1
|
Makhloufi H, Pinon A, Champavier Y, Saliba J, Millot M, Fruitier-Arnaudin I, Liagre B, Chemin G, Mambu L. In Vitro Antiproliferative Activity of Echinulin Derivatives from Endolichenic Fungus Aspergillus sp. against Colorectal Cancer. Molecules 2024; 29:4117. [PMID: 39274965 PMCID: PMC11397142 DOI: 10.3390/molecules29174117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
The endolichenic fungus Aspergillus sp. was isolated from the lichen Xanthoparmelia conspersa harvested in France. Aspergillus sp. was grown on a solid culture medium to ensure the large-scale production of the fungus with a sufficient mass of secondary metabolites. The molecular network analysis of extracts and subfractions enabled the annotation of 22 molecules, guiding the purification process. The EtOAc extract displayed an antiproliferative activity of 3.2 ± 0.4 µg/mL at 48 h against human colorectal cancer cells (HT-29) and no toxicity at 30 µg/mL against human triple-negative breast cancer (TNBC) cells (MDA-MB-231) and human embryonic kidney (HEK293) non-cancerous cells. Among the five prenylated compounds isolated, of which four are echinulin derivatives, compounds 1 and 2 showed the most important activity, with IC50 values of 1.73 µM and 8.8 µM, respectively, against HT-29 cells.
Collapse
Affiliation(s)
- Hind Makhloufi
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| | - Aline Pinon
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| | - Yves Champavier
- Univ. Limoges, CNRS, Inserm, CHU Limoges, BISCEm, UAR 2015, US 42, F-87025 Limoges, France
| | - Jennifer Saliba
- Laboratoire LIENSs, Université de La Rochelle, UMR CNRS 7266, F-17000 La Rochelle, France
| | - Marion Millot
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| | | | - Bertrand Liagre
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| | - Guillaume Chemin
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| | - Lengo Mambu
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| |
Collapse
|
2
|
Zhang Y, Feng L, Hemu X, Tan NH, Wang Z. OSMAC Strategy: A promising way to explore microbial cyclic peptides. Eur J Med Chem 2024; 268:116175. [PMID: 38377824 DOI: 10.1016/j.ejmech.2024.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Microbial secondary metabolites are pivotal for the development of novel drugs. However, conventional culture techniques, have left a vast array of unexpressed biosynthetic gene clusters (BGCs) in microorganisms, hindering the discovery of metabolites with distinct structural features and diverse biological functions. To address this limitation, several innovative strategies have been emerged. The "One Strain Many Compounds" (OSMAC) strategy, which involves altering microbial culture conditions, has proven to be particularly effective in mining numerous novel secondary metabolites for the past few years. Among these, microbial cyclic peptides stand out. These peptides often comprise rare amino acids, unique chemical structures, and remarkable biological function. With the advancement of the OSMAC strategy, a plethora of new cyclic peptides have been identified from diverse microbial genera. This work reviews the progress in mining novel compounds using the OSMAC strategy and the applications of this strategy in discovering 284 microbial cyclic peptides from 63 endophytic strains, aiming to offer insights for the further explorations into novel active cyclic peptides.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xinya Hemu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ning-Hua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
3
|
Song F, Zhang K, Yang J, Wilson AS, Chen C, Xu X. The Hypolipidemic Characteristics of a Methanol Extract of Fermented Green Tea and Spore of Eurotium cristatum SXHBTBU1934 in Golden Hamsters. Nutrients 2023; 15:1329. [PMID: 36986059 PMCID: PMC10055714 DOI: 10.3390/nu15061329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Fuzhuan brick tea (FBT), a distinctive Chinese dark tea with the predominant fungus of Eurotium cristatum, offered significant health benefits to Chinese people. In the current study, the in vivo bioactivities of E. cristatum (SXHBTBU1934) fermented green tea and spores of E. cristatum fermented on wheat were investigated, respectively. The methanol extract of fermented green tea and spore of E. cristatum both showed potent lipid-lowering activity in the blood of a high-fat diet induced hyperlipidemia model in golden hamsters and significantly reduced the accumulation of fat granules in the liver. These results indicated that the key active components were produced by E. cristatum. Chemical investigations suggested similar components in the two extracts and led to the identification of a new alkaloid, namely variecolorin P (1), along with four known structurally related compounds, (-)-neoechinulin A (2), neoechinulin D (3), variecolorin G (4), and echinulin (5). The structure of the new alkaloid was elucidated by HRESIMS, 1H, 13C, and 2D NMR analysis. The lipid-lowering activity of these compounds was evaluated using an oleic acid-induced HepG2 cell line model. Compound 1 significantly reduced the lipid accumulation in the HepG2 cell line with an IC50 value of 0.127 μM.
Collapse
Affiliation(s)
- Fuhang Song
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China;
| | - Kai Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China;
| | - Jinpeng Yang
- School of Ocean Sciences, China University of Geosciences, Beijing 100083, China;
| | - Annette S. Wilson
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.S.W.); (C.C.)
| | - Caixia Chen
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.S.W.); (C.C.)
| | - Xiuli Xu
- School of Ocean Sciences, China University of Geosciences, Beijing 100083, China;
| |
Collapse
|
4
|
Dynamic changes in the metabolite profile and taste characteristics of loose-leaf dark tea during solid-state fermentation by Eurotium cristatum. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
5
|
Xie Z, Bai Y, Chen G, Dong W, Peng Y, Xu W, Sun Y, Zeng X, Liu Z. Immunomodulatory activity of polysaccharides from the mycelium of Aspergillus cristatus, isolated from Fuzhuan brick tea, associated with the regulation of intestinal barrier function and gut microbiota. Food Res Int 2022; 152:110901. [DOI: 10.1016/j.foodres.2021.110901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
|
6
|
Chen G, Peng Y, Xie M, Xu W, Chen C, Zeng X, Liu Z. A critical review of Fuzhuan brick tea: processing, chemical constituents, health benefits and potential risk. Crit Rev Food Sci Nutr 2021; 63:5447-5464. [PMID: 34964426 DOI: 10.1080/10408398.2021.2020718] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fuzhuan brick tea (FBT) is a traditional popular beverage in the border regions of China. Nowadays, FBT has been attracted great attention due to its uniquely flavor and various health-promoting functions. An increasing number of efforts have been devoted to the studies on health benefits and chemistry of FBT over the last decades. However, FBT was still received much less attention than green tea, oolong tea and black tea. Therefore, it is necessary to review the current encouraging findings about processing, microorganisms, chemical constituents, health benefits and potential risk of FBT. The fungus fermentation is the key stage for processing of FBT, which is involved in a complex and unique microbial fermentation process. The fungal community in FBT is mainly dominated by "golden flower" fungi, which is identified as Aspergillus cristatus. A great diversity of novel compounds is formed and identified after a series of biochemical reactions during the fermentation process of FBT. FBT shows various biological activities, such as antioxidant, anti-inflammatory, anti-obesity, anti-bacterial, and anti-tumor activities. Furthermore, the potential risk of FBT was also discussed. It is expected that this review could be useful for stimulating further research of FBT.
Collapse
Affiliation(s)
- Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minhao Xie
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Weiqi Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chunxu Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
7
|
Wang Y, Tan Y, Zhang F, Lu X, Shao L, Liu Y, Liu Z. Characterizing the role of the zinc finger transcription factor AcrpnR in governing development in Aspergillus cristatus. J Basic Microbiol 2021; 61:1035-1047. [PMID: 34596896 DOI: 10.1002/jobm.202100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 11/05/2022]
Abstract
Filamentous fungi reproduce sexually or asexually, and the developmental processes are strictly regulated by a variety of transcription factors. In this study, we characterized a zinc finger transcription factor, called AcrpnR, in Aspergillus cristatus (GME2916). The ∆AcrpnR strain exhibited decreased asexual reproduction and increased cleistothecium production. The complementation strain showed restoration of these phenotypic differences. Overexpression of AcrpnR resulted in enhanced asexual development and delayed and inhibited sexual reproduction, suggesting that AcrpnR is required for proper asexual and sexual development in A. cristatus. In addition, AcrpnR positively regulated the expression of genes of the central regulatory pathway of conidiation and negatively regulated the expression of sex-related genes. Overall, these results demonstrate that AcrpnR is essential for maintaining a balance between asexual and sexual development.
Collapse
Affiliation(s)
- Yaping Wang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Yumei Tan
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China.,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Fuqian Zhang
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaolin Lu
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lei Shao
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Yongxiang Liu
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China.,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Zuoyi Liu
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China.,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China.,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
8
|
Comparison of chemical constituents of Eurotium cristatum-mediated pure and mixed fermentation in summer-autumn tea. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Isolation and in silico prediction of potential drug-like compounds from Anethum sowa L. root extracts targeted towards cancer therapy. Comput Biol Chem 2019; 78:242-259. [DOI: 10.1016/j.compbiolchem.2018.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/22/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
|