1
|
Lee HY, Park YM, Shin DY, Hwang HM, Jeong HN, Park HY, Yang HJ, Ha GS, Ryu MS, Seo JW, Jeong DY, Bae JS, Kim BS, Kim JG. Immune-enhancing effect of fermented soybean food, Cheonggukjang on cyclophosphamide-treated immunosuppressed rat. Heliyon 2024; 10:e37845. [PMID: 39328544 PMCID: PMC11425096 DOI: 10.1016/j.heliyon.2024.e37845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Cheonggukjang (CGJ) is a traditional food, made by the fermentation of beans, and it has different recipes for different regions in Korea. However, it has anti-inflammatory, anti-cancer, and anti-obesity effects, and is known to affect changes in the intestinal microbiota. In this study, we investigated the immune-enhancing effects of four type CGJs (one commercial and three transitional CGJs). In the cyclophosphamide (CP)-treated immunosuppressed rat, oral administration of CGJs for 4 weeks was used to investigate weight of body and immune organ, change of microbiota, blood and serum parameters, inflammation pathways (MAPKs and NFκB) and histology of spleen. It showed an immunity-enhancing effect through increase Bacteroidetes in gut, the recovery of complete blood count, levels of cytokines and IgG, activation of inflammatory pathways, and histology of spleen. In conclusion, these results show that the intake of a commercial brand CGJ, and traditional CGJs can maintain or promote the body's immunity.
Collapse
Affiliation(s)
- Hak Yong Lee
- INVIVO Co. Ltd., 121, Deahak-ro, Nonsan, Chungnam, 32992, Republic of Korea
| | - Young Mi Park
- INVIVO Co. Ltd., 121, Deahak-ro, Nonsan, Chungnam, 32992, Republic of Korea
- Department of Pathology, College of Korean Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Dong Yeop Shin
- INVIVO Co. Ltd., 121, Deahak-ro, Nonsan, Chungnam, 32992, Republic of Korea
- Department of Integrated Life Science and Technology, Kongju National University, 32439, Republic of Korea
| | - Hai Min Hwang
- INVIVO Co. Ltd., 121, Deahak-ro, Nonsan, Chungnam, 32992, Republic of Korea
| | - Han Na Jeong
- INVIVO Co. Ltd., 121, Deahak-ro, Nonsan, Chungnam, 32992, Republic of Korea
| | - Hyo Yeon Park
- INVIVO Co. Ltd., 121, Deahak-ro, Nonsan, Chungnam, 32992, Republic of Korea
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, 56048, Republic of Korea
| | - Gwang Su Ha
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, 56048, Republic of Korea
| | - Myeong Seon Ryu
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, 56048, Republic of Korea
| | - Ji Won Seo
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, 56048, Republic of Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, 56048, Republic of Korea
| | - Jun Sang Bae
- Department of Pathology, College of Korean Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Byeong Soo Kim
- Department of Integrated Life Science and Technology, Kongju National University, 32439, Republic of Korea
| | - Jae Gon Kim
- INVIVO Co. Ltd., 121, Deahak-ro, Nonsan, Chungnam, 32992, Republic of Korea
| |
Collapse
|
2
|
Hyun JH, Woo IK, Kim KT, Park YS, Kang DK, Lee NK, Paik HD. Heat-Treated Paraprobiotic Latilactobacillus sakei KU15041 and Latilactobacillus curvatus KU15003 Show an Antioxidant and Immunostimulatory Effect. J Microbiol Biotechnol 2024; 34:358-366. [PMID: 37997261 PMCID: PMC10940752 DOI: 10.4014/jmb.2309.09007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 11/25/2023]
Abstract
The lactic acid bacteria, including Latilactobacillus sakei and Latilactobacillus curvatus, have been widely studied for their preventive and therapeutic effects. In this study, the underlying mechanism of action for the antioxidant and immunostimulatory effects of two strains of heat-treated paraprobiotics was examined. Heat-treated L. sakei KU15041 and L. curvatus KU15003 showed higher radical scavenging activity in both the 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assays than the commercial probiotic strain LGG. In addition, treatment with these two strains exhibited immunostimulatory effects in RAW 264.7 macrophages, with L. curvatus KU15003 showing a slightly higher effect. Additionally, they promoted phagocytosis and NO production in RAW 264.7 cells without any cytotoxicity. Moreover, the expression of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 was upregulated. These strains resulted in an increased expression of inducible nitric oxide synthase and cyclooxygenase-2. Moreover, the nuclear factor-κB and mitogen-activated protein kinase signaling pathways were stimulated by these strains. These findings suggest the potential of using L. sakei KU15041 and L. curvatus KU15003 in food or by themselves as probiotics with antioxidant and immune-enhancing properties.
Collapse
Affiliation(s)
- Jun-Hyun Hyun
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Im-Kyung Woo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Kee-Tae Kim
- Research Institute, WithBio Inc., Seoul 05029, Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Yang H, Wu Y, Zhang C, Wu W, Lyu L, Li W. Comprehensive resistance evaluation of 15 blueberry cultivars under high soil pH stress based on growth phenotype and physiological traits. FRONTIERS IN PLANT SCIENCE 2022; 13:1072621. [PMID: 36570888 PMCID: PMC9780598 DOI: 10.3389/fpls.2022.1072621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
High soil pH is one of the main abiotic factors that negatively affects blueberry growth and cultivation. However, no comprehensive evaluation of the high soil pH tolerance of different blueberry cultivars has been conducted. Herein, 16 phenotypic and physiological indices of 15 blueberry cultivars were measured through pot experiments, and the high-pH soil tolerance coefficient (HSTC) was calculated based on these indices to comprehensively evaluate the high-soil-pH tolerance of plants. The results demonstrated that high soil pH stress inhibited blueberry 77.growth, and MDA, soluble sugar (SS), and soluble protein (SP) levels increased in leaves. Moreover, in all cultivars, CAT activity in the antioxidant system was enhanced, whereas SOD activity was reduced, and the relative expression levels of the antioxidant enzyme genes SOD and CAT showed similar changes. In addition, the leaf chlorophyll relative content (SPAD), net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs) decreased, while changes in the intercellular CO2 concentration (Ci) were noted in different cultivars. Finally, according to the comprehensive evaluation value D obtained from the combination of principal component analysis (PCA) and membership function (MF), the 15 blueberry cultivars can be divided into 4 categories: high soil pH-tolerant type ['Briteblue' (highest D value 0.815)], intermediate tolerance type ('Zhaixuan 9', 'Zhaixuan 7', 'Emerald', 'Primadonna', 'Powderblue' and 'Chandler'), low high soil pH-tolerant type ('Brightwell', 'Gardenblue', 'Plolific' and 'Sharpblue') and high soil pH-sensitive type ['Legacy', 'Bluegold', 'Baldwin' and 'Anna' (lowest D value 0.166)]. Stepwise linear regression analysis revealed that plant height, SS, E, leaf length, Ci, SOD, and SPAD could be used to predict and evaluate the high soil pH tolerance of blueberry cultivars.
Collapse
Affiliation(s)
- Hao Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Chunhong Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
Antioxidant Effect via Bioconversion of Isoflavonoid in Astragalus membranaceus Fermented by Lactiplantibacillus plantarum MG5276 In Vitro and In Vivo. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8010034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In this study, the antioxidant mechanism of Astragalus membranaceus fermented by Lactiplantibacillusplantarum MG5276 (MG5276F-AM) was evaluated in HepG2 cells and in an animal model. HPLC analysis was performed to confirm the bioconversion of the bioactive compounds in A. membranaceus by fermentation. Calycosin and formononetin, which were not detected before fermentation (NF-AM), were detected after fermentation (MG5276F-AM), and its glycoside was not observed in MG5276F-AM. In HepG2 cells, MG5276F-AM alleviated H2O2-induced oxidative stress by mediating lipid peroxidation and glutathione levels, and upregulated antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx). In the tBHP-injected mouse model, administration of MG5276F-AM reduced hepatic aspartate transaminase, alanine transaminase, and lipid peroxidation. MG5276F-AM also modulated antioxidant enzymes as well as HepG2 cells. Thus, fermentation of A. membranaceus with L. plantarum MG5276 elevated the isoflavonoid aglycone by hydrolysis of its glycosides, and this bioconversion enhanced antioxidant activity both in vitro and in vivo.
Collapse
|
5
|
Wang Q, Zhi T, Han P, Li S, Xia J, Chen Z, Wang C, Wu Y, Jia Y, Ma A. Potential anti-inflammatory activity of walnut protein derived peptide leucine-proline-phenylalanine in lipopolysaccharides-irritated RAW264.7 cells. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1982870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qinghua Wang
- School of Food and Health, Beijing Technology and Business University, Beijing, People’s Republic of China
- Hebei Yangyuan ZhiHui Beverage Co., Ltd., Hengshui, People’s Republic of China
| | - Tongxin Zhi
- School of Food and Health, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Panpan Han
- School of Food and Health, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Junxia Xia
- Hebei Yangyuan ZhiHui Beverage Co., Ltd., Hengshui, People’s Republic of China
- Institution of Chinese Walnut Industry, Hengshui, People’s Republic of China
- Hebei Key Laboratory of Walnut Nutritional Function and Processing Technology, Hengshui, People’s Republic of China
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Chong Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| | - Yongling Wu
- School of Food and Health, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing, People’s Republic of China
- Institution of Chinese Walnut Industry, Hengshui, People’s Republic of China
| |
Collapse
|