1
|
Zhou C, Wang N, Lv Y, Liu J, Su Y, Su X. Hydrogel-involved portable colorimetric sensor based on oxidase mimic Fe/Co-NC for acetylcholinesterase detection and pesticides inhibition assessment. Food Chem 2024; 441:138372. [PMID: 38219364 DOI: 10.1016/j.foodchem.2024.138372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Herein, we synthesized a novel N-doped carbon layer encapsulated Fe/Co bimetallic nanoparticles (Fe/Co-NC), which exhibited superior oxidase-like activity due to the facilitation of electron penetration and the formation of metal-nitrogen active sites. Fe/Co-NC could catalyze the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) to blue oxTMB. Acetylcholinesterase (AChE) could catalyze the hydrolysis of thioacetylcholine to produce reducing thiocholine, which prevented TMB from oxidation. Thus, a portable hydrogel colorimetric sensor was developed for on-site and visual monitoring of AChE with the detection limit of 0.36 U L-1, and successfully applied to detect AChE in human erythrocyte samples. Furthermore, this platform was used to investigate the inhibition of triazophos on AChE activity.
Collapse
Affiliation(s)
- Chenyu Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Junxue Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Yu Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Han Q, Fan L, Liu X, Tang Y, Wang P, Shu Z, Zhang W, Zhu L. Lateral Flow Immunoassay Based on Quantum-Dot Nanobeads for Detection of Chloramphenicol in Aquatic Products. Molecules 2023; 28:7496. [PMID: 38005218 PMCID: PMC10673565 DOI: 10.3390/molecules28227496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Quantum dot nanobeads (QBs) were used as signal source to develop competitive lateral flow immunoassay (LFIA) for the detection of chloramphenicol (CAP). The quantitative detection of CAP was achieved by calculating the total color difference (∆E) values of the test line (T line) using the images of test strips. QB-based LFIA (QBs-LFIA) allowed the effective dynamic linear detection of CAP in the range of 0.1-1.5 ng/mL. The limit of detection (LOD) was 3.0 ng/mL, which was 50 and 667 times lower than those achieved for two different brands of colloidal gold kits. The recoveries of CAP during real-sample detection were 82.82-104.91% at spiked levels of 0.1, 0.7, and 1.5 ng/mL. These results indicate that the developed QBs-LFIA facilitates the sensitive detection of CAP.
Collapse
Affiliation(s)
- Qian Han
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430028, China; (Q.H.); (P.W.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430028, China
| | - Ling Fan
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China;
| | - Xiuying Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430028, China; (Q.H.); (P.W.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430028, China
| | - Yiwei Tang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China;
| | - Pingping Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430028, China; (Q.H.); (P.W.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430028, China
| | - Zaixi Shu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430028, China; (Q.H.); (P.W.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430028, China
| | - Wei Zhang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430028, China; (Q.H.); (P.W.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430028, China
| | - Lijie Zhu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430028, China; (Q.H.); (P.W.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430028, China
| |
Collapse
|
3
|
Ratiometric fluorescent immunochromatography for simultaneously detection of two nitrofuran metabolites in seafoods. Food Chem 2023; 404:134698. [DOI: 10.1016/j.foodchem.2022.134698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
|
4
|
Fang B, Xiong Q, Duan H, Xiong Y, Lai W. Tailored quantum dots for enhancing sensing performance of lateral flow immunoassay. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Song M, Wu Q, Liu B, Li P, Jiang L, Wang Y, Dong S, Xiong Y, Hammock BD, Zhang C. Using a quantum dot bead-based lateral flow immunoassay to broadly detect the adulteration of PDE-5 inhibitors in functional foods. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2586-2595. [PMID: 35723455 PMCID: PMC11257028 DOI: 10.1039/d2ay00580h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, a designed hapten possessing the classic structure of PDE-5 inhibitors was synthesized. A monoclonal antibody (mAb) with broad recognition for six PDE-5 inhibitors was further produced. For the determination of lodenafil, methisosildenafil, mirodenafil, udenafil and tadalafil, the limit of detection (LOD) and IC50 ranged from 1.01 to 26.91 ng mL-1 and 12.75 to 278 ng mL-1, respectively. Thereafter, a quantum dot bead-based lateral flow immunoassay (QB-LFIA) was developed, which improved the LOD and IC50 to 0.32-6.52 ng mL-1 and 7.45-133.8 ng mL-1, respectively. Method validation was conducted using honey and capsule samples spiked with PDE-5 inhibitors, and the recoveries of the intra- and inter-assays ranged from 81.01% to 108.16%, with coefficients of variation below 12.71%. In addition, the validity and the consistency have been confirmed with a comparison between QB-LFIA and HPLC-MS/MS (R2 = 0.9957). Furthermore, the developed QB-LFIA was employed for the inspection of real products, and several samples were found to be adulterated with lodenafil and methisosildenafil.
Collapse
Affiliation(s)
- Mingshu Song
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China.
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China.
| | - Qin Wu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China.
| | - Beibei Liu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China.
| | - Pan Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China.
| | - Lan Jiang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China.
| | - Yulong Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China.
| | - Sa Dong
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China.
| | - Bruce D Hammock
- Department of Entomology, Nematology and UCD Comprehensive Cancer Center, University of California Davis, California, 95616, USA
| | - Cunzheng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China.
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China.
- School of Biology and Food Engineering, Jiangsu University, Zhenjiang, 212000, P. R. China
| |
Collapse
|
6
|
Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Xu N, Liu Y, Li Y, Tang B, Liang X, Yang Y, Liu M, Liu X, Zhou Y. Rapid Quantum Dot Nanobead-mAb Probe-Based Immunochromatographic Assay for Antibody Monitoring of Trichinella spiralis Infection. Int J Nanomedicine 2021; 16:2477-2486. [PMID: 33824586 PMCID: PMC8018372 DOI: 10.2147/ijn.s304845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose Sensitive and selective point-of-care biosensor is an urgent pursuit of serological antibody detection to control parasite pathogen. For specific, quantitative and on-site screening of Trichinella spiralis infection in livestock, a quantum dot nanobead-monoclonal antibody (QB-mAb) probe-based immunochromatographic assay (ICA) was developed by introducing a competitive sandwich strategy (QB-CICA). Methods In the QB-CICA, QB-mAb probes competed with serum antibody for a particular epitope, followed by immunocomplexes binding to capture antibody on the test line. With the accumulation of target antibody, captured probes served as signal elements for fluorescent readout in a "turn off" mode, along with the fluorescence gradually weakened. The sensitivity and standard calibration curve of the QB-CICA were quantified using swine sera as negative control (n = 200) and artificial infected swine sera (n = 80) compared with a commercial ELISA kit. Besides, Trichinella spiralis-antibody targeting test ability of the QB-CICA, instead of other parasites or viruses antibodies (n = 10), was evaluated. Results The QB-CICA exhibited a good linear range, a low detection limit of 189.92 ng mL-1 and 100% selectivity that was higher than commercial ELISA kit (90%), as well as the same serological positive rate (100%) with commercial ELISA kit in different infection dose models. Conclusion Taking advantage of its simplicity, short response time (25 min), sensitivity and specificity, the proposed QB-CICA has potential applications for parasite-related antibody monitoring in food safety and clinical diagnosis fields.
Collapse
Affiliation(s)
- Ning Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Yan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Yansong Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Xiongyan Liang
- College of Animal Sciences, Yangtze University, Jingzhou, People's Republic of China
| | - Yuying Yang
- College of Animal Sciences, Yangtze University, Jingzhou, People's Republic of China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Yu Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China.,College of Animal Sciences, Yangtze University, Jingzhou, People's Republic of China
| |
Collapse
|
8
|
Goh E, Lee HJ. Biofunctionalized Carbon
Nanodot‐Polystyrene
Bead Conjugates for Bioanalysis Applications. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Eunseo Goh
- Department of Chemistry and Green‐Nano Materials Research CenterKyungpook National University Daegu‐city 41566 South Korea
| | - Hye Jin Lee
- Department of Chemistry and Green‐Nano Materials Research CenterKyungpook National University Daegu‐city 41566 South Korea
| |
Collapse
|
9
|
Quantum Dot Submicrobead–Based Immunochromatographic Assay for the Determination of Parathion in Agricultural Products. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01796-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|