1
|
Park D, Choi YS, Kim JY, Choi JD, Moon GI. Determination of Flunixin and 5-Hydroxy Flunixin Residues in Livestock and Fishery Products Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Food Sci Anim Resour 2024; 44:873-884. [PMID: 38974729 PMCID: PMC11222691 DOI: 10.5851/kosfa.2024.e24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 07/09/2024] Open
Abstract
Flunixin is a veterinary nonsteroidal anti-inflammatory agent whose residues have been investigated in their original form within tissues such as muscle and liver. However, flunixin remains in milk as a metabolite, and 5-hydroxy flunixin has been used as the primary marker for its surveillance. This study aimed to develop a quantitative method for detecting flunixin and 5-hydroxy flunixin in milk and to strengthen the monitoring system by applying to other livestock and fishery products. Two different methods were compared, and the target compounds were extracted from milk using an organic solvent, purified with C18, concentrated, and reconstituted using a methanol-based solvent. Following filtering, the final sample was analyzed using liquid chromatography- tandem mass spectrometry. Method 1 is environmentally friendly due to the low use of reagents and is based on a multi-residue, multi-class analysis method approved by the Ministry of Food and Drug Safety. The accuracy and precision of both methods were 84.6%-115% and 0.7%-9.3%, respectively. Owing to the low matrix effect in milk and its convenience, Method 1 was evaluated for other matrices (beef, chicken, egg, flatfish, and shrimp) and its recovery and coefficient of variation are sufficient according to the Codex criteria (CAC/GL 71-2009). The limits of detection and quantification were 2-8 and 5-27 μg/kg for flunixin and 2-10 and 6-33 μg/kg for 5-hydroxy flunixin, respectively. This study can be used as a monitoring method for a positive list system that regulates veterinary drug residues for all livestock and fisheries products.
Collapse
Affiliation(s)
- Dahae Park
- Pesticides & Veterinary Drug
Residues Division, National Institute of Food & Drug Safety
Evaluation, Cheongju 28159, Korea
| | - Yong Seok Choi
- College of Pharmacy, Dankook
University, Cheonan 31116, Korea
| | - Ji-Young Kim
- Pesticides & Veterinary Drug
Residues Division, National Institute of Food & Drug Safety
Evaluation, Cheongju 28159, Korea
| | - Jang-Duck Choi
- Pesticides & Veterinary Drug
Residues Division, National Institute of Food & Drug Safety
Evaluation, Cheongju 28159, Korea
| | - Gui-Im Moon
- Pesticides & Veterinary Drug
Residues Division, National Institute of Food & Drug Safety
Evaluation, Cheongju 28159, Korea
| |
Collapse
|
2
|
Li Q, Mi J, Bai Y, Ma Q, Zhang Y, Yang H, Wen K, Shen J, Wang Z, Yu X. Antibody Production, Immunoassay Establishment, and Specificity Study for Flunixin and 5-Hydroxyflunixin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3160-3170. [PMID: 38197248 DOI: 10.1021/acs.jafc.3c07766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Flunixin (FLU) is a nonsteroidal drug that is widely used in animals, causing severe drug residues in animal-derived foods and environment. The development of antibody-based rapid immunoassay methods is of great significance for the monitoring of FLU and its metabolite 5-hydroxyflunixin (5-FLU). We prepared monoclonal antibodies (mAbs) with different recognition spectra through FLU-keyhole limpet hemocyanin conjugates as immunogen coupled with antibody screening strategies. mAb5E6 and mAb6D7 recognized FLU with high affinity, and mAb2H5 and mAb4A4 recognized FLU and 5-FLU with broad specificity. Through evaluating the recognition of these mAbs against more than 11 structural analogues and employing computational chemistry, molecular docking, and molecular dynamics methodologies, we preliminarily determined the recognition epitope and recognition mechanism of these mAbs. Finally, an indirect competitive enzyme-linked immunosorbent assay for FLU based on mAb6D7 was developed, which exhibited limits of detection as low as 0.016-0.042 μg kg -1 (L-1) in milk and muscle samples.
Collapse
Affiliation(s)
- Qing Li
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, China
| | - Jiafei Mi
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, China
| | - Yuchen Bai
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, China
| | - Qiang Ma
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, China
| | - Yingjie Zhang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, China
| | - Huijuan Yang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, China
| | - Xuezhi Yu
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Lin L, Xu X, Song S, Xu L, Wu X, Liu L, Kuang H, Xu C. A multiplex lateral flow immunochromatography assay for the quantitative detection of pyraclostrobin, myclobutanil, and kresoxim-methyl residues in wheat. Food Chem 2022; 377:131964. [PMID: 34999457 DOI: 10.1016/j.foodchem.2021.131964] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/17/2021] [Accepted: 12/25/2021] [Indexed: 11/04/2022]
Abstract
We produced three monoclonal antibodies with high specificity and sensitivity, and developed a lateral flow immunochromatography assay (LFIA) for the qualitative and quantitative detection of pyraclostrobin (PYR), myclobutanil (MYC), and kresoxim-methyl (KRE) in wheat. In the qualitative analysis, the cut-off values of LFIA were 400, 200, and 800 ng/g for PYR, MYC, and KRE in wheat, respectively. Based on the results obtained from the membrane strip reader, we generated calibration curves for the quantitative analysis. PYR, MYC, and KRE monoclonal antibodies (mAbs) had half maximal inhibitory concentrations (IC50) of 25.4, 17.7, and 94.6 ng/g, respectively, and limit of detection (LOD) of 2.5, 2.0, and 8.8 ng/g, respectively. The linear detection scopes were 5.6-116.5, 4.2-74.4, 23.4-383.3 ng/g for PYR, MYC, and KRE, respectively. The intra-assay recoveries ranged from 89.2% to 101.7%, and the coefficients of variation ranged from 4.6% to 6.5%. The inter-assay recoveries ranged from 88.7% to 102.7%, with the coefficients of variation ranged from 7.2% to 9.1%. Thus, our developed LFIA is suitable for the qualitative and quantitative detection of PYR, MYC, and KRE residues in wheat.
Collapse
Affiliation(s)
- Lu Lin
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xinxin Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Liguang Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaoling Wu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
4
|
Food forensics: techniques for authenticity determination of food products. Forensic Sci Int 2022; 333:111243. [DOI: 10.1016/j.forsciint.2022.111243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
|
5
|
Parmar JK, Chaubey KK, Gupta V, Bharath MN. Assessment of various veterinary drug residues in animal originated food products. Vet World 2021; 14:1650-1664. [PMID: 34316216 PMCID: PMC8304421 DOI: 10.14202/vetworld.2021.1650-1664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/02/2021] [Indexed: 11/16/2022] Open
Abstract
The veterinary drugs are broad-spectrum antibacterial antibiotics; it uses to cure the animal disease. Many countries have banned veterinary drug residues like nitrofurans metabolites, chloramphenicol. However, the people were administrated veterinary drugs to animals as illegal to increase the milk production in animals for economic benefit. The results of illegally use of veterinary drugs remain as a residue in animal product like milk and it is very harmful to whom consume it cause cancer and allergic for human being which has entered the concern among milk consumers. To control illegal use of veterinary drugs, the government of India has restricted its use in animals. For the identification and confirmation of veterinary drug residues in animal products, analytical techniques such as liquid chromatography and mass spectrometry are available. These are very sophisticated equipments which are available nowadays and their methodologies for the analytical method validation are described by European commission 2002/657/EC. The use of veterinary drugs is a big challenge to effectively identify and authorization of their use. There are so many analytical techniques are using very effectively and taking very less time to protect the consumers from their adverse effects. These techniques take very less time to identify more groups of compounds such as tetracycline, sulfonamides, anthelmintic, and macrolides in single multi-residue method. These methods having validation parameters include system precision, calibration curve, accuracy, limit of detection, and quantification. Therefore, improvement in the existing technologies and accessibility of new screening methodologies will give opportunities for automation that helps in obtaining the results in very less time and improved sensitivity and specificity which contribute to better safety assurance, standard, and quality of various food products of animal origin.
Collapse
Affiliation(s)
- Jagdish Kumar Parmar
- Department of Biotechnology, GLA University, Chaumuhan, Mathura, Uttar Pradesh, India.,TUV India Pvt. Ltd., Sus Rd, Mulshi, Pune, Maharashtra, India.,EUREKA Analytical Services Pvt. Ltd. 31 Milestone, Main GT Road, Kundli, Sonepat, Haryana, India
| | - Kundan Kumar Chaubey
- Department of Biotechnology, GLA University, Chaumuhan, Mathura, Uttar Pradesh, India
| | - Vikas Gupta
- TUV India Pvt. Ltd., Sus Rd, Mulshi, Pune, Maharashtra, India
| | - Manthena Nava Bharath
- Department of Biotechnology, GLA University, Chaumuhan, Mathura, Uttar Pradesh, India
| |
Collapse
|
6
|
Hill D, Morra MJ, Stalder T, Jechalke S, Top E, Pollard AT, Popova I. Dairy manure as a potential source of crop nutrients and environmental contaminants. J Environ Sci (China) 2021; 100:117-130. [PMID: 33279025 DOI: 10.1016/j.jes.2020.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 06/12/2023]
Abstract
Although animal manure is applied to agricultural fields for its nutrient value, it may also contain potential contaminants. To determine the variability in such contaminants as well as in valuable nutrients, nine uncomposted manure samples from Idaho dairies collected during 2.5 years were analyzed for macro- and micro-nutrients, hormones, phytoestrogens, antibiotics, veterinary drugs, antibiotic resistance genes, and genetic elements involved in the spread of antibiotic resistance. Total N ranged from 6.8 to 30.7 (C:N of 10 to 21), P from 2.4 to 9.0, and K from 10.2 to 47.7 g/kg manure. Zn (103 - 348 mg/kg) was more abundant than Cu (56 - 127 mg/kg) in all samples. Phytoestrogens were the most prevalent contaminants detected, with concentrations fluctuating over time, reflecting animal diets. This is the first study to document the presence of flunixin, a non-steroidal anti-inflammatory drug, in solid stacked manure from regular dairy operations. Monensin was the most frequently detected antibiotic. Progesterones and sulfonamides were regularly detected. We also investigated the relative abundance of several types of plasmids involved in the spread of antibiotic resistance in clinical settings. Plasmids belonging to the IncI, IncP, and IncQ1 incompatibility groups were found in almost all manure samples. IncQ1 plasmids, class 1 integrons, and sulfonamide resistance genes were the most widespread and abundant genetic element surveyed, emphasizing their potential role in the spread of antibiotic resistance. The benefits associated with amending agricultural soils with dairy manure must be carefully weighed against the potential negative consequences of any manure contaminants.
Collapse
Affiliation(s)
- Danika Hill
- Department of Soil & Water Systems, University of Idaho, ID 83844-2340, USA
| | - Matthew J Morra
- Department of Soil & Water Systems, University of Idaho, ID 83844-2340, USA
| | | | - Sven Jechalke
- Justus Liebig University Giessen, Institute for Phytopathology, 35392 Gießen, Germany
| | - Eva Top
- Department of Biology, University of Idaho, ID 83844-3051, USA
| | - Anne T Pollard
- Department of Soil & Water Systems, University of Idaho, ID 83844-2340, USA
| | - Inna Popova
- Department of Soil & Water Systems, University of Idaho, ID 83844-2340, USA.
| |
Collapse
|
7
|
Lateral flow immunoassay for 5-hydroxyflunixin based on near-infrared fluorescence molecule as an alternative label to gold nanoparticles. Mikrochim Acta 2020; 187:368. [PMID: 32495065 DOI: 10.1007/s00604-020-04338-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Abstract
A high-affinity monoclonal antibody (mAb) has been prepared and separately a gold nanoparticle (AuNP)-based and a near-infrared (NIR) fluorescence-based lateral flow immunoassay (LFA) developed for determination of 5-hydroxyflunixin residue in raw milk. The AuNP and IRDye® 800CW were used to label anti-5-hydroxyflunixin mAb to form the AuNP-mAb and NIR dye-mAb conjugates, respectively. Quantitative determination of 5-hydroxyflunixin was achieved by imaging the optical or fluorescence intensity of the AuNP-mAb and NIR dye-mAb captured on the test line. As a result, the detection limits of the AuNP-based LFA and NIR dye-based LFA were 0.82 and 0.073 ng/mL in raw milk, respectively. The considerable improvement on assay sensitivity of the NIR-based LFA can be attributed to the lower background and less antibody consumption per test than that of the AuNP-based LFA. The spiking experiment by the NIR-based LFA yielded 85.7-112.6% recovery with a relative standard deviation below 14%, indicating that it has satisfactory assay accuracy and precision. Furthermore, the analytical results of actual samples by the NIR dye-based LFA were consistent with that by instrumental analysis. Therefore, these results demonstrated that the NIR dye is an ideal alternative label to the conventional AuNP for the development of LFA for veterinary drugs in animal-origin food. Graphical abstract.
Collapse
|
8
|
Lan J, Sun W, Chen L, Zhou H, Fan Y, Diao X, Wang B, Zhao H. Simultaneous and rapid detection of carbofuran and 3-hydroxy-carbofuran in water samples and pesticide preparations using lateral-flow immunochromatographic assay. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2019.1708272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jianqiang Lan
- Key Laboratory of A&F Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, People’s Republic of China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, People’s Republic of China
| | - Weiming Sun
- Key Laboratory of A&F Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, People’s Republic of China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, People’s Republic of China
| | - Lijun Chen
- Hainan Plant Protection Station, Haikou, People’s Republic of China
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, People’s Republic of China
| | - Yongmei Fan
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests of Ministry of Education, Hainan University, Haikou, People’s Republic of China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, People’s Republic of China
| | - Baomin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Hongwei Zhao
- Key Laboratory of A&F Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, People’s Republic of China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, People’s Republic of China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests of Ministry of Education, Hainan University, Haikou, People’s Republic of China
| |
Collapse
|
9
|
Wang Z, Guo L, Liu L, Kuang H, Xiao J, Xu C. Development and comparison of two nanomaterial label-based lateral flow immunoassays for the detection of five antibacterial synergists. NEW J CHEM 2020. [DOI: 10.1039/d0nj03734f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Label is a significant factor when analyzing the performance of lateral flow immunoassays (LFIAs). Thus, this study developed two nanomaterial label-based LFIA and compared their analytical performance in practical applications.
Collapse
Affiliation(s)
- Zhongxing Wang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| | - Jing Xiao
- NHC Key Laboratory of Food Safety Risk Assessment
- China National Center for Food Safety Risk Assessment
- Beijing
- People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| |
Collapse
|