1
|
Han H, Hyun CG. Syringetin Promotes Melanogenesis in B16F10 Cells. Int J Mol Sci 2023; 24:9960. [PMID: 37373110 DOI: 10.3390/ijms24129960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Syringetin, an active compound present in red grapes, jambolan fruits, Lysimachia congestiflora, and Vaccinium ashei, is a dimethyl myricetin derivative which contains free hydroxyl groups at the C-2' and C-4' positions in ring B. Recent studies have revealed that syringetin possesses multiple pharmacological properties, such as antitumor, hepatoprotective, antidiabetic, antioxidative, and cytoprotective activities. To date, there has been no attempt to test the action of syringetin on melanogenesis. In addition, the molecular mechanism for the melanogenic effects of syringetin remains largely unknown. In this study, we investigated the effect of syringetin on melanogenesis in a murine melanoma cell line from a C57BL/6J mouse, B16F10. Our results showed that syringetin markedly stimulated melanin production and tyrosinase activity in a concentration-dependent manner in B16F10 cells. We also found that syringetin increased MITF, tyrosinase, TRP-1, and TRP-2 protein expression. Moreover, syringetin inhibited ERK and PI3K/Akt phosphorylation by stimulating p38, JNK, PKA phosphorylation levels, subsequently stimulating MITF and TRP upregulation, resulting in the activation of melanin synthesis. Furthermore, we observed that syringetin activated phosphorylation of GSK3β and β-catenin and reduced the protein level of β-catenin, suggesting that syringetin stimulates melanogenesis through the GSK3β/β-catenin signal pathway. Finally, a primary skin irritation test was conducted on the upper backs of 31 healthy volunteers to determine the irritation or sensitization potential of syringetin for topical application. The results of the test indicated that syringetin did not cause any adverse effects on the skin. Taken together, our findings indicated that syringetin may be an effective pigmentation stimulator for use in cosmetics and in the medical treatment of hypopigmentation disorders.
Collapse
Affiliation(s)
- Hyunju Han
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Chang-Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
2
|
Chmiel M, Stompor-Gorący M. The Spectrum of Pharmacological Actions of Syringetin and Its Natural Derivatives-A Summary Review. Nutrients 2022; 14:nu14235157. [PMID: 36501187 PMCID: PMC9739508 DOI: 10.3390/nu14235157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mono- and poly-O-methylated flavonols and their glycoside derivatives belong to the group of natural plant polyphenols with a wide spectrum of pharmacological activities. These compounds are known for their antioxidant, antimutagenic, hepatoprotective, antidiabetic, and antilipogenic properties. Additionally, they inhibit carcinogenesis and cancer development. Having in mind the multidirectional biological activity of methylated flavonols, we would like to support further study on their health-promoting activities; in this review we summarized the most recent reports on syringetin and some of its structural analogues: laricitrin, ayanin, and isorhamnetin. Natural sources and biological potential of these substances were described based on the latest research papers.
Collapse
|
3
|
From Tradition to Health: Chemical and Bioactive Characterization of Five Traditional Plants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196495. [PMID: 36235035 PMCID: PMC9571014 DOI: 10.3390/molecules27196495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Several scientific studies have been proving the bioactive effects of many aromatic and medicinal plants associated with the presence of a high number of bioactive compounds, namely phenolic compounds. The antioxidant, anti-inflammatory, and antimicrobial capacities of these molecules have aroused high interest in some industrial sectors, including food, pharmaceuticals, and cosmetics. This work aimed to determine the phenolic profiles of the infusions and hydroethanolic extracts of five plants (Carpobrotus edulis, Genista tridentata, Verbascum sinuatum, Cytisus multiflorus, and Calluna vulgaris) that have been employed in many traditional preparations. In addition, the antioxidant, antimicrobial, anti-inflammatory, and anti-tumoral activity of each different preparation was evaluated using in vitro assays. The HPLC-DAD-ESI/MS profile revealed the presence of eighty phenolic compounds, belonging to seven different families of compounds. Regarding antioxidant properties, the hydroethanolic extract of C. edulis showed a potent effect in the TBARS assay (IC50 = 1.20 µg/mL), while G. tridentata hydroethanolic extract achieved better results in the OxHLIA test (IC50 = 76 µg/mL). For cytotoxic and anti-inflammatory results, V. sinuatum infusions stood out significantly, with GI50 = 59.1–92.1 µg/mL and IC50 = 121.1 µg/mL, respectively. Finally, C. edulis hydroethanolic extract displayed the most relevant antibacterial activity, showing MBC values of 0.25–1 mg/mL, while G. tridentata hydroethanolic extract exerted the greatest antifungal effects (MFC of 0.5–1 mg/mL). The results of this study deepen the knowledge of the phenolic profiles and also provide evidence on the bioactive properties of the species selected, which could be considered highly valuable options for research and application in several sectors, namely food, cosmetics, and pharmaceuticals.
Collapse
|
4
|
Differential Flavonoids and Carotenoids Profiles in Grains of Six Poaceae Crops. Foods 2022; 11:foods11142068. [PMID: 35885312 PMCID: PMC9325323 DOI: 10.3390/foods11142068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/12/2022] Open
Abstract
Poaceae practically dominate staple crops for humans. In addition to the issue of sustenance, there is a growing interest in the secondary metabolites of these staple crops and their functions on health. In this study, metabolomic variations were investigated among six important species of Poaceae with a total of 17 cultivars, including wheat, maize, rice, sorghum, foxtail millet, and broomcorn millet. A total of 201 flavonoid metabolites and 29 carotenoid metabolites were identified based on the UPLC-ESI-MS/MS system. Among them, 114, 128, 101, 179, 113, and 92 flavonoids and 12, 22, 17, 15, 21, and 18 carotenoids were found in wheat, maize, rice, sorghum, foxtail millet, and broomcorn millet, respectively. Only 46 flavonoids and 8 carotenoids were shared by the six crops. Crop-specific flavonoids and carotenoids were identified. Flavone, anthocyanins, flavanone and polyphenol were the major metabolite differences, which showed species specificity. The flavonoid content of the grains from 17J1344 (sorghum), QZH and NMB (foxtail millet) and carotenoids from Mo17 (maize) were higher than the other samples. This study provides a better knowledge of the differences in flavonoid and carotenoid metabolites among Poaceae crops, as well as provides a theoretical basis for the identification of functional metabolites in these grains.
Collapse
|
5
|
Bhat BA, Mir WR, Sheikh BA, Rather MA, Dar TUH, Mir MA. In vitro and in silico evaluation of antimicrobial properties of Delphinium cashmerianum L., a medicinal herb growing in Kashmir, India. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115046. [PMID: 35167935 DOI: 10.1016/j.jep.2022.115046] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Microorganisms are developing resistance to synthetic drugs. As a result, the search for novel antimicrobial compounds has become an urgent need. Medicinal plants are commonly used as traditional medicine and Delphinium is one of the prominent genus used in the treatment of several diseases. AIM OF THE STUDY The present study aimed to determine the in vitro and in silico antimicrobial activities of petroleum ether, ethyl acetate and methanol extracts from the leaf samples of plant (Delphinium cashmerianum L.) against various bacterial and fungal strains. MATERIAL AND METHODS Three extracts of Delphinium cashmerianum prepared and 88 bioactive compounds were analyzed through LC-MS data with the vast majority of them having therapeutic applications. These extracts have been screened for the antimicrobial activity against various bacterial (Escherichia coli, Micrococcus luteus, Klebsiella pneumoniae, Streptococcus pneumonia, Haemophilus influenzae, Neisseria mucosa) and fungal (Candida albicans, Candida glabrata, Candida paropsilosis) species through in silico molecular docking approach using autodock vina software, molecular dynamic simulation (MDS), in vitro disc diffusion and broth microdilution method for minimum inhibitory concentration (MIC) evaluation. RESULTS Our results demonstrated that all three extracts were active against the whole set of microorganisms. The ethyl acetate extract was the most active against S.pneumonia, K. pneumoniae and C. albicans with a minimum inhibitory concentration (MIC) value of 6.25, 25 and 50 μg/ml, respectively. The petroleum ether and methanol extracts were active against S.pneumonia and N.mucosa with MIC values of 25 and 50 μg/ml. Furthermore, we also performed the in silico virtual screening of all these compounds obtained from LC-MS data analysis against various known drug targets of bacterium and fungi. Upon analysis, we obtained 5 compounds that were efficiently binding to the drug targets. However, after performing exhaustive molecular docking and molecular dynamic simulation (MDS) analysis, it was observed that Daidzein compound is bound to drug targets more efficiently. CONCLUSION The results showed that these plant extracts exhibit antimicrobial activity and ethyl acetate extract proved to exhibit the most effective antibacterial and antifungal properties.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| | - Wajahat Rashid Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| | - Bashir Ahmad Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| | - Muzafar Ahmad Rather
- Plant Biotechnology and Molecular Biology Lab, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India.
| | - Tanver Ul Hassan Dar
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, India.
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
6
|
Xu RX, Ni R, Gao S, Fu J, Xiong RL, Zhu TT, Lou HX, Cheng AX. Molecular cloning and characterization of two distinct caffeoyl CoA O-methyltransferases (CCoAOMTs) from the liverwort Marchantia paleacea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111102. [PMID: 34895539 DOI: 10.1016/j.plantsci.2021.111102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023]
Abstract
Caffeoyl CoA O-methyltransferases (CCoAOMTs) catalyze the transfer of a methyl group from S-adenosylmethionine to a hydroxyl moiety of caffeoyl-CoA as part of the lignin biosynthetic pathway. CCoAOMT-like proteins also catalyze to a variety of flavonoids, coumarins, and phenylpropanoids. Several CCoAOMTs that prefer flavonoids as substrates have been characterized from liverworts. Here, we cloned two CCoAOMT genes, MpalOMT2 and MpalOMT3, from the liverwort Marchantia paleacea. MpalOMT3 has a second ATG codon downstream and the truncated version that lacks 11 amino acids was named MpalOMT3-Tr. Phylogenetic analysis placed MpalOMT3 at the root of the clade with true CCoAOMTs from vascular plants and placed MpalOMT2 between the CCoAOMT and CCoAOMT-like proteins. Recombinant OMTs methylated caffeoyl CoA, phenylpropanoids, and flavonoids containing two or three vicinal hydroxyl groups. MpalOMT3 showed higher catalytic activity for phenylpropanoids than MpalOMT2, but MpalOMT2 showed more promiscuous towards eriodictyol and myricetin. The lignin content in Arabidopsis thaliana stems increased with constitutive heterologous expression of MpalOMT3-Tr, but not MpalOMT2. Subcellular localization experiments indicated that the N-terminus of MpalOMT3 probably served as a chloroplast transit peptide and inhibited its enzymatic activity. Combining the phylogenetic analysis and functional characterization, we conclude that the liverwort M. paleacea harbors true CCoAOMT and CCoAOMT-like genes.
Collapse
Affiliation(s)
- Rui-Xue Xu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Rong Ni
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Shuai Gao
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Jie Fu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Rui-Lin Xiong
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
7
|
Tian Y, Li Q, Rao S, Wang A, Zhang H, Wang L, Li Y, Chen J. Metabolic profiling and gene expression analysis provides insights into flavonoid and anthocyanin metabolism in poplar. TREE PHYSIOLOGY 2021; 41:1046-1064. [PMID: 33169130 DOI: 10.1093/treephys/tpaa152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/27/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Poplar, a woody perennial model, is a common and widespread tree genus. We cultivated two red leaf poplar varieties from bud mutation of Populus sp. Linn. '2025' (also known as Zhonglin 2025, L2025 for shot): Populus deltoides varieties with bright red leaves (LHY) and completely red leaves (QHY). After measuring total contents of flavonoid, anthocyanin, chlorophyll and carotenoid metabolites, a liquid chromatography-electrospray ionization-tandem mass spectrometry system was used for the relative quantification of widely targeted metabolites in leaves of three poplar varieties. A total of 210 flavonoid metabolites (89 flavones, 40 flavonols, 25 flavanones, 18 anthocyanins, 16 isoflavones, 7 dihydroflavonols, 7 chalcones, 5 proanthocyanidins and 3 other flavonoid metabolites) were identified. Compared with L2025, 48 and 8 flavonoids were more and less abundant, respectively, in LHY, whereas 51 and 9 flavonoids were more and less abundant in QHY, respectively. On the basis of a comprehensive analysis of the metabolic network, gene expression levels were analyzed by deep sequencing to screen for potential reference genes for the red leaves. Most phenylpropanoid biosynthesis pathway-involved genes were differentially expressed among the examined varieties. Gene expression analysis also revealed several potential anthocyanin biosynthesis regulators including three MYB genes. The study results provide new insights into poplar flavonoid metabolites and represent the theoretical basis for future studies on leaf coloration in this model tree species.
Collapse
Affiliation(s)
- Yuru Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Qianqian Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shupei Rao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Aike Wang
- Yucheng Institute of Agricultural Sciences, Shangqiu, Henan 476000, China
- Shangqiu Zhongxing Seedling Planting Co., Ltd, Shangqiu, Henan 476000, China
| | - Hechen Zhang
- Henan Academy of Agricultural Sciences, Horticultural Research Institute, Zhengzhou, Henan 450002, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Chinese Academy of Sciences, Institute of Botany, No.20 Nanxincun, Haidian District, Beijing 100093, China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Jinhuan Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
8
|
Tan L, Jin Z, Ge Y, Nadeem H, Cheng Z, Azeem F, Zhan R. Comprehensive ESI-Q TRAP-MS/MS based characterization of metabolome of two mango (Mangifera indica L) cultivars from China. Sci Rep 2020; 10:20017. [PMID: 33208758 PMCID: PMC7676270 DOI: 10.1038/s41598-020-75636-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 09/30/2020] [Indexed: 11/24/2022] Open
Abstract
Polyphenols based bioactive compounds from vegetables and fruits are known for impressive antioxidant activity. Ingestion of these antioxidants may promote human health against cardiovascular diseases and cancer. Mango is a popular tropical fruit with special taste, high nutritional value and health-enhancing metabolites. The aim was to investigate the diversity of phytochemicals between two mango cultivars of china at three stages of fruit maturity. We used ESI-QTRAP-MS/MS approach to characterize comprehensively the metabolome of two mango cultivars named Hongguifei (HGF) and Tainong (TN). HPLC was used to quantify selected catechin based phenolic compounds. Moreover, real-time qPCR was used to study the expression profiles of two key genes (ANR and LAR) involved in proanthocyanidin biosynthesis from catechins and derivatives. A total of 651 metabolites were identified, which include at least 257 phenolic compounds. Higher number of metabolites were differentially modulated in peel as compared to pulp. Overall, the relative quantities of amino acids, carbohydrates, organic acids, and other metabolites were increased in the pulp of TN cultivar. While the contents of phenolic compounds were relatively higher in HGF cultivar. Moreover, HPLC based quantification of catechin and derivatives exhibited cultivar specific variations. The ANR and LAR genes exhibited an opposite expression profile in both cultivars. Current study is the first report of numerous metabolites including catechin-based derivatives in mango fruit. These findings open novel possibilities for the use of mango as a source of bioactive compounds.
Collapse
Affiliation(s)
- Lin Tan
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Zhiqiang Jin
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Yu Ge
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Habibullah Nadeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zhihao Cheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Farrukh Azeem
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Rulin Zhan
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
9
|
Krayem M, Sabbah M, Najem A, Wouters A, Lardon F, Simon S, Sales F, Journe F, Awada A, Ghanem GE, Van Gestel D. The Benefit of Reactivating p53 under MAPK Inhibition on the Efficacy of Radiotherapy in Melanoma. Cancers (Basel) 2019; 11:E1093. [PMID: 31374895 PMCID: PMC6721382 DOI: 10.3390/cancers11081093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy (RT) in patients with melanoma historically showed suboptimal results, because the disease is often radioresistant due to various mechanisms such as scavenging free radicals by thiols, pigmentary machinery, or enhanced DNA repair. However, radiotherapy has been utilized as adjuvant therapy after the complete excision of primary melanoma and lymph nodes to reduce the rate of nodal recurrences in high-risk patients. The resistance of melanoma cells to radiotherapy may also be in relation with the constitutive activation of the MAPK pathway and/or with the inactivation of p53 observed in about 90% of melanomas. In this study, we aimed to assess the potential benefit of adding RT to BRAF-mutated melanoma cells under a combined p53 reactivation and MAPK inhibition in vitro and in a preclinical animal model. We found that the combination of BRAF inhibition (vemurafenib, which completely shuts down the MAPK pathway), together with p53 reactivation (PRIMA-1Met) significantly enhanced the radiosensitivity of BRAF-mutant melanoma cells. This was accompanied by an increase in both p53 expression and activity. Of note, we found that radiation alone markedly promoted both ERK and AKT phosphorylation, thus contributing to radioresistance. The combination of vemurafenib and PRIMA-1Met caused the inactivation of both MAPK kinase and PI3K/AKT pathways. Furthermore, when combined with radiotherapy, it was able to significantly enhance melanoma cell radiosensitivity. Interestingly, in nude mice bearing melanoma xenografts, the latter triple combination had not only a synergistic effect on tumor growth inhibition, but also a potent control on tumor regrowth in all animals after finishing the triple combination therapy. RT alone had only a weak effect. In conclusion, we provide a basis for a strategy that may overcome the radioresistance of BRAF-mutated melanoma cells to radiotherapy. Whether this will translate into a rational to use radiotherapy in the curative setting in BRAF-mutated melanoma patients deserves consideration.
Collapse
Affiliation(s)
- Mohammad Krayem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium.
- Department of Radiation Oncology, Institut Jules Bordet, Université libre de Bruxelles, 1000 Brussels, Belgium.
| | - Malak Sabbah
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium
| | - Ahmad Najem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | - Stephane Simon
- Department of Radiation Oncology, Institut Jules Bordet, Université libre de Bruxelles, 1000 Brussels, Belgium
| | - François Sales
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium
| | - Fabrice Journe
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium
- Department of Human Anatomy and Experimental Oncology, Université de Mons (UMons), Research Institute for Health Sciences and Technology, 7000 Mons, Belgium
| | - Ahmad Awada
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium
- Department of Internal Medicine, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Ghanem E Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Institut Jules Bordet, Université libre de Bruxelles, 1000 Brussels, Belgium
| |
Collapse
|
10
|
Tang JY, Shu CW, Wang CL, Wang SC, Chang MY, Lin LC, Chang HW. Sulfonyl chromen-4-ones (CHW09) shows an additive effect to inhibit cell growth of X-ray irradiated oral cancer cells, involving apoptosis and ROS generation. Int J Radiat Biol 2019; 95:1226-1235. [PMID: 31141432 DOI: 10.1080/09553002.2019.1625490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Purpose: This study evaluates the growth inhibiting potential of our previously described sulfonyl chromen-4-ones (CHW09) compound in X-ray irradiated oral cancer cells. Materials and methods: The growth inhibiting effect and mechanism of combined CHW09/X-ray treatment was examined by analyzing cell viability, cell cycle, apoptosis, reactive oxygen species (ROS), and DNA damage. Results: Individual treatments of CHW09 (10 μg/mL) and X-ray irradiation (12 Gy) slightly decreased cell viability of oral cancer Ca9-22 (87.25% and 86.54%) and CAL 27 (80.00% and 74.01%) cells and normal oral HGF-1 cells (92.76% and 87.56%) at 24 h-MTS assay, respectively. In a combined treatment (CHW09/X-ray), the cell viability in Ca9-22 and CAL 27 cells was significantly decreased to 73.48% and 59.07%, whereas HGF-1 cells maintained 84.97% viability in 24 h-MTS assay. For CAL 27 cells, both 72 h-MTS assay and clonogenic assay showed that CHW09/X-ray resulted in more growth inhibition than other treatments. Intracellular ROS levels of CHW09/X-ray were higher than for CHW09, X-ray and control. CHW09/X-ray and X-ray alone had higher G2/M arrest than the control and CHW09 alone. Moreover, flow cytometry and western blotting showed that CHW09/X-ray treatment caused higher apoptosis levels. Levels of H2A histone family member X (γH2AX)-based DNA damage and 8-oxo-2'-deoxyguanosine (8-oxodG)-oxidative DNA damage of CHW09/X-ray were higher than for CHW09, X-ray and control. Conclusion: CHW09/X-ray treatment had additive growth inhibiting effects against X-ray irradiated oral cancer cells, partly attributing to apoptosis and ROS generation.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan.,Department of Radiation Oncology, Kaohsiung Medical University Hospital , Kaohsiung , Taiwan
| | - Chih-Wen Shu
- School of Medicine for International Students, I-Shou University , Kaohsiung , Taiwan
| | - Chun-Lin Wang
- Food Industry Research and Development Institute, Bioresource Collection and Research Center , Hsinchu , Taiwan
| | - Sheng-Chieh Wang
- PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center , Tainan , Taiwan.,School of Medicine, Taipei Medical University , Taipei , Taiwan.,Chung Hwa University of Medical Technology , Tainan , Taiwan
| | - Hsueh-Wei Chang
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University , Kaohsiung , Taiwan.,Institute of Medical Science and Technology, National Sun Yat-sen University , Kaohsiung , Taiwan.,Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University , Kaohsiung , Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University , Kaohsiung , Taiwan
| |
Collapse
|
11
|
Raeisi F, Shahbazi-Gahrouei D, Raeisi E, Heidarian E. Evaluation of the Radiosensitizing Potency of Bromelain for Radiation Therapy of 4T1 Breast Cancer Cells. JOURNAL OF MEDICAL SIGNALS & SENSORS 2019; 9:68-74. [PMID: 30967992 PMCID: PMC6419564 DOI: 10.4103/jmss.jmss_25_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Breast cancer (BC) remains the leading cause of death in women worldwide, despite the improvements of cancer screening and treatment methods. Recently, development of novel anticancer drugs for the improved prevention and treatment of BC is in the center of research. The anticancer effects of bromelain, as enzyme extract derived from the pineapples, contains chemicals that interfere with the growth of tumor cells. The aim of this study was to evaluate the effect of radiosensitizing of bromelain in 4T1 BC cells. This investigation utilized the 3-(4,5-dimethylthiazol-2-yl)-2,5-dimethyltetrazolium bromide assay to characterize the cytotoxicity of bromelain. Colony formation method was used to establish the truth of the capability of bromelain to make sensitive to radiation therapy. Flowcytometry performed to define the contribution the apoptosis effect to bromelain mediated radiosensitization of 4T1 cells. Bromelain reduced growth and proliferation of 4T1 cell as a concentration-dependence manner significantly. The survival of 4T1 cancer cells was decreased after combined treatment in a number and size-dependent manner with regard to the control group (P < 0.05). Combination of bromelain with radiation does not influence 4T1 cell apoptosis. The results suggested that bromelain can inhibit the growth and proliferation and reduce survival of 4T1 BC cells and might be used as a candidate radiosensitizer in BC patient.
Collapse
Affiliation(s)
- Farzaneh Raeisi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Raeisi
- Department of Medical Physics and Radiology, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
12
|
Analysis of Flavonoid Metabolites in Buckwheat Leaves Using UPLC-ESI-MS/MS. Molecules 2019; 24:molecules24071310. [PMID: 30987158 PMCID: PMC6479795 DOI: 10.3390/molecules24071310] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
Flavonoids from plants are particularly important in our diet. Buckwheat is a special crop that is rich in flavonoids. In this study, four important buckwheat varieties, including one tartary buckwheat and three common buckwheat varieties, were selected as experimental materials. The total flavonoid content of leaves from red-flowered common buckwheat was the highest, followed by tartary buckwheat leaves. A total of 182 flavonoid metabolites (including 53 flavone, 37 flavonol, 32 flavone C-glycosides, 24 flavanone, 18 anthocyanins, 7 isoflavone, 6 flavonolignan, and 5 proanthocyanidins) were identified based on Ultra Performance Liquid Chromatography–Electrospray Ionization–Tandem Mass Spectrometry (UPLC-ESI-MS/MS) system. Through clustering analysis, principal component analysis (PCA), and orthogonal signal correction and partial least squares-discriminant analysis (OPLS-DA), different samples were clearly separated. Considerable differences were observed in the flavonoid metabolites between tartary buckwheat leaves and common buckwheat leaves, and both displayed unique metabolites with important biological functions. This study provides new insights into the differences of flavonoid metabolites between tartary buckwheat and common buckwheat leaves and provides theoretical basis for the sufficient utilization of buckwheat.
Collapse
|