1
|
Wystalska K, Kowalczyk M, Kamizela T, Worwąg M, Zabochnicka M. Properties and Possibilities of Using Biochar Composites Made on the Basis of Biomass and Waste Residues Ferryferrohydrosol Sorbent. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2646. [PMID: 38893909 PMCID: PMC11173671 DOI: 10.3390/ma17112646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Biochar enriched with metals has an increased potential for sorption of organic and inorganic pollutants. The aim of the research was to identify the possibility of using biochar composites produced on the basis of waste plant biomass and waste FFH (ferryferrohydrosol) containing iron atoms, after CO2 capture. The composites were produced in a one-stage or two-stage pyrolysis process. Their selected properties were determined as follows: pH, ash content, C, H, N, O, specific surface area, microstructure and the presence of surface functional groups. The produced biochar and composites had different properties resulting from the production method and the additive used. The results of experiments on the removal of methylene blue (MB) from solutions allowed us to rank the adsorbents used according to the maximum dye removal value achieved as follows: BC1 (94.99%), B (84.61%), BC2 (84.09%), BC3 (83.23%) and BC4 (83.23%). In terms of maximum amoxicillin removal efficiency, the ranking is as follows: BC1 (55.49%), BC3 (23.51%), BC2 (18.13%), B (13.50%) and BC4 (5.98%). The maximum efficiency of diclofenac removal was demonstrated by adsorbents BC1 (98.71), BC3 (87.08%), BC4 (74.20%), B (36.70%) and BC2 (30.40%). The most effective removal of metals Zn, Pb and Cd from the solution was demonstrated by BC1 and BC3 composites. The final concentration of the tested metals after sorption using these composites was less than 1% of the initial concentration. The highest increase in biomass on prepared substrates was recorded for the BC5 composite. It was higher by 90% and 54% (for doses of 30 g and 15 g, respectively) in relation to the biomass growth in the soil without additives. The BC1 composite can be used in pollutant sorption processes. However, BC5 has great potential as a soil additive in crop yield and plant growth.
Collapse
Affiliation(s)
- Katarzyna Wystalska
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka 60A, 42-200 Częstochowa, Poland; (M.K.); (T.K.); (M.W.); (M.Z.)
| | | | | | | | | |
Collapse
|
2
|
Švábová M, Bičáková O, Vorokhta M. Biochar as an effective material for acetone sorption and the effect of surface area on the mechanism of sorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119205. [PMID: 37832288 DOI: 10.1016/j.jenvman.2023.119205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
Walnut shells and apricot pits were used to produce non-activated, air-activated and steam-activated biochar. The specific surface area decreased in the order steam-activated (500-727 m 2.g-1), air-activated (59-514 m2.g-1) and non-activated biochars (1.71-236 m2.g-1). The results indicated that water steam created a multi-layer block structure with a well-developed porous structure, especially at 900 °C, while activation with air resulted in a more fragmented structure with a higher amount of coarse pores, leading to lower specific surface values. Acetone sorption experiments were performed in order to determine the acetone sorption capacity and to evaluate the acetone sorption kinetics of the biochars, as well as to identify the possible mechanism of sorption. The maximum sorption capacity estimated from the adsorption isotherms up to a relative pressure of 0.95 ranged from 60.3 to 277.3 mg g-1, and was highest in the steam-activated biochar with the largest surface area. The acetone adsorption isotherms were fitted with different adsorption models, where the Fritz-Schlunder model showed the best fitting results. The adsorption kinetics was evaluated using two kinetics models - pseudo first order and pseudo second order. The results indicated that the biochars with a large surface area exhibited physical sorption through van der Waals forces as the dominant mechanism, while acetone sorption on samples with a smaller surface area can be attributed to a mixed dual sorption mechanism, which combines physical sorption and chemisorption on oxygen functional groups. The perfect reusability of the biochars was confirmed by four consecutive adsorption-desorption cycles.
Collapse
Affiliation(s)
- Martina Švábová
- Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V Holešovičkách 94/41, 18209, Prague 8, Czech Republic.
| | - Olga Bičáková
- Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V Holešovičkách 94/41, 18209, Prague 8, Czech Republic
| | - Maryna Vorokhta
- Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V Holešovičkách 94/41, 18209, Prague 8, Czech Republic
| |
Collapse
|
3
|
Wystalska K, Malińska K, Sobik-Szołtysek J, Dróżdż D, Meers E. Properties of Poultry-Manure-Derived Biochar for Peat Substitution in Growing Media. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6392. [PMID: 37834529 PMCID: PMC10573505 DOI: 10.3390/ma16196392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Peat is considered a contentious input in horticulture. Therefore, there is a search for suitable alternatives with similar properties that can be used for partial or complete peat substitution in growing media. Poultry-manure-derived biochar (PMB) is considered such an alternative. This study aimed at determining the properties of PMBs obtained through pyrolysis at selected temperatures and assessing their potentials to substitute peat in growing media based on the selected properties. The scope included the laboratory-scale pyrolysis of poultry manure at the temperatures of 425-725 °C; the determination of selected physico-chemical and physical properties of the obtained biochars, including the contaminants; and the assessment of the potentials of produced biochars to be used as peat substitutes. PMBs contained less than 36% of total organic carbon (TOC). The contents of P and K were about 2.03-3.91% and 2.74-5.13%, respectively. PMBs did not retain N. They can be safely used as the concentrations of heavy metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinatd biphenyls (PCBs), dioxins, and furans are within the permissible values (except for Cr). Due to high pH (9.24-12.35), they can have a liming effect. High water holding capacity (WHC) in the range of 158-232% w/w could allow for the maintenance of moisture in the growing media. PMBs obtained at 525 °C, 625 °C, and 725 °C showed required stability (H/Corg < 0.7).
Collapse
Affiliation(s)
- Katarzyna Wystalska
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka 60A, 42-200 Częstochowa, Poland; (K.W.); (J.S.-S.); (D.D.)
| | - Krystyna Malińska
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka 60A, 42-200 Częstochowa, Poland; (K.W.); (J.S.-S.); (D.D.)
| | - Jolanta Sobik-Szołtysek
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka 60A, 42-200 Częstochowa, Poland; (K.W.); (J.S.-S.); (D.D.)
| | - Danuta Dróżdż
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka 60A, 42-200 Częstochowa, Poland; (K.W.); (J.S.-S.); (D.D.)
| | - Erik Meers
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| |
Collapse
|
4
|
Panomsuwan G, Hussakan C, Kaewtrakulchai N, Techapiesancharoenkij R, Serizawa A, Ishizaki T, Eiad-Ua A. Nitrogen-doped carbon derived from horse manure biomass as a catalyst for the oxygen reduction reaction. RSC Adv 2022; 12:17481-17489. [PMID: 35765431 PMCID: PMC9194922 DOI: 10.1039/d2ra02079c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022] Open
Abstract
A massive amount of animal biomass is generated daily from livestock farms, agriculture, and food industries, causing environmental and ecological problems. The conversion of animal biomass into value-added products has recently gained considerable interest in materials science research. Herein, horse manure (HM) was utilized as a precursor for synthesizing nitrogen-doped carbons (NCs) via hydrothermal ammonia treatment and the post pyrolysis process. The ammonia concentration varied between 0.5, 1.0, and 1.5 M in the hydrothermal process. From the comprehensive characterization results, horse manure-derived nitrogen-doped carbons (HMNCs) exhibited an amorphous phase and a hierarchical nanoporous structure. The specific surface area decreased from 170.1 to 66.6 m2 g-1 as the ammonia concentration increased due to micropore deterioration. The nitrogen content was 0.90 atom% even with no ammonia treatment, indicating self-nitrogen doping. With hydrothermal ammonia treatment, the nitrogen content slightly enhanced up to 1.54 atom%. The electrocatalytic activity for the oxygen reduction reaction (ORR) of HMNCs in an alkaline solution was found to be related to nitrogen doping content and porous structure. The ORR activity of HMNCs mainly proceeded via a combination of two- and four-electron pathways. Although the ORR activity of HMNCs was still not satisfactory and comparable to that of a commercial Pt/carbon catalyst, it showed better long-term durability. The results obtained in this work provide the potential utilization of HM as a precursor for ORR catalysts and other related applications.
Collapse
Affiliation(s)
- Gasidit Panomsuwan
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University Bangkok 10900 Thailand
- International Collaborative Education Program for Materials Technology, Education, and Research (ICE-Matter), ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net), Kasetsart University Bangkok 10900 Thailand
- Special Research Unit for Biomass Conversion Technology for Energy and Environmental Materials, Kasetsart University Bangkok 10900 Thailand
| | - Chadapat Hussakan
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University Bangkok 10900 Thailand
- International Collaborative Education Program for Materials Technology, Education, and Research (ICE-Matter), ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net), Kasetsart University Bangkok 10900 Thailand
| | - Napat Kaewtrakulchai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University Bangkok 10900 Thailand
| | - Ratchatee Techapiesancharoenkij
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University Bangkok 10900 Thailand
- International Collaborative Education Program for Materials Technology, Education, and Research (ICE-Matter), ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net), Kasetsart University Bangkok 10900 Thailand
- Special Research Unit for Biomass Conversion Technology for Energy and Environmental Materials, Kasetsart University Bangkok 10900 Thailand
| | - Ai Serizawa
- Department of Materials Science and Engineering, Faculty of Engineering, Shibaura Institute of Technology Tokyo 135-8548 Japan
| | - Takahiro Ishizaki
- Department of Materials Science and Engineering, Faculty of Engineering, Shibaura Institute of Technology Tokyo 135-8548 Japan
| | - Apiluck Eiad-Ua
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang Bangkok 10520 Thailand
| |
Collapse
|
5
|
Neogi S, Sharma V, Khan N, Chaurasia D, Ahmad A, Chauhan S, Singh A, You S, Pandey A, Bhargava PC. Sustainable biochar: A facile strategy for soil and environmental restoration, energy generation, mitigation of global climate change and circular bioeconomy. CHEMOSPHERE 2022; 293:133474. [PMID: 34979200 DOI: 10.1016/j.chemosphere.2021.133474] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The increasing agro-demands with the burgeoning population lead to the accumulation of lignocellulosic residues. The practice of burning agri-residues has consequences viz. Release of soot and smoke, nutrient depletion, loss of soil microbial diversity, air pollution and hazardous effects on human health. The utilization of agricultural waste as biomass to synthesize biochar and biofuels, is the pertinent approach for attaining sustainable development goals. Biochar contributes in the improvement of soil properties, carbon sequestration, reducing greenhouse gases (GHG) emission, removal of organic and heavy metal pollutants, production of biofuels, synthesis of useful chemicals and building cementitious materials. The biochar characteristics including surface area, porosity and functional groups vary with the type of biomass consumed in pyrolysis and the control of parameters during the process. The major adsorption mechanisms of biochar involve physical-adsorption, ion-exchange interactions, electrostatic attraction, surface complexation and precipitation. The recent trend of engineered biochar can enhance its surface properties, pH buffering capacity and presence of desired functional groups. This review focuses on the contribution of biochar in attaining sustainable development goals. Hence, it provides a thorough understanding of biochar's importance in enhancing soil productivity, bioremediation of environmental pollutants, carbon negative concretes, mitigation of climate change and generation of bioenergy that amplifies circular bioeconomy, and concomitantly facilitates the fulfilment of the United Nation Sustainable Development Goals. The application of biochar as seen is primarily targeting four important SDGs including clean water and sanitation (SGD6), affordable and clean energy (SDG7), responsible consumption and production (SDG12) and climate action (SDG13).
Collapse
Affiliation(s)
- Suvadip Neogi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Vikas Sharma
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Anees Ahmad
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Shraddha Chauhan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ashok Pandey
- Centre for Innovation and Transnational Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.
| |
Collapse
|
6
|
Haider FU, Farooq M, Naveed M, Cheema SA, Ain NU, Salim MA, Liqun C, Mustafa A. Influence of biochar and microorganism co-application on stabilization of cadmium (Cd) and improved maize growth in Cd-contaminated soil. FRONTIERS IN PLANT SCIENCE 2022; 13:983830. [PMID: 36160996 PMCID: PMC9493347 DOI: 10.3389/fpls.2022.983830] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 05/06/2023]
Abstract
Cadmium (Cd) is one the leading environmental contaminants. The Cd toxicity and its potential stabilization strategies have been investigated in the recent years. However, the combined effects of biochar and microorganisms on the adsorption of Cd and maize plant physiology, still remained unclear. Therefore, this experiment was conducted to evaluate the combined effects of biochar (BC) pyrolyzed from (maize-straw, cow-manure, and poultry-manure, and microorganisms [Trichoderma harzianum (fungus) and Bacillus subtilis (bacteria)], on plant nutrient uptake under various Cd-stress levels (0, 10, and 30 ppm). The highest level of Cd stress (30 ppm) caused the highest reduction in maize plant biomass, intercellular CO2, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate as compared to control Cd0 (0 ppm). The sole application of BC and microorganisms significantly improved plant growth, intercellular CO2, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate and caused a significant reduction in root and shoot Cd. However, the co-application of BC and microorganisms was more effective than the sole applications. In this regard, the highest improvement in plant growth and carbon assimilation, and highest reduction in root and shoot Cd was recorded from co-application of cow-manure and combined inoculation of Trichoderma harzianum (fungus) + Bacillus subtilis (bacteria) under Cd stress. However, due to the aging factor and biochar leaching alkalinity, the effectiveness of biochar in removing Cd may diminish over time, necessitating long-term experiments to improve understanding of biochar and microbial efficiency for specific bioremediation aims.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Seeb, Oman
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | | | - Noor ul Ain
- Centre of Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Cai Liqun
| | - Adnan Mustafa
- Faculty of Chemistry, Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czechia
| |
Collapse
|
7
|
Lakshmi D, Akhil D, Kartik A, Gopinath KP, Arun J, Bhatnagar A, Rinklebe J, Kim W, Muthusamy G. Artificial intelligence (AI) applications in adsorption of heavy metals using modified biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149623. [PMID: 34425447 DOI: 10.1016/j.scitotenv.2021.149623] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 05/22/2023]
Abstract
The process of removal of heavy metals is important due to their toxic effects on living organisms and undesirable anthropogenic effects. Conventional methods possess many irreconcilable disadvantages pertaining to cost and efficiency. As a result, the usage of biochar, which is produced as a by-product of biomass pyrolysis, has gained sizable traction in recent times for the removal of heavy metals. This review elucidates some widely recognized harmful heavy metals and their removal using biochar. It also highlights and compares the variety of feedstock available for preparation of biochar, pyrolysis variables involved and efficiency of biochar. Various adsorption kinetics and isotherms are also discussed along with the process of desorption to recycle biochar for reuse as adsorbent. Furthermore, this review elucidates the advancements in remediation of heavy metals using biochar by emphasizing the importance and advantages in the usage of machine learning (ML) and artificial intelligence (AI) for the optimization of adsorption variables and biochar feedstock properties. The usage of AI and ML is cost and time-effective and allows an interdisciplinary approach to remove heavy metals by biochar.
Collapse
Affiliation(s)
- Divya Lakshmi
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110 Chennai, Tamil Nadu, India
| | - Dilipkumar Akhil
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110 Chennai, Tamil Nadu, India
| | - Ashokkumar Kartik
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110 Chennai, Tamil Nadu, India
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110 Chennai, Tamil Nadu, India
| | - Jayaseelan Arun
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600119, Tamil Nadu, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
8
|
Effect of land-use change along altitudinal gradients on soil micronutrients in the mountain ecosystem of Indian (Eastern) Himalaya. Sci Rep 2021; 11:14279. [PMID: 34253779 PMCID: PMC8275570 DOI: 10.1038/s41598-021-93788-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/23/2021] [Indexed: 11/11/2022] Open
Abstract
Management of soil micronutrients for better crop production needs a sound understanding of their status and causes of variability. This is more relevant for acid soils of the mountain ecosystem of Eastern Himalaya (Northeast India). We assessed the status, and the effect of land uses along altitudinal gradients (14 to 4090 masl) on soil properties and micronutrient concentrations (DTPA extractable Fe, Mn, Cu, and Zn) across the region. Soils varied widely in micronutrient concentrations: Fe from 0.665 to 257.1 mg kg−1 while Mn, Cu, and Zn from traces to 93.4, 17.1, and 34.2 mg kg−1, respectively. On conversion of evergreen forests (EF) to upland agriculture (Shifting—SC and Settled—SA) and plantation (PH), Mn, Cu, and Zn concentrations decreased significantly from 30.5, 1.74, and 2.13 mg kg−1 to 6.44–17.8, 0.68–0.81, and 1.06–1.42 mg kg−1, respectively. Grassland (GL) and lowland paddy (LP) had comparable Fe, Mn, and Cu concentrations (except Zn). Degradation of EF to scrubland (SL) recorded the lowest Mn (5.91 mg kg−1), Cu (0.59 mg kg−1), and Zn (0.68 mg kg−1) concentrations. Fe concentration was however increased in degraded SL (+ 73%) over EF (48.7 mg kg−1). The distribution of micronutrients among the land uses was inconsistent and followed the order: (i) Fe: SL > PH > LP > EF > GL > SC > SA, (ii) Mn: EF > GL > LP > PH > SC > SA > SL; (iii) Cu: EF > GL > LP > SC > SA = PH > SL; and (iv) Zn: GL > EF > LP > SC > SA > PH > SL. Four micronutrients responded differently and followed a non-linear, 6th—order polynomial trend along the altitudinal gradients (< 500 to 4100 masl). Peak concentrations of Fe, Mn, and Cu were recorded at 1001–2000 m while Zn was recorded at > 4000 masl. The variability (54–64%) in soil micronutrients was mainly controlled by three key soil properties: acidity, clay, and organic carbon contents. Thus, altitude-specific land-use management holds significance in the distribution of available soil micronutrients in hilly ecosystems.
Collapse
|
9
|
Haider FU, Coulter JA, Cheema SA, Farooq M, Wu J, Zhang R, Shuaijie G, Liqun C. Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112112. [PMID: 33714140 DOI: 10.1016/j.ecoenv.2021.112112] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/13/2021] [Accepted: 02/25/2021] [Indexed: 05/08/2023]
Abstract
Sole biochar addition or microbial inoculation as a soil amendment helps to reduce cadmium (Cd) toxicity in polluted agricultural soils. Yet the synergistic effects of microorganisms and biochar application on Cd absorption and plant productivity remain unclear. Therefore, a pot experiment was conducted to investigate the combined effect of microorganisms (Trichoderma harzianum L. and Bacillus subtilis L.), biochar (maize straw, cow manure, and poultry manure), and Cd (0, 10, and 30 ppm) on plant physiology and growth to test how biochar influences microbial growth and plant nutrient uptake, and how biochar ameliorates under Cd-stressed soil. Results showed that in comparison to non-Cd polluted soil, the highest reduction in chlorophyll content, photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, and intercellular CO2 were observed in Cd2 (30 ppm), which were 9.34%, 22.95%, 40.45%, 29.07%, 20.67%, and 22.55% respectively less than the control Cd0 (0 ppm). Among sole inoculation of microorganisms, highest stomatal conductance, water use efficiency, and intercellular CO2 were recorded with combined inoculation of both microorganisms (M3), which were 5.92%, 7.65%, and 7.28% respectively higher than the control, and reduced the Cd concentration in soil, root, and shoot by 21.34%, 28.36%, and 20.95%, respectively, compared to the control. Similarly, co-application of microorganisms and biochar ameliorated the adverse effect of Cd in soybean as well as significantly improved plant biomass, photosynthetic activity, nutrient contents, and antioxidant enzyme activities, and minimized the production of reactive oxygen species and Cd content in plants. Soil amended with poultry manure biochar had significantly improved the soil organic carbon, total nitrogen, total phosphorous, and available potassium by 43.53%, 36.97%, 22.28%, and 4.24%, respectively, and decreased the concentration of Cd in plant root and shoot by 34.68% and 47.96%, respectively, compared to the control. These findings indicate that the combined use of microorganisms and biochar as an amendment have important synergistic effects not only on the absorption of nutrients but also on the reduction of soybean Cd intake, and improve plant physiology of soybean cultivated in Cd-polluted soils as compared to sole application of microorganisms or biochar.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jeffrey A Coulter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Farooq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Jun Wu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Renzhi Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Guo Shuaijie
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
10
|
Rafiq MK, Bai Y, Aziz R, Rafiq MT, Mašek O, Bachmann RT, Joseph S, Shahbaz M, Qayyum A, Shang Z, Danaee M, Long R. Biochar amendment improves alpine meadows growth and soil health in Tibetan plateau over a three year period. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:135296. [PMID: 31839318 DOI: 10.1016/j.scitotenv.2019.135296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/05/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Previous biochar research has primarily focused on agricultural annual cropping systems with very little attention given to highly fragile, complex and diverse natural alpine grassland ecosystems. The present study investigated the effect of biochar on the growth of alpine meadows and soil health. This study was conducted in the Qinghai Tibetan Plateau over a three year period to investigate the effect of three rice husk biochar application rates alone and combination with high and low NPK fertilizer dosages on alpine meadow productivity, soil microbial diversity as well as pH, carbon and nitrogen content at 0-10 cm and 10-20 cm depth. At the end of the 3rd year soil samples were analysed and assessed by combined analysis of variance. The results showed that biochar application in combination with nitrogen (N), phosphorus (P) and potassium (K) fertilizer had a significant increase in fresh and dry biomass during the second and third year of the study as compared to control and alone biochar application (p ≤ 0.05). Biochar alone and in combination with NPK fertilizer resulted in a significant increase in the soil pH and carbon contents of the soil. XPS results, the SEM imaging and EDS analysis of aged biochar demonstrated that the biochar has undergone complex changes over the 3 years as compared to fresh biochar. This research suggests that biochar has positive effect on alpine meadow growth and soil health and may be an effective tool for alpine meadow restoration.
Collapse
Affiliation(s)
- Muhammad Khalid Rafiq
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, King's Buildings, Edinburgh EH9 3FF, United Kingdom; State Key Laboratory of Grassland Agro-ecosystems, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Rangeland Research Institute, National Agricultural Research Center, Islamabad 44000, Pakistan
| | - Yanfu Bai
- State Key Laboratory of Grassland Agro-ecosystems, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rukhsanda Aziz
- Department of Environmental Science, International Islamic University, Islamabad, 44000 Pakistan
| | - Muhammad Tariq Rafiq
- Center for Interdisciplinary Research in Basic Sciences, International Islamic University, 44000 Islamabad, Pakistan
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, King's Buildings, Edinburgh EH9 3FF, United Kingdom
| | - Robert Thomas Bachmann
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical & Bio-Engineering Technology (UniKL MICET), Lot 1988, Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000 Alor Gajah, Melaka, Malaysia
| | - Stephen Joseph
- School of Materials Science and Engineering, University of NSW., Kensington, NSW Australia 2052
| | - Maqbool Shahbaz
- Rangeland Research Institute, National Agricultural Research Center, Islamabad 44000, Pakistan
| | - Abdul Qayyum
- Department of Agronomy, University of Haripur, 22620, Pakistan
| | - Zhanhuan Shang
- State Key Laboratory of Grassland Agro-ecosystems, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Mahmoud Danaee
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, MALAYSIA
| | - Ruijun Long
- State Key Laboratory of Grassland Agro-ecosystems, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
11
|
Wang Y, Li Y, Zhang Y, Wei W. Effects of macromolecular humic/fulvic acid on Cd(II) adsorption onto reed-derived biochar as compared with tannic acid. Int J Biol Macromol 2019; 134:43-55. [DOI: 10.1016/j.ijbiomac.2019.05.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/05/2019] [Accepted: 05/05/2019] [Indexed: 12/19/2022]
|