1
|
Mothersill C, Desai R, Seymour CB, Mendonca MS. "Lethal Mutations" a Misnomer or the Start of a Scientific Revolution? Radiat Res 2024; 202:205-214. [PMID: 38918004 DOI: 10.1667/rade-24-00018.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/09/2024] [Indexed: 06/27/2024]
Abstract
The aim of this paper is to review the history surrounding the discovery of lethal mutations, later described as delayed reproductive death. Lethal mutations were suggested very early on, to be due to a generalised instability in a cell population and are considered now to be one of the first demonstrations of "radiation-induced genomic instability" which led later to the establishment of the field of "non-targeted effects." The phenomenon was first described by Seymour et al. in 1986 and was confirmed by Trott's group in Europe and by Little and colleagues in the United States before being extended by Mendonca et al. in 1989, who showed conclusively that the distinguishing feature of lethal mutation occurrence was that it happened suddenly after about 9-10 population doublings in progeny which had survived the original dose of ionizing radiation. However, many authors then suggested that in fact, lethal mutations were implicit in the original experiments by Puck and Marcus in 1956 and were described in the extensive work by Sinclair in 1964, who followed clonal progeny for up to a year after irradiation and described "small colony formation" as a persistent consequence of ionizing radiation exposure. In this paper, we examine the history from 1956 to the present using the period from 1986-1989 as an anchor point to reach into the past and to go forward through the evolution of the field of low dose radiobiology where non-targeted effects predominate.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Rhea Desai
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Colin B Seymour
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Marc S Mendonca
- Indiana University School of Medicine, Departments of Radiation Oncology and Medical and Molecular Genetics, Indianapolis, Indiana 46202
| |
Collapse
|
2
|
Mothersill C, Seymour C, Cocchetto A, Williams D. Factors Influencing Effects of Low-dose Radiation Exposure. HEALTH PHYSICS 2024; 126:296-308. [PMID: 38526248 DOI: 10.1097/hp.0000000000001816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
ABSTRACT It is now well accepted that the mechanisms induced by low-dose exposures to ionizing radiation (LDR) are different from those occurring after high-dose exposures. However, the downstream effects of these mechanisms are unclear as are the quantitative relationships between exposure, effect, harm, and risk. In this paper, we will discuss the mechanisms known to be important with an overall emphasis on how so-called "non-targeted effects" (NTE) communicate and coordinate responses to LDR. Targeted deposition of ionizing radiation energy in cells causing DNA damage is still regarded as the dominant trigger leading to all downstream events whether targeted or non-targeted. We regard this as an over-simplification dating back to formal target theory. It ignores that last 100 y of biological research into stress responses and signaling mechanisms in organisms exposed to toxic substances, including ionizing radiation. We will provide evidence for situations where energy deposition in cellular targets alone cannot be plausible as a mechanism for LDR effects. An example is where the energy deposition takes place in an organism not receiving the radiation dose. We will also discuss how effects after LDR depend more on dose rate and radiation quality rather than actual dose, which appears rather irrelevant. Finally, we will use recent evidence from studies of cataract and melanoma induction to suggest that after LDR, post-translational effects, such as protein misfolding or defects in energy metabolism or mitochondrial function, may dominate the etiology and progression of the disease. A focus on such novel pathways may open the way to successful prophylaxis and development of new biomarkers for better risk assessment after low dose exposures.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, 1280 Main St., Hamilton, ON, Canada L8S 4L8
| | - Colin Seymour
- Department of Biology, McMaster University, 1280 Main St., Hamilton, ON, Canada L8S 4L8
| | - Alan Cocchetto
- The National CFIDS Foundation, 285 Beach Ave., Hull, MA 02045
| | - David Williams
- Cambridge University, The Old Schools, Trinity Lane, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
3
|
Matarèse BFE, Rahmoune H, Vo NTK, Seymour CB, Schofield PN, Mothersill C. X-ray-induced bio-acoustic emissions from cultured cells. Int J Radiat Biol 2023:1-6. [PMID: 36512368 DOI: 10.1080/09553002.2023.2158248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE We characterize for the first time the emission of acoustic waves from cultured cells irradiated with X-ray photon radiation. METHODS AND MATERIALS Human cancer cell lines (MCF-7, HL-60) and control cell-free media were exposed to 1 Gy X-ray photons while recording the sound generated before, during and after irradiation using custom large-bandwidth ultrasound transducer. The effects of dose rate and cell viability were investigated. RESULTS We report the first recorded acoustic signals captured from a collective pressure wave response to ionizing irradiation in cell culture. The acoustic signal was co-terminous with the radiation pulse, its magnitude was dependent on radiation dose rate, and live and dead cells showed qualitatively and quantitatively different acoustic signal characteristics. The signature of the collective acoustic peaks was temporally wider and with higher acoustic power for irradiated HL-60 than for irradiated MCF-7. CONCLUSIONS We show that X-ray irradiation induces two cultured cancer cell types to emit a characteristic acoustic signal for the duration of the radiation pulse. The rapid decay of the signal excludes acoustic emissions themselves from contributing to the inter-organism bystander signal previously reported in intact animals, but they remain a potential component of the bystander process in tissues and cell cultures. This preliminary study suggests that further work on the potential role of radiation-induced acoustic emission (RIAE) in the inter-cellular bystander effect is merited.
Collapse
Affiliation(s)
- Bruno F E Matarèse
- Department of Hematology, University of Cambridge, Cambridge, UK.,Department of Physics, University of Cambridge, Cambridge, UK
| | - Hassan Rahmoune
- Department of Chemical Engineering and Biotechnology, Cambridge, UK
| | - Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, Canada
| | - Colin B Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| | - Paul N Schofield
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
4
|
Vives I Batlle J, Biermans G, Copplestone D, Kryshev A, Melintescu A, Mothersill C, Sazykina T, Seymour C, Smith K, Wood MD. Towards an ecological modelling approach for assessing ionizing radiation impact on wildlife populations. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:020507. [PMID: 35467551 DOI: 10.1088/1361-6498/ac5dd0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The emphasis of the international system of radiological protection of the environment is to protect populations of flora and fauna. Throughout the MODARIA programmes, the United Nations' International Atomic Energy Agency (IAEA) has facilitated knowledge sharing, data gathering and model development on the effect of radiation on wildlife. We present a summary of the achievements of MODARIA I and II on wildlife dose effect modelling, extending to a new sensitivity analysis and model development to incorporate other stressors. We reviewed evidence on historical doses and transgenerational effects on wildlife from radioactively contaminated areas. We also evaluated chemical population modelling approaches, discussing similarities and differences between chemical and radiological impact assessment in wildlife. We developed population modelling methodologies by sourcing life history and radiosensitivity data and evaluating the available models, leading to the formulation of an ecosystem-based mathematical approach. This resulted in an ecologically relevant conceptual population model, which we used to produce advice on the evaluation of risk criteria used in the radiological protection of the environment and a proposed modelling extension for chemicals. This work seeks to inform stakeholder dialogue on factors influencing wildlife population responses to radiation, including discussions on the ecological relevance of current environmental protection criteria. The area of assessment of radiation effects in wildlife is still developing with underlying data and models continuing to be improved. IAEA's ongoing support to facilitate the sharing of new knowledge, models and approaches to Member States is highlighted, and we give suggestions for future developments in this regard.
Collapse
Affiliation(s)
- J Vives I Batlle
- Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, Mol, 2400, Belgium
| | - G Biermans
- Federal Agency for Nuclear Control, Rue Ravensteinstraat 36, Brussels, 1000, Belgium
| | - D Copplestone
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - A Kryshev
- Research and Production Association 'Typhoon', 4 Pobedy Str., Obninsk, Kaluga Region 249038, Russia
| | - A Melintescu
- Horia Hulubei National Institute of Physics & Nuclear Engineering, Bucharest - Magurele, Romania
| | - C Mothersill
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - T Sazykina
- Research and Production Association 'Typhoon', 4 Pobedy Str., Obninsk, Kaluga Region 249038, Russia
| | - C Seymour
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - K Smith
- RadEcol Consulting Ltd, 5 The Chambers, Vineyard, Abingdon OX14 3PX, United Kingdom
| | - M D Wood
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, United Kingdom
| |
Collapse
|
5
|
Mothersill C, Seymour C. Low dose radiation mechanisms: The certainty of uncertainty. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503451. [PMID: 35483782 DOI: 10.1016/j.mrgentox.2022.503451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
This paper reviews the current understanding of low dose radiobiology, and how it has evolved from classical target theory. It highlights the uncertainty around low dose effects, which is due in part to the complexity of "context" surrounding the ultimate expression of biological effects following low dose exposure. The paper makes special reference to low dose non-targeted effects which, are currently ignored in radiation protection and population level risk assessment, because it is unclear what they mean for risk. The view of the authors is that this "lack of clarity" about what the effects mean is precisely the point. It indicates the uncertainty of outcomes after a given exposure. The uncertainty stems from multiple outcome options resulting from the intrinsic uncertainty of the stochastic interaction of low dose radiation with matter. This uncertainty should be embraced rather than eschewed. The impacts of the uncertainties identified in this paper is explored and an approach to quantifying mutation probability in relation to dose is presented.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
6
|
Mothersill C, Seymour C. Current Opinion in Toxicology "Hormesis and Dose-Response 2022” Title: Radiation hormesis and dose response: are our current concepts meaningful or useful? CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Kugathasan T, Mothersill C. Radiobiological and social considerations following a radiological terrorist attack; mechanisms, detection and mitigation: review of new research developments. Int J Radiat Biol 2021; 98:855-864. [PMID: 34644238 DOI: 10.1080/09553002.2021.1988180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE This review focuses on recent research in understanding the different aspects of what society should expect from a radiological attack. Although some scenarios of a radiologic event can be impossible to be prepared for, the effort put toward educating and better preparing for these types of events can help minimize some of the issues. The different areas discussed in this review include radioisotopes of concern, detection of radiation dose, biological effects of ionizing radiation exposures, low dose effects, targeted and non-targeted effects (NTE), psychological effects, mitigations, with a brief mention of other considerations such as medical preparedness, communication, policy implications and ethical issues. This review also discusses solutions to rectify the issues faced at hand that may come up in the event of a radiologic terrorist attack. CONCLUSIONS A review of recent work in the area shows that a multi-layered and interdisciplinary approach is needed to prepare for a radiological terrorist attack. As well as medical preparedness, the approach needs to include sociological and psychological planning as well as an understanding of ethical issues. Since the likely 'dirty bomb' scenarios may involve low dose exposures to high numbers of people, a much better theoretical and practical understanding of low dose radiobiology and the development of robust low dose exposure biomarkers is needed as part of an integrated plan.
Collapse
Affiliation(s)
- Tanya Kugathasan
- Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | | |
Collapse
|
8
|
Howe O, Lyng FM, Mothersill C. Women's contributions to radiobiology in Ireland; from small beginnings…. Int J Radiat Biol 2021; 98:331-340. [PMID: 34010091 DOI: 10.1080/09553002.2021.1931529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To describe the contribution of women radiobiologists in Ireland to the development of the discipline internationally and at home and to discuss the history of radiobiology in Ireland to date. This parallels the history of the evolution of a small radiobiology group in Kevin Street, Dublin Institute of Technology (DIT) which was formerly part of the City of Dublin Vocational Education Committee. There followed years of development first as a radiobiological research center which evolved in the FOCAS Research Institute now embedded within Technological University Dublin (TU Dublin). CONCLUSIONS Over the last 45 years, the women of the Radiation and Environmental Science Centre (RESC) contributed to the major paradigm shift in low dose radiobiology contributing exciting new research concerning non-targeted effects, including discovery of lethal mutations, medium transfer bystander mechanisms, and signaling pathways. They also developed translational research using human explant culture systems with unique immunocytochemical methods and more recently evolved to molecular and spectroscopic analysis of clinical samples. The RESC also developed unique in vitro research methods into effects of radiation on non-human species of concern in ecosystems.
Collapse
Affiliation(s)
- Orla Howe
- School of Biological and Health Sciences, Technological University Dublin, Dublin, Ireland.,Radiation and Environmental Science Centre, FOCAS Research Institute, Dublin, Ireland
| | - Fiona M Lyng
- Radiation and Environmental Science Centre, FOCAS Research Institute, Dublin, Ireland.,School of Physics & Clinical & Optometric Sciences, Technological University Dublin, Dublin, Ireland
| | - Carmel Mothersill
- Radiation and Environmental Science Centre, FOCAS Research Institute, Dublin, Ireland.,Department of Biology, Life Sciences building, McMaster University, Hamilton, Canada
| |
Collapse
|
9
|
Matarèse BFE, Lad J, Seymour C, Schofield PN, Mothersill C. Bio-acoustic signaling; exploring the potential of sound as a mediator of low-dose radiation and stress responses in the environment. Int J Radiat Biol 2020; 98:1083-1097. [DOI: 10.1080/09553002.2020.1834162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bruno F. E. Matarèse
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Physics, University of Cambridge, Cambridge, UK
| | - Jigar Lad
- Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| | - Paul N. Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
10
|
Vo NTK. The sine qua non of the fish invitrome today and tomorrow in environmental radiobiology. Int J Radiat Biol 2020; 98:1025-1033. [PMID: 32816609 DOI: 10.1080/09553002.2020.1812761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Fish cell lines, collectively referred to as the fish invitrome, are useful diagnostic tools to study radiation impacts on aquatic health and elucidate radiation mechanisms in fish. This paper will highlight the advantages, discuss the challenges, and propose possible future directions for uses of the fish invitrome in the field of environmental radiobiology. The fish invitrome contains at least 714 fish cell lines. However, only a few of these cell lines have been used to study radiation biology in fish and they represent only 10 fish species. The fish invitrome is clearly not yet explored for its full potential in radiation biology. Evidence suggests that they are useful and, in some cases, irreplaceable in making underlying theories and fundamental concepts in radiation responses in fish. The debate of whether environmental radiation is harmful, presents risks, has no effect on health, or is beneficial is on-going and is one that fish cell lines can help address in a time-effective fashion. Any information obtained with fish cell lines is useful in the framework of environment radiation risk assessments. Radiation threats to aquatic health will continue due to the very likely rise of nuclear energy and medicine in the future. The fish invitrome, in theory, lives forever and can meet new challenges at any given time to provide diagnostic risk analyses pertaining to aquatic health and environmental radiation protection.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
11
|
Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int J Mol Sci 2020; 21:ijms21175993. [PMID: 32825382 PMCID: PMC7503247 DOI: 10.3390/ijms21175993] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
The present system of radiation protection assumes that exposure at low doses and/or low dose-rates leads to health risks linearly related to the dose. They are evaluated by a combination of epidemiological data and radiobiological models. The latter imply that radiation induces deleterious effects via genetic mutation caused by DNA damage with a linear dose-dependence. This picture is challenged by the observation of radiation-induced epigenetic effects (changes in gene expression without altering the DNA sequence) and of non-linear responses, such as non-targeted and adaptive responses, that in turn can be controlled by gene expression networks. Here, we review important aspects of the biological response to ionizing radiation in which epigenetic mechanisms are, or could be, involved, focusing on the possible implications to the low dose issue in radiation protection. We examine in particular radiation-induced cancer, non-cancer diseases and transgenerational (hereditary) effects. We conclude that more realistic models of radiation-induced cancer should include epigenetic contribution, particularly in the initiation and progression phases, while the impact on hereditary risk evaluation is expected to be low. Epigenetic effects are also relevant in the dispute about possible "beneficial" effects at low dose and/or low dose-rate exposures, including those given by the natural background radiation.
Collapse
|
12
|
Mothersill CE, Oughton DH, Schofield PN, Abend M, Adam-Guillermin C, Ariyoshi K, Beresford NA, Bonisoli-Alquati A, Cohen J, Dubrova Y, Geras’kin SA, Hevrøy TH, Higley KA, Horemans N, Jha AN, Kapustka LA, Kiang JG, Madas BG, Powathil G, Sarapultseva EI, Seymour CB, Vo NTK, Wood MD. From tangled banks to toxic bunnies; a reflection on the issues involved in developing an ecosystem approach for environmental radiation protection. Int J Radiat Biol 2020; 98:1185-1200. [DOI: 10.1080/09553002.2020.1793022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Paul N. Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Kentaro Ariyoshi
- Integrated Center for Science and Humanities, Fukushima Medical University, Fukushima City, Japan
| | | | | | - Jason Cohen
- Department of Biology and Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - Yuri Dubrova
- Department of Genetics, University of Leicester, Leicester, UK
| | | | | | - Kathryn A. Higley
- School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Awadhesh N. Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | | | - Juliann G. Kiang
- Armed Forces Radiobiology Research Institute, Uniformed services University of the Health Sciences, Bethesda, MD, USA
| | - Balázs G. Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary
| | - Gibin Powathil
- Department of Mathematics, Computational Foundry, Swansea University, Swansea, UK
| | | | | | - Nguyen T. K. Vo
- Department of Biology and Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - Michael D. Wood
- School of Science, Engineering & Environment, University of Salford, Salford, UK
| |
Collapse
|
13
|
Hamada N, Mothersill CE, Iliakis G. Preface to the IJRB 60th anniversary special issue "back to our future". Int J Radiat Biol 2019; 95:799-801. [PMID: 31156009 DOI: 10.1080/09553002.2019.1627113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nobuyuki Hamada
- a Radiation Safety Research Center, Nuclear Technology Research Laboratory , Central Research Institute of Electric Power Industry (CRIEPI) , Tokyo 201-8511 , Japan
| | | | - George Iliakis
- c Institute of Medical Radiation Biology , University of Duisburg-Essen Medical School , Essen , Germany
| |
Collapse
|