1
|
Guevara-Ramírez P, Tamayo-Trujillo R, Cadena-Ullauri S, Ruiz-Pozo V, Paz-Cruz E, Annunziata G, Verde L, Frias-Toral E, Simancas-Racines D, Zambrano AK. Heavy metals in the diet: unraveling the molecular pathways linked to neurodegenerative disease risk. FOOD AGR IMMUNOL 2024; 35. [DOI: 10.1080/09540105.2024.2434457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Affiliation(s)
- Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Viviana Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Giuseppe Annunziata
- Facoltà di Scienze Umane, della Formazione e dello Sport, Università Telematica Pegaso, Naples, Italy
| | - Ludovica Verde
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | | | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
2
|
Lu Q, Liu L, Li J, Song S, Kuang H, Xu C, Guo L. Rapid and sensitive quantitation of amitraz in orange, tomato, and eggplant samples using immunochromatographic assay. Food Chem 2024; 446:138899. [PMID: 38452506 DOI: 10.1016/j.foodchem.2024.138899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/11/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Amitraz (AMT) is a broad-spectrum formamidine insecticide and acaricide. In this study, we produced an anti-AMT monoclonal antibody (mAb) with high performance. The half-maximal inhibitory concentration of the anti-AMT mAb was 4.418 ng/mL, the cross reactivity with other insecticides was negligible, and an affinity constant was 2.06 × 109 mmol/L. Additionally, we developed an immunochromatographic assay for the rapid detection of AMT residues in oranges, tomatoes, and eggplants. The cut-off values were 2000 μg/kg in oranges and tomato samples and 1000 μg/kg in eggplant samples and the calculated limits of detection were 14.521 μg/kg, 6.281 μg/kg, and 3.518 μg/kg in oranges, tomatoes, and eggplants, respectively, meeting the detection requirements for AMT in fruits and vegetables. The recovery rates ranged between 95.8 % and 105.2 %, consistent with the recovery rates obtained via LC-MS/MS. Our developed immunochromatographic assay can effectively, accurately, and rapidly determine AMT residues in oranges, tomatoes, and eggplants.
Collapse
Affiliation(s)
- Qianqian Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinyan Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shanshan Song
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lingling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
3
|
Lu Q, Ding H, Liu L, Xu L, Kuang H, Xu C, Guo L. Immunochromatographic assay for rapid detection of flupyradifurone in grape, blueberry, and tomato samples. Food Chem 2024; 433:137328. [PMID: 37690139 DOI: 10.1016/j.foodchem.2023.137328] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Flupyradifurone (FPF) is a neonicotinoid insecticide that effectively controls the spread of various pests. In this study, we established an immunochromatographic assay based on a highly specific and sensitive anti-FPF monoclonal antibody (mAb) to screen for FPF residues in grapes, blueberries, and tomatoes. The cut-off value for the immunochromatographic assay was 5 mg/kg for grapes and 10 mg/kg for blueberries and tomatoes. The calculated limit of detection of the immunochromatographic assay was 0.009 mg/kg, 0.033 mg/kg, and 0.040 mg/kg for grapes, blueberries, and tomatoes, respectively. The recovery rates of the immunochromatographic assay were 97.0-108.2 % in grape samples, 90.9-105.1 % in blueberry samples, and 94.0-103.7 % in tomato samples, and the detection results were highly consistent with LC-MS/MS results. Therefore, this immunochromatographic assay was an effective and rapid tool for screening for FPF in grapes, blueberries, and tomatoes.
Collapse
Affiliation(s)
- Qianqian Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongliu Ding
- Key Laboratory of Food Safety Rapid Detection Technology and Product Evaluation for Market Regulation of Jiangsu Province, Suzhou, Jiangsu 215133, China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liguang Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Lingling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Jiang L, Wang P, Shu Y, Jin P, Xu L, Xu C, Guo L. A colloidal gold immunoassay strip assay for cadmium detection in oilfield chemicals. Analyst 2023; 148:4166-4173. [PMID: 37522178 DOI: 10.1039/d3an01075a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cadmium ions (Cd2+) are some of the major pollutants in oilfield chemicals. To reduce the pollution of oilfield chemicals, it is necessary to detect and control the content of Cd2+. In this study, we synthesized a highly sensitive and specific monoclonal antibody against Cd2+ with an IC50 of 1.97 ng mL-1 and no cross-reactivity. Based on this antibody, a colloidal gold immunoassay strip detection assay with an IC50 of 1 mg kg-1 and a detection range of 1.0-20 mg kg-1 in oilfield chemicals was developed. This assay could be completed in 20 min and can be used for Cd2+ on-site testing in oilfield chemicals and improve supervision efficiency in oil exploration and development.
Collapse
Affiliation(s)
- Luming Jiang
- PetroChina Research Institute of Petroleum Exploration and Development, Beijing, 10083, China
- Key Laboratory of Oilfield Chemicals, CNPC, Beijing 10083, China
| | - Peng Wang
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Yong Shu
- PetroChina Research Institute of Petroleum Exploration and Development, Beijing, 10083, China
- Key Laboratory of Oilfield Chemicals, CNPC, Beijing 10083, China
| | - Ping Jin
- Suzhou Product Quality Supervision and Inspection Institute, Building B, No. 1368 Wuzhong Avenue, Suzhou, Jiangsu, 215000, China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Lingling Guo
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
5
|
Lu Q, Xu X, Guo L, Song S, Liu L, Zhu Y, Kuang H, Xu C, Xu L. Rapid and sensitive detection of chlordimeform in cucumber and tomato samples using an immunochromatographic assay. Analyst 2023; 148:780-786. [PMID: 36683457 DOI: 10.1039/d2an01923j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chlordimeform (CDM) is a broad-spectrum and highly effective insecticide and acaricide used to control pests in agriculture. We produced two monoclonal antibodies (mAbs) against CDM and developed an immunochromatographic assay to screen CDM in cucumbers and tomatoes. MAb 4A3 had high sensitivity with a 50% inhibitory concentration of 0.287 ng mL-1. The assay had a cut-off value of 25 μg kg-1 and a visual limit of detection (vLOD) of 1 μg kg-1 in cucumbers and a cut off value of 50 μg kg-1 and a vLOD of 2.5 μg kg-1 in tomatoes. The calculated limit of detection (cLOD) in cucumbers and tomatoes was 0.115 μg kg-1 and 0.215 μg kg-1, respectively. The recovery rates were 97.9% to 106.9% for cucumbers and 97.8% to 107.4% for tomatoes, consistent with the results obtained from indirect competitive ELISA. Our findings showed that the immunochromatographic assay is an efficient and accurate method for CDM detection in cucumbers and tomatoes.
Collapse
Affiliation(s)
- Qianqian Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yingyue Zhu
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, People's Republic of China.
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| |
Collapse
|
6
|
High-Quality Conjugated Polymers Achieving Ultra-Trace Detection of Cr2O72− in Agricultural Products. Molecules 2022; 27:molecules27134294. [PMID: 35807539 PMCID: PMC9268218 DOI: 10.3390/molecules27134294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
In view of that conjugated polymers (CPs) are an attractive option for constructing high-sensitive Cr2O72− sensors but suffer from lacking a general design strategy, we first proposed a rational structure design of CPs to tailor their sensing properties while validating the structure-to-performance correlation. Short side chains decorated with N and O atoms as recognition groups were instructed into fluorene to obtain monomers Fmoc-Ala-OH and Fmoc-Thr-OH. Additionally, their polymers P(Fmoc-Ala-OH) and P(Fmoc-Thr-OH) were obtained through electrochemical polymerization. P(Fmoc-Ala-OH) and P(Fmoc-Thr-OH) with high polymerization degrees have an excellent selectivity towards Cr2O72− in comparison to other cations and anions. Additionally, their limit of detection could achieve 1.98 fM and 3.72 fM, respectively. Especially, they could realize the trace detection of Cr2O72− in agricultural products (red bean, black bean, and millet). All these results indicate that short side chains decorated with N and O atoms functionalizing polyfluorene enables the ultra-trace detection of Cr2O72−. Additionally, the design strategy will spark new ideas for the construction of highly selective and sensitive Cr2O72− sensors.
Collapse
|
7
|
Lei X, Xu X, Wang L, Liu L, Kuang H, Xu L, Xu C. Quantitative and rapid detection of spinosad and spinetoram by a gold nanoparticle-based immunostrip. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2026-2034. [PMID: 35546323 DOI: 10.1039/d1ay01790j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spinosad (SPI) and spinetoram (Et-SPI) are currently among the most popular new insecticides because of their high efficiency and low toxicity. However, excessive residues in food still pose a potential risk to public health. Therefore, it is necessary to strengthen residue monitoring of the two insecticides based on a simple and rapid method. In this study, a highly sensitive mAb (6G9) against SPI and Et-SPI was prepared using the hapten SPI-HS and used to develop a colloidal gold nanoparticle-based immunochromatographic strip for the detection of SPI and Et-SPI in samples. The quantitative ranges of the developed strip for SPI and Et-SPI were 8.93-1633 ng g-1 and 20.3-3555 ng g-1 in rice, 32.6-785 ng g-1 and 79.3-1862 ng g-1 in tea, and 9.66-360 ng g-1 and 23.9-931 ng g-1 in onions, respectively. In addition, recovery rates ranged from 85.7% to 112.7% with a coefficient of variation <9.5%. Therefore, our developed method was sensitive and valid as a quantitative tool for the rapid monitoring of SPI and Et-SPI in foods.
Collapse
Affiliation(s)
- Xianlu Lei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
8
|
Wang Z, Zhao J, Xu X, Guo L, Xu L, Sun M, Hu S, Kuang H, Xu C, Li A. An Overview for the Nanoparticles-Based Quantitative Lateral Flow Assay. SMALL METHODS 2022; 6:e2101143. [PMID: 35041285 DOI: 10.1002/smtd.202101143] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Indexed: 06/14/2023]
Abstract
The development of the lateral flow assay (LFA) has received much attention in both academia and industry because of their broad applications to food safety, environmental monitoring, clinical diagnosis, and so forth. The user friendliness, low cost, and easy operation are the most attractive advantages of the LFA. In recent years, quantitative detection has become another focus of LFA development. Here, the most recent studies of quantitative LFAs are reviewed. First, the principles and corresponding formats of quantitative LFAs are introduced. In the biomaterial and nanomaterial sections, the detection, capture, and signal amplification biomolecules and the optical, fluorescent, luminescent, and magnetic labels used in LFAs are described. The invention of dedicated strip readers has drawn further interest in exploiting the better performance of LFAs. Therefore, next, the development of dedicated reader devices is described and the usefulness and specifications of these devices for LFAs are discussed. Finally, the applications of LFAs in the detection of metal ions, biotoxins, pathogenic microorganisms, veterinary drugs, and pesticides in the fields of food safety and environmental health and the detection of nucleic acids, biomarkers, and viruses in clinical analyses are summarized.
Collapse
Affiliation(s)
- Zhongxing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Jing Zhao
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, No. 11, Baiwanzhuang Street, Beijing, 100037, P. R. China
| |
Collapse
|
9
|
Development of an Immunoassay for the Detection of Copper Residues in Pork Tissues. BIOSENSORS-BASEL 2021; 11:bios11070235. [PMID: 34356706 PMCID: PMC8301988 DOI: 10.3390/bios11070235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 12/01/2022]
Abstract
The presence of high concentrations of copper (Cu) residues in pork is highly concerning and therefore, this study was designed to develop a high-throughput immunoassay for the detection of such residues in edible pork tissues. The Cu content in the pork samples after digestion with HNO3 and H2O2 was measured using a monoclonal antibody (mAb) against a Cu (II)–ethylenediaminetetraacetic acid (EDTA) complex. The resulting solution was neutralized using NaOH at pH 7 and the free metal ions in the solution were chelated with EDTA for the immunoassay detection. An indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) method was developed for Cu ion analysis. The half maximal inhibitory concentration of the mAb against Cu (II)–EDTA was 5.36 ng/mL, the linear detection range varied between 1.30 and 27.0 ng/mL, the limit of detection (LOD) was 0.43 μg/kg, and the limit of quantification (LOQ) was 1.42 μg/kg. The performances of the immunoassay were evaluated using fortified pig serum, liver, and pork samples and had a recovery rate of 94.53–102.24%. Importantly, the proposed immunoassay was compared with inductively coupled plasma mass spectroscopy (ICP-MS) to measure its performance. The detection correlation coefficients of the three types of samples (serum, pork, and liver) were 0.967, 0.976, and 0.983, respectively. Thirty pork samples and six pig liver samples were collected from local markets and Cu was detected with the proposed ic-ELISA. The Cu content was found to be 37.31~85.36 μg/kg in pork samples and 1.04–1.9 mg/kg in liver samples. Furthermore, we detected the Cu content in pigs with feed supplemented with tribasic copper chloride (TBCC) and copper sulfate (CS) (60, 110, and 210 mg/kg in feed). There was no significant difference in Cu accumulation in pork tissues between the TBCC and CS groups, while a remarkable Cu accumulation was found for the CS group in liver at 210 mg/kg, representing more than a two-fold higher level than seen in the TBCC group. Therefore, the proposed immunoassay was found to be robust and sensitive for the detection of Cu, providing a cost effective and practical tool for its detection in food and other complicated samples.
Collapse
|