1
|
Pacyga K, Pacyga P, Topola E, Viscardi S, Duda-Madej A. Bioactive Compounds from Plant Origin as Natural Antimicrobial Agents for the Treatment of Wound Infections. Int J Mol Sci 2024; 25:2100. [PMID: 38396777 PMCID: PMC10889580 DOI: 10.3390/ijms25042100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The rising prevalence of drug-resistant bacteria underscores the need to search for innovative and nature-based solutions. One of the approaches may be the use of plants that constitute a rich source of miscellaneous compounds with a wide range of biological properties. This review explores the antimicrobial activity of seven bioactives and their possible molecular mechanisms of action. Special attention was focused on the antibacterial properties of berberine, catechin, chelerythrine, cinnamaldehyde, ellagic acid, proanthocyanidin, and sanguinarine against Staphylococcus aureus, Enterococcus spp., Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, Serratia marcescens and Pseudomonas aeruginosa. The growing interest in novel therapeutic strategies based on new plant-derived formulations was confirmed by the growing number of articles. Natural products are one of the most promising and intensively examined agents to combat the consequences of the overuse and misuse of classical antibiotics.
Collapse
Affiliation(s)
- Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| |
Collapse
|
2
|
Zhang Y, Wei J, Guo H, Niu C, Yuan Y, Yue T. Phenotypic and Transcriptomic Analyses Reveal the Cell Membrane Damage of Pseudomonas fragi Induced by Cinnamic Acid. Front Microbiol 2022; 12:796754. [PMID: 35058913 PMCID: PMC8764163 DOI: 10.3389/fmicb.2021.796754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Cinnamic acid (CA) is a safe and effective antimicrobial agent. The objective of this study was to reveal the antibacterial mechanism of CA against a food-derived Pseudomonas fragi 38-8, from the aspects of bacterial growth kinetics, cell membrane homeostasis, cell microstructure, and transcription. The minimum inhibitory concentration (MIC) of CA against P. fragi 38-8 was 0.25 mg/ml. CA retarded bacterial growth and induced a series of cell membrane changes. After CA treatment, cell membrane homeostasis was destroyed, which was evidenced by cell membrane depolarization, intracellular pH reduction, and intracellular ATPase activity decrease. Field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), and confocal laser scanning fluorescence microscope (CLSM) realized the visualization of cell microstructure changes, showing cell death and morphological changes, such as cell rupture, shrinkage, and hollowness. RNA sequencing analysis further confirmed the effects of CA to the cell membrane, because of the significant enrichment of differentially expressed genes (DEGs) related to membrane. The results of the phenotype tests and RNA-seq both focused on cell membrane damage, which showed that CA exerted antibacterial effect mainly by acting on cell membrane.
Collapse
Affiliation(s)
- Yuxiang Zhang
- College of Food Science and Technology, Northwest University, Xi'an, China.,College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jianping Wei
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Hong Guo
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Chen Niu
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, China.,College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Pang D, Huang Z, Li Q, Wang E, Liao S, Li E, Zou Y, Wang W. Antibacterial Mechanism of Cinnamaldehyde: Modulation of Biosynthesis of Phosphatidylethanolamine and Phosphatidylglycerol in Staphylococcus aureus and Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13628-13636. [PMID: 34739242 DOI: 10.1021/acs.jafc.1c04977] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cinnamaldehyde is a natural antimicrobial food preservative. Previous studies have suggested that cinnamaldehyde interacts with the cell membrane, but the molecular targets of cinnamaldehyde action on foodborne pathogens are still unclear. In this study, the structural changes of Staphylococcus aureus and Escherichia coli cells were observed after cinnamaldehyde treatment. Then, quantitative real-time polymerase chain reaction (PCR) and parallel reaction monitoring were used for determining the effects of cinnamaldehyde treatment of these bacteria on the expression of genes and proteins associated with glycerophospholipid biosynthesis. Changes in fatty acids (raw materials for the biosynthesis of glycerophospholipids) and glycerophospholipids in S. aureus and E. coli after cinnamaldehyde treatment were analyzed to confirm the results of gene and protein expression experiments. Cinnamaldehyde regulated the glycerophospholipid biosynthesis pathways of these foodborne pathogens, mainly targeting phosphatidylglycerol and phosphatidylethanolamine, which resulted in the disruption of cell membrane integrity.
Collapse
Affiliation(s)
- Daorui Pang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Agricultural Products Processing; Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangzhou 510610, Guangdong, China
| | - Zhaoxiang Huang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Agricultural Products Processing; Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangzhou 510610, Guangdong, China
| | - Qian Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Agricultural Products Processing; Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangzhou 510610, Guangdong, China
| | - Erpei Wang
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla 92037, California, United States
| | - Sentai Liao
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Agricultural Products Processing; Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangzhou 510610, Guangdong, China
| | - Erna Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Agricultural Products Processing; Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangzhou 510610, Guangdong, China
| | - Yuxiao Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Agricultural Products Processing; Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangzhou 510610, Guangdong, China
| | - Weifei Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Agricultural Products Processing; Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangzhou 510610, Guangdong, China
| |
Collapse
|
4
|
Natural Anti-Microbials for Enhanced Microbial Safety and Shelf-Life of Processed Packaged Meat. Foods 2021; 10:foods10071598. [PMID: 34359468 PMCID: PMC8305275 DOI: 10.3390/foods10071598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Microbial food contamination is a major concern for consumers and food industries. Consumers desire nutritious, safe and “clean label” products, free of synthetic preservatives and food industries and food scientists try to meet their demands by finding natural effective alternatives for food preservation. One of the alternatives to synthetic preservatives is the use of natural anti-microbial agents in the food products and/or in the packaging materials. Meat and processed meat products are characteristic examples of products that are highly perishable; hence natural anti-microbials can be used for extending their shelf-life and enhancing their safety. Despite several examples of the successful application of natural anti-microbial agents in meat products reported in research studies, their commercial use remains limited. This review objective is to present an extensive overview of recent research in the field of natural anti-microbials, covering essential oils, plant extracts, flavonoids, animal-derived compounds, organic acids, bacteriocins and nanoparticles. The anti-microbial mode of action of the agents, in situ studies involving meat products, regulations and, limitations for usage and future perspectives are described. The review concludes that naturally derived anti-microbials can potentially support the meat industry to provide “clean label”, nutritious and safe meat products for consumers.
Collapse
|
5
|
Zhang Y, Wei J, Qiu Y, Niu C, Song Z, Yuan Y, Yue T. Structure-Dependent Inhibition of Stenotrophomonas maltophilia by Polyphenol and Its Impact on Cell Membrane. Front Microbiol 2019; 10:2646. [PMID: 31798564 PMCID: PMC6863799 DOI: 10.3389/fmicb.2019.02646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022] Open
Abstract
As natural occurring antimicrobial substances, phenolic compounds have been used to inhibit various bacteria. Stenotrophomonas maltophilia 4–1, a strain isolated from food, exhibited spoilage potential in vitro with proteolysis and lipolysis at 25°C. The present study evaluated the antibacterial properties of 13 polyphenols on S. maltophilia 4–1, and selected 6 compounds (ferulic acid, p-coumaric acid, caffeic acid, chlorogenic acid, (−)-epigallocatechin, and phloretin) for binary combination treatments. The results revealed that antibacterial activities of polyphenols were structure-dependent, and cinnamic acid showed strong inhibitory effects, with a minimum inhibitory concentration (MIC) of 0.125 mg/mL. Importantly, we did not observe any obvious synergistic effects across all binary combinations. The antibacterial mechanism of cinnamic acid was related to membrane damage, caused by the loss of cell membrane integrity and alteration of cell morphology. These findings suggest that cinnamic acid is a promising candidate for the control of spoilage bacteria in food.
Collapse
Affiliation(s)
- Yuxiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Jianping Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Yue Qiu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Chen Niu
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Zihan Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China.,College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|