3-B fragment protein was not only an antigenic region, but also an allergenic region. The two processing technologies destroyed the allergenic epitopes of A2 chain, thereby reducing the allergenicity of protein. The amino acids where the dominant allergenic region disrupted by processing was located were: 233 AIVTVKGGLRVTAPAMRKPQQEEDDDDEEEQPQCVE268 . CONCLUSION Precise epitopes of the acidic chain A2 in glycinin were identified and epitopes destroyed in two common processing methods were also obtained. The application products of rapid detection of de-allergenicity effect of processed food can be developed according to the location of processed destruction allergenic region, which is of great significance with respect to preventing the occurrence of soybean allergenic diseases. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Xi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yingying Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Huibin Cheng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yichao Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
5
|
Vinzant K, Rashid M, Khodakovskaya MV. Advanced applications of sustainable and biological nano-polymers in agricultural production. FRONTIERS IN PLANT SCIENCE 2023; 13:1081165. [PMID: 36684740 PMCID: PMC9852866 DOI: 10.3389/fpls.2022.1081165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Though still in its infancy, the use of nanotechnology has shown promise for improving and enhancing agriculture: nanoparticles (NP) offer the potential solution to depleted and dry soils, a method for the controlled release of agrochemicals, and offer an easier means of gene editing in plants. Due to the continued growth of the global population, it is undeniable that our agricultural systems and practices will need to become more efficient in the very near future. However, this new technology comes with significant worry regarding environmental contamination. NP applied to soils could wash into aquifers and contaminate drinking water, or NP applied to food crops may carry into the end product and contaminate our food supply. These are valid concerns that are not likely to be fully answered in the immediate future due to the complexity of soil-NP interactions and other confounding variables. Therefore, it is obviously preferred that NP used outdoors at this early stage be biodegradable, non-toxic, cost-effective, and sustainably manufactured. Fortunately, there are many different biologically derived, cost-efficient, and biocompatible polymers that are suitable for agricultural applications. In this mini-review, we discuss some promising organic nanomaterials and their potential use for the optimization and enhancement of agricultural practices.
Collapse
|
6
|
Effects of a high protein starter diet with fermented soybean cake on growth performance of organic pigs weaned outdoor. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Xi J, Yao L, Fan Y, Wang Y, Fu Y, Duan Y. Establishment of DAS-ELISA for the detection of antigenic changes in glycinin after heat processing. Int J Biol Macromol 2022; 208:1090-1095. [PMID: 35381285 DOI: 10.1016/j.ijbiomac.2022.03.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
In this study, a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) method was established to detect the antigenic changes of thermally processed products containing glycinin. The proposed DAS-ELISA method used heat-treated antigen-absorbing antiserum as the coating antibody, and horseradish peroxidase (HRP)-labeled rabbit anti-glycinin polyclonal antibody as the detection antibody. The specificity test results which were obtained using the proposed method indicated that good specificity had been achieved. The cut-off value was 0.388, and the LOD was determined to be 19.53 ng/mL. The coefficient of variation was less than 5.25% (intra-day) and 9.50% (inter-day). In this study's milk powder addition test, the recovery rate of the glycinin ranged between 83.65% and 90.13%. The established DAS-ELISA method was also used to detect soybean thermal processing products, such as soy sauce, steamed fish and soy sauce, soybean paste, beef sauce, soy milk powder, and tofu. The results showed that the OD450 values of the aforementioned products were lower than the OD450 values of the glycinin in defatted soybean flour. Therefore, it was indicated that the above products has undergone different degrees of thermal processing. In other words, the majority of the epitopes of glycinin in the products had been destroyed by the thermal processing and could not be combined with heat-treated antigen-absorbing antiserum.
Collapse
Affiliation(s)
- Jun Xi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Lili Yao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yuhan Fan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yichao Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yang Fu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yuying Duan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| |
Collapse
|
8
|
Zhang H, Zhang Y, Liu X, Elsabagh M, Yu Y, Peng A, Dai S, Wang H. L-Arginine inhibits hydrogen peroxide-induced oxidative damage and inflammatory response by regulating antioxidant capacity in ovine intestinal epithelial cells. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1973916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Ying Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Yin Yu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Along Peng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Sifa Dai
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang, China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
He Y, Chen J, Zhang Q, Zhang J, Wang L, Chen X, Molenaar AJ, Sun X. α-Chaconine Affects the Apoptosis, Mechanical Barrier Function, and Antioxidant Ability of Mouse Small Intestinal Epithelial Cells. FRONTIERS IN PLANT SCIENCE 2021; 12:673774. [PMID: 34177990 PMCID: PMC8220139 DOI: 10.3389/fpls.2021.673774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/18/2021] [Indexed: 05/29/2023]
Abstract
α-Chaconine is the most abundant glycoalkaloid in potato and toxic to the animal digestive system, but the mechanisms underlying the toxicity are unclear. In this study, mouse small intestinal epithelial cells were incubated with α-chaconine at 0, 0.4, and 0.8 μg/mL for 24, 48, and 72 h to examine apoptosis, mechanical barrier function, and antioxidant ability of the cells using a cell metabolic activity assay, flow cytometry, Western blot, immunofluorescence, and fluorescence quantitative PCR. The results showed that α-chaconine significantly decreased cell proliferation rate, increased apoptosis rate, decreased transepithelial electrical resistance (TEER) value, and increased alkaline phosphatase (AKP) and lactate dehydrogenase (LDH) activities, and there were interactions between α-chaconine concentration and incubation time. α-Chaconine significantly reduced the relative and mRNA expressions of genes coding tight junction proteins zonula occludens-1 (ZO-1) and occludin, increased malondialdehyde (MDA) content, decreased total glutathione (T-GSH) content, reduced the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and γ-glutamylcysteine synthetase (γ-GCS) and the mRNA expressions of SOD, CAT, GSH-Px, and γ-GCS genes. In conclusion, α-chaconine disrupts the cell cycle, destroys the mechanical barrier and permeability of mucosal epithelium, inhibits cell proliferation, and accelerates cell apoptosis.
Collapse
Affiliation(s)
- Yuhua He
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City, China
- The Innovation Centre of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin Agricultural Science and Technology University, Jilin City, China
- Jilin Inter-Regional Cooperation Centre for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin City, China
| | - Jiaqi Chen
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City, China
| | - Qiyue Zhang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City, China
| | - Jialong Zhang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City, China
| | - Lulai Wang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City, China
| | - Xiaoxia Chen
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City, China
| | - Adrian J. Molenaar
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Xuezhao Sun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City, China
- The Innovation Centre of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin Agricultural Science and Technology University, Jilin City, China
- Jilin Inter-Regional Cooperation Centre for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin City, China
| |
Collapse
|
10
|
Hu J, Yuan L, An G, Zhang J, Zhao X, Liu Y, Shan J, Wang Z. Antigenic activity and epitope analysis of β-conglycinin hydrolyzed by pepsin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1396-1402. [PMID: 32835413 DOI: 10.1002/jsfa.10752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 07/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Soybean is among the 'big eight' allergenic foods, and β-conglycinin, the main antigenic protein of soybean, has high levels of antigenic activity. Why the antigenic activity of soybean β-conglycinin is not eliminated by enzymatic hydrolysis is not clear. In this study, changes in the molecular composition and antigenicity of β-conglycinin hydrolyzed by pepsin were analyzed and it was determined whether complete sequential epitopes exist in the resulting hydrolysates. The nature and antigenic activity of protein subunits obtained after β-conglycinin hydrolysis were also assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and competitive enzyme-linked immunosorbent assay, respectively. RESULTS The residual antigenic activity of β-conglycinin was 52%, α'- and α-subunits completely disappeared, the 49 kDa fraction partially disappeared, and peptides measuring 27 and 23 kDa were newly formed after 60 min of enzymatic hydrolysis. Prolonged enzymatic hydrolysis did not result in remarkable changes in these peptides; thus, the peptides show some resistance to enzymatic hydrolysis. The amino acid sequences of the peptide chains were analyzed by matrix-assisted laser desorption / ionization-time of flight mass spectrometry and aligned with the related sequences in the corresponding protein and antigen databases. Ten complete sequential epitopes were identified in the residual 49 kDa fraction, of these epitopes, two were from α-subunits and eight were from β-subunits. CONCLUSION The presence of complete sequential epitopes in hydrolysates obtained from the enzymatic hydrolysis of soybean is an important reason for the incomplete disappearance of the antigenic activity of β-conglycinin. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinqiang Hu
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- International Joint Laboratory of Food Safety, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| | - Luyang Yuan
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Guangjie An
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Junsong Zhang
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xuewei Zhao
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yang Liu
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jinjin Shan
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Zhangcun Wang
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- International Joint Laboratory of Food Safety, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| |
Collapse
|
11
|
Park S, Lee JW, Cowieson AJ, Pappenberger G, Woyengo TA. Soybean meal allergenic protein degradation and gut health of piglets fed protease-supplemented diets. J Anim Sci 2020; 98:skaa308. [PMID: 32927480 PMCID: PMC7568435 DOI: 10.1093/jas/skaa308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Two experiments were conducted to determine the effects of protease supplementation on degradation of soybean meal (SBM) allergenic proteins (glycinin and β-conglycinin) and gut health of weaned pigs fed soybean meal-based diets. In experiment 1, 2 SBM samples from 2 different sources were subjected to porcine in vitro gastric degradation to determine the effects of protease (at 15,000 U/kg of feedstuff) on degradation of the soybean allergenic proteins. In experiment 2, 48 weaned pigs (body weight = 6.66 kg) were obtained in 2 batches of 24 pigs each. Pigs were individually housed in metabolic crates and fed 4 diets (12 pigs/diet). The diets were corn-based diet with SBM 1 or SBM 2 without or with protease at 15,000 U/kg of diet in 2 × 2 factorial arrangement. Diets were fed for 10 d and pigs were sacrificed on day 10 for measurement of small intestinal histomorphology, permeability of small intestine mounted in Ussing chambers, and serum concentration of pro-inflammatory cytokines. Two SBM sources (SBM 1 and SBM 2) contained 46.9% or 47.7% CP, 14.0% or 14.6% glycinin, and 9.90% or 10.3% β-conglycinin, respectively. Protease and SBM source did not interact on any of the response criteria measured in the current study. Protease supplementation tended to increase (P = 0.069) the in vitro gastric degradation of glycinin. Protease supplementation tended to reduce (P = 0.099) fluorescein isothiocyanate dextran 4,000 Da (which is a marker probe for intestinal permeability) flow in jejunum, and reduced (P = 0.037) serum TNF-α concentration. Protease did not affect small intestinal histomorphology. In conclusion, protease tended to increase gastric degradation of glycinin and reduce gut permeability, and serum concentration of pro-inflammatory cytokines, indicating that the protease used in the current study can be added to SBM-based diets for weanling pigs to improve gut health.
Collapse
Affiliation(s)
- Sangwoo Park
- Department of Animal Science, South Dakota State University, Brookings, SD
| | - Jung Wook Lee
- Department of Animal Science, South Dakota State University, Brookings, SD
| | | | | | - Tofuko Awori Woyengo
- Department of Animal Science, South Dakota State University, Brookings, SD
- Department of Animal Science, Aarhus University, Blichers Allé, Tjele, Denmark
| |
Collapse
|
12
|
Zhang H, Jin Y, Peng A, Guo S, Loor JJ, Wang H. L-Arginine protects ovine intestinal epithelial cells from lipopolysaccharide-induced intestinal barrier injury. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1664417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yaqian Jin
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Along Peng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Shuang Guo
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Juan J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
13
|
Peng C, Ding X, Zhu L, He M, Shu Y, Zhang Y, Li Y, Wang X, Feng S, Li J, Wu J. β-Conglycinin-Induced Intestinal Porcine Epithelial Cell Damage via the Nuclear Factor κB/Mitogen-Activated Protein Kinase Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9009-9021. [PMID: 31319030 DOI: 10.1021/acs.jafc.9b02784] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Soybean allergy is a serious health risk to humans and animals; β-conglycinin is the primary antigenic protein in soybean. Intestinal porcine epithelial (IPEC-J2) cells were used as an in vitro physiological model of the intestinal epithelium to study the effects of different concentrations of soybean antigen protein β-conglycinin to identify the involved signaling pathways. The cells were divided into eight groups and either untreated or treated with different concentrations of β-conglycinin, pyrrolidine dithiocarbamate (PDTC), Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME), SP600125, and SB202190 either alone or in combination. The cells were incubated with 1, 5, and 10 mg·mL-1 β-conglycinin or 5 mg·mL-1 β-conglycinin and 1 μmol·L-1 nuclear factor κB (NF-κB) inhibitor (PDTC), inducible nitric oxide synthase inhibitor (l-NAME), c-Jun N-terminal kinase (JNK) inhibitor (SP600125), and p38 inhibitor (SB202190) for 24 h, separately; controls were left untreated. The mRNA, protein, and phosphorylation levels of NF-κB, p38, and JNK were higher in the treated groups than in the control group. β-Conglycinin decreased tight junction distribution, destroyed the cytoskeleton of IPEC-J2 cells, and caused cell death. After the addition of the inhibitors, β-conglycinin-induced IPEC-J2 cell damage was significantly reduced. β-Conglycinin caused damage to IPEC-J2 cells via the mitogen-activated protein kinase/NF-κB signaling pathway. The results of this study are crucial for exploring the mechanisms underlying allergic reactions caused by soybean antigen proteins.
Collapse
Affiliation(s)
- Chenglu Peng
- College of Animal Science and Technology , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Xuedong Ding
- College of Animal Science and Technology , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Lei Zhu
- College of Animal Science and Technology , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Mengchu He
- College of Animal Science and Technology , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Yingshuang Shu
- College of Animal Science and Technology , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Yu Zhang
- College of Animal Science and Technology , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Yu Li
- College of Animal Science and Technology , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Xichun Wang
- College of Animal Science and Technology , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Shibin Feng
- College of Animal Science and Technology , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Jinchun Li
- College of Animal Science and Technology , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Jinjie Wu
- College of Animal Science and Technology , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| |
Collapse
|
14
|
Applying the adverse outcome pathway (AOP) for food sensitization to support in vitro testing strategies. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Zhao Y, Zhang S, Zhang X, Pan L, Bao N, Qin G. Fructooligosaccharide Inhibits the Absorption of β-conglycinin (A Major Soybean Allergen) in IPEC-J2. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2019; 15. [DOI: 10.1515/ijfe-2018-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
Dissecting the inhibited variation of allergen absorption could contribute to the development of novel therapeutic or preventive treatments for food/feed allergies. This study investigated the effects of fructooligosaccharide (FOS) on the absorption, intracellular accumulation of intact or hydrolysed β-conglycinin in porcine intestinal epithelial cells (IPEC-J2). As demonstrated by ELISA and immunoblotting, β-conglycinin was absorbed in a dose- and time-dependent manner (p < 0.05). Actually, β-conglycinin was easily transported and absorbed after enzymatic hydrolysis. Three peptides (52 kDa, 30 kDa and 25 kDa) were produced during transcellular absorption of intact or hydrolysed β-conglycinin. FOS inhibited the absorption of β-conglycinin, especially the 52 and 30 kDa peptides. The immunoreactive peptides derived from the 52, 35 or 22 kDa peptides were the substrings of the known epitopes determined by mass spectrometry and bioinformatic analyses. These results indicate that FOS can efficiently inhibit the absorption of 52 and 30 kDa peptides derived from β-conglycinin.
Collapse
Affiliation(s)
- Yuan Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal nutrition and feed science, College of Animal Science and Technology , Jilin Agricultural University , Changchun 130118 , P.R. China
| | - Shiyao Zhang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal nutrition and feed science, College of Animal Science and Technology , Jilin Agricultural University , Changchun 130118 , P.R. China
| | - Xiaodong Zhang
- Institute of Zoonosis, Department of Public Health , Jilin University , Changchun 130062 , P.R. China
| | - Li Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal nutrition and feed science, College of Animal Science and Technology , Jilin Agricultural University , Changchun 130118 , P.R. China
| | - Nan Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal nutrition and feed science, College of Animal Science and Technology , Jilin Agricultural University , Changchun 130118 , P.R. China
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal nutrition and feed science, College of Animal Science and Technology , Jilin Agricultural University , Changchun 130118 , P.R. China
| |
Collapse
|
16
|
Zhao Y, Liu D, Zhang S, Pan L, Qin G. Different Damage to the Mechanical Barrier Function of IPEC-J2 Induced by Soybean Allergen β-conglycinin Hydrolyzed Peptides. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2017. [DOI: 10.1515/ijfe-2016-0370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThree major enzyme-hydrolyzed peptides have been produced after simulative digestionin vitroof soybean β-conglycinin. The intestinal barrier of IPEC-J2 induced by β-conglycinin enzyme-hydrolyzed peptides was evaluated in this study. The increased alkaline phosphatase (AP) activity was actually linearly correlated with the incubation time by the hydrolysate, the purified 52 kD peptide, or the mixture of 25 and 30 kD peptides. The MTT and TEER values declined in dose-dependence (0–2 mg/mL,p\lt 0.05) or in time-dependence (2–24 h,p \lt0.05). After treatment with different hydrolyzed peptides, the tight junction expression of claudin-3, claudin-4, occludin, and ZO-1 were reduced (p\lt 0.05). Finally, it is found out that the maximum damage to the epithelial barrier function was induced by the mixture of 25 and 30 kD peptide, whereas the minimum damage was caused by the 52 kD peptide.
Collapse
|
17
|
The Immunoreactive Protein was Produced During Absorption of Glycinin or its Hydrolysate in IPEC-J2. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2017. [DOI: 10.1515/ijfe-2016-0441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe allergens absorbed in immunoreactive form by the gut epithelium might induce the occurrence of allergy. The purpose of this study was to investigate the absorption and intracellular accumulation of the intact or hydrolyzed glycinin in the porcine intestinal epithelial cells (IPEC-J2). The IPEC-J2 cells were incubated by 0, 0.25, 0.5 and 1.0 mg/mL glycinin or its hydrolysate for 2, 4, 8 or 12 h. The amounts of immunoreactive glycinin were measured by enzyme-linked immunosorbent assay. The intact and hydrolyzed glycinin fragments of epithelial absorption were identified by immunoblotting and mass spectrometry (MS). We found that glycinin or its hydrolysate is expensively absorbed with the increase of dose and time. The 35 kD or 22 kD protein with glycinin-specific epitopes was detected in the intracellular extracts and basolateral solutions. The results indicate that the glycinin or its hydrolysate could be absorbed; meanwhile, the 35kD or 22kD protein was correspondingly produced during absorption.
Collapse
|
18
|
Saeed H, Gagnon C, Cober E, Gleddie S. Using patient serum to epitope map soybean glycinins reveals common epitopes shared with many legumes and tree nuts. Mol Immunol 2016; 70:125-33. [PMID: 26766775 DOI: 10.1016/j.molimm.2015.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/23/2015] [Accepted: 12/13/2015] [Indexed: 11/15/2022]
Abstract
Soybean consumption is increasing in many Western diets; however, recent reviews suggest that the prevalence of soy allergy can be as high as 0.5% for the general population and up to 13% for children. The immunoglobulin-E (IgE) binding of sera from six soy-sensitive adult human subjects to soybean proteins separated by 2D gel electrophoresis was studied. Synthetic peptide sets spanning the mature glycinin subunit A2 and A3 primary sequences were used to map the IgE-binding regions. Putative epitopes identified in this study were also localized on glycinin hexamer models using bioinformatics software. We identified linear IgE-binding epitopes of the major storage protein Gly m 6 by screening individual soy-sensitive patient sera. These epitopes were then further analysed by 3D in silico model localization and compared to other plant storage protein epitopes. Web-based software applications were also used to study the ability to accurately predict epitopes with mixed results. A total of nine putative IgE-binding epitopes were identified in the glycinin A3 (A3.1-A3.3) and A2 (A2.1-A2.6) subunits. Most patients' sera IgE bound to only one or two epitopes, except for one patient's serum which bound to four different A2 epitopes. Two epitopes (A3.2 and A2.4) overlapped with a previously identified epitope hot spot of 11S globulins from other plant species. Most epitopes were predicted to be exposed on the surface of the 3D model of the glycinin hexamer. Amino acid sequence alignments of soybean acidic glycinins and other plant globulins revealed one dominant epitope hot spot among the four reported hot spots. This study may be helpful for future development of soy allergy immunotherapy and diagnosis.
Collapse
Affiliation(s)
- Hanaa Saeed
- Agriculture and Agri-Food Canada, Ottawa Research & Development Centre, Ottawa, Ontario K1A 0C6, Canada
| | - Christine Gagnon
- Agriculture and Agri-Food Canada, Ottawa Research & Development Centre, Ottawa, Ontario K1A 0C6, Canada
| | - Elroy Cober
- Agriculture and Agri-Food Canada, Ottawa Research & Development Centre, Ottawa, Ontario K1A 0C6, Canada
| | - Steve Gleddie
- Agriculture and Agri-Food Canada, Ottawa Research & Development Centre, Ottawa, Ontario K1A 0C6, Canada.
| |
Collapse
|
19
|
Jiang WD, Hu K, Zhang JX, Liu Y, Jiang J, Wu P, Zhao J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Feng L. Soyabean glycinin depresses intestinal growth and function in juvenile Jian carp (Cyprinus carpio var Jian): protective effects of glutamine. Br J Nutr 2015; 114:1569-83. [PMID: 26349522 DOI: 10.1017/s0007114515003219] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study investigated the effects of glycinin on the growth, intestinal oxidative status, tight junction components, cytokines and apoptosis signalling factors of fish. The results showed that an 80 g/kg diet of glycinin exposure for 42 d caused poor growth performance and depressed intestinal growth and function of juvenile Jian carp (Cyprinus carpio var. Jian). Meanwhile, dietary glycinin exposure induced increases in lipid peroxidation and protein oxidation; it caused reductions in superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activities; and it increased MnSOD, CuZnSOD, GPx1b and GPx4a mRNA levels, suggesting an adaptive mechanism against stress in the intestines of fish. However, dietary glycinin exposure decreased both the activity and mRNA levels of nine isoforms of glutathione-S-transferase (GST) (α, μ, π, ρ, θ, κ, mGST1, mGST2 and mGST3), indicating toxicity to this enzyme activity and corresponding isoform gene expressions. In addition, glycinin exposure caused partial disruption of intestinal cell-cell tight junction components, disturbances of cytokines and induced apoptosis signalling in the distal intestines>mid intestines>proximal intestines of fish. Glycinin exposure also disturbed the mRNA levels of intestinal-related signalling factors Nrf2, Keap1a, Keap1b, eleven isoforms of protein kinase C and target of rapamycin/4E-BP. Interestingly, glutamine was observed to partially block those negative influences. In conclusion, this study indicates that dietary glycinin exposure causes intestinal oxidative damage and disruption of intestinal physical barriers and functions and reduces fish growth, but glutamine can reverse those negative effects in fish. This study provides some information on the mechanism of glycinin-induced negative effects.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- 1Animal Nutrition Institute,Sichuan Agricultural University,Chengdu 611130,People's Republic of China
| | - Kai Hu
- 1Animal Nutrition Institute,Sichuan Agricultural University,Chengdu 611130,People's Republic of China
| | - Jin-Xiu Zhang
- 1Animal Nutrition Institute,Sichuan Agricultural University,Chengdu 611130,People's Republic of China
| | - Yang Liu
- 1Animal Nutrition Institute,Sichuan Agricultural University,Chengdu 611130,People's Republic of China
| | - Jun Jiang
- 1Animal Nutrition Institute,Sichuan Agricultural University,Chengdu 611130,People's Republic of China
| | - Pei Wu
- 1Animal Nutrition Institute,Sichuan Agricultural University,Chengdu 611130,People's Republic of China
| | - Juan Zhao
- 1Animal Nutrition Institute,Sichuan Agricultural University,Chengdu 611130,People's Republic of China
| | - Sheng-Yao Kuang
- 4Animal Nutrition Institute,Sichuan Academy of Animal Science,Chengdu 610066,People's Republic of China
| | - Ling Tang
- 4Animal Nutrition Institute,Sichuan Academy of Animal Science,Chengdu 610066,People's Republic of China
| | - Wu-Neng Tang
- 4Animal Nutrition Institute,Sichuan Academy of Animal Science,Chengdu 610066,People's Republic of China
| | - Yong-An Zhang
- 5Institute of Hydrobiology,Chinese Academy of Sciences,Wuhan 430072,People's Republic of China
| | - Xiao-Qiu Zhou
- 1Animal Nutrition Institute,Sichuan Agricultural University,Chengdu 611130,People's Republic of China
| | - Lin Feng
- 1Animal Nutrition Institute,Sichuan Agricultural University,Chengdu 611130,People's Republic of China
| |
Collapse
|
20
|
Cubells-Baeza N, Verhoeckx K, Larre C, Denery-Papini S, Gavrovic-Jankulovic M, Diaz Perales A. Applicability of epithelial models in protein permeability/transport studies and food allergy. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.ddmod.2016.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|