1
|
Perez AS, Inada NM, Mezzacappo NF, Vollet-Filho JD, Bagnato VS. Microwave radiation and thermal effects on the bioenergetics of isolated mitochondria. Int J Radiat Biol 2024; 100:1093-1103. [PMID: 38843455 DOI: 10.1080/09553002.2024.2348073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/22/2024] [Indexed: 07/02/2024]
Abstract
AIMS This study proposes to investigate the effects of microwave radiation and its thermal effects, compared to thermal effects alone, on the bioenergetics of mitochondria isolated from mouse liver. METHODS The main parameters investigated in this study are mitochondrial respiration (coupled states: S3 and S4; uncoupled state), using a high-resolution respirometer, and swelling, using a spectrophotometer. RESULTS Mitochondria irradiated at 2.45 GHz microwave with doses 0.085, 0.113 and 0.141 kJ/g, presented a decrease in S3 and uncoupled state, but an increase in S4. Conversely, mitochondria thermally treated at 40, 44 and 50 °C presented an increasing in S3 and S4, while uncoupled state was unaltered. Mitochondrial swelling increases as a function of the dose or temperature, indicating membrane damages in both cases. CONCLUSION Microwave radiation and thermal effect alone indicated different bioenergetics mitochondria response. These results imply that the effects due to microwave in medical treatment are not exclusively due to the increase in temperature, but a combination of electromagnetic and thermal effects.
Collapse
Affiliation(s)
- Aline S Perez
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
- Institute of Physics, University of Sao Paulo, Sao Paulo, Brazil
| | - Natalia M Inada
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
| | | | - Jose D Vollet-Filho
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
| | - Vanderlei S Bagnato
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
2
|
D’Apolito E, Sisalli MJ, Tufano M, Annunziato L, Scorziello A. Oxidative Metabolism in Brain Ischemia and Preconditioning: Two Sides of the Same Coin. Antioxidants (Basel) 2024; 13:547. [PMID: 38790652 PMCID: PMC11117774 DOI: 10.3390/antiox13050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Brain ischemia is one of the major causes of chronic disability and death worldwide. It is related to insufficient blood supply to cerebral tissue, which induces irreversible or reversible intracellular effects depending on the time and intensity of the ischemic event. Indeed, neuronal function may be restored in some conditions, such as transient ischemic attack (TIA), which may be responsible for protecting against a subsequent lethal ischemic insult. It is well known that the brain requires high levels of oxygen and glucose to ensure cellular metabolism and energy production and that damage caused by oxygen impairment is tightly related to the brain's low antioxidant capacity. Oxygen is a key player in mitochondrial oxidative phosphorylation (OXPHOS), during which reactive oxygen species (ROS) synthesis can occur as a physiological side-product of the process. Indeed, besides producing adenosine triphosphate (ATP) under normal physiological conditions, mitochondria are the primary source of ROS within the cell. This is because, in 0.2-2% of cases, the escape of electrons from complex I (NADPH-dehydrogenase) and III of the electron transport chain occurring in mitochondria during ATP synthesis leads to the production of the superoxide radical anion (O2•-), which exerts detrimental intracellular effects owing to its high molecular instability. Along with ROS, reactive nitrosative species (RNS) also contribute to the production of free radicals. When the accumulation of ROS and RNS occurs, it can cause membrane lipid peroxidation and DNA damage. Here, we describe the intracellular pathways activated in brain tissue after a lethal/sub lethal ischemic event like stroke or ischemic tolerance, respectively, highlighting the important role played by oxidative stress and mitochondrial dysfunction in the onset of the two different ischemic conditions.
Collapse
Affiliation(s)
- Elena D’Apolito
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| | - Maria Josè Sisalli
- Department of Translational Medicine, Federico II University of Naples, 80131 Napoli, Italy;
| | - Michele Tufano
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| | | | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| |
Collapse
|
3
|
Qiao L, Dou X, Song X, Chang J, Yi H, Xu C. Targeting mitochondria with antioxidant nutrients for the prevention and treatment of postweaning diarrhea in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:275-287. [PMID: 38033610 PMCID: PMC10685042 DOI: 10.1016/j.aninu.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 12/02/2023]
Abstract
Post-weaning diarrhea (PWD) in piglets poses a significant challenge and presents a grave threat to the global swine industry, resulting in considerable financial losses and compromising the welfare of animals. PWD is commonly associated with gut homeostatic imbalance, including oxidative stress, excessive inflammation, and microbiota dysbiosis. Antibiotic use has historically been a common initiative to combat PWD, but concerns about the development of antibiotic resistance have led to increased interest in alternative strategies. Mitochondria are key players in maintaining cellular homeostasis, and their dysfunction is intricately linked to the onset and progression of PWD. Accumulating evidence suggests that targeting mitochondrial function using antioxidant nutrients, such as vitamins, minerals and polyphenolic compounds, may represent a promising approach for preventing and treating PWD. Moreover, nutrients based on antioxidant strategies have been shown to improve mitochondrial function, restore intestinal redox balance, and reduce oxidative damage, which is a key driver of PWD. The present review begins with an overview of the potential interplay between mitochondria and gut homeostasis in the pathogenesis of PWD in piglets. Subsequently, alternative strategies to prevent and treat PWD using antioxidant nutrients to target mitochondria are described and discussed. Ultimately, we delve into potential limitations and suggest future research directions in this field for further advancement. Overall, targeting mitochondria using antioxidant nutrients may be a promising approach to combat PWD and provides a potential nutrition intervention strategy for regulating gut homeostasis of weaned piglets.
Collapse
Affiliation(s)
- Lei Qiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xina Dou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xiaofan Song
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jiajing Chang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science of Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
4
|
Shelling AN, Ahmed Nasef N. The Role of Lifestyle and Dietary Factors in the Development of Premature Ovarian Insufficiency. Antioxidants (Basel) 2023; 12:1601. [PMID: 37627595 PMCID: PMC10451748 DOI: 10.3390/antiox12081601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a condition that arises from dysfunction or early depletion of the ovarian follicle pool accompanied by an earlier-than-normal loss of fertility in young women. Oxidative stress has been suggested as an important factor in the decline of fertility in women and POI. In this review, we discuss the mechanisms of oxidative stress implicated in ovarian ageing and dysfunction in relation to POI, in particular mitochondrial dysfunction, apoptosis and inflammation. Genetic defects, autoimmunity and chemotherapy, are some of the reviewed hallmarks of POI that can lead to increased oxidative stress. Additionally, we highlight lifestyle factors, including diet, low energy availability and BMI, that can increase the risk of POI. The final section of this review discusses dietary factors associated with POI, including consumption of oily fish, mitochondria nutrient therapy, melatonin, dairy and vitamins that can be targeted as potential interventions, especially for at-risk women and in combination with personalised nutrition. Understanding the impact of lifestyle and its implications for POI and oxidative stress holds great promise in reducing the burden of this condition.
Collapse
Affiliation(s)
- Andrew N. Shelling
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand;
- Centre for Cancer Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Noha Ahmed Nasef
- Riddet Research Institute, Massey University, Palmerston North 4474, New Zealand
- School of Food and Advanced Technology, College of Science, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
5
|
Hamid M, Mansoor S, Amber S, Zahid S. A quantitative meta-analysis of vitamin C in the pathophysiology of Alzheimer’s disease. Front Aging Neurosci 2022; 14:970263. [PMID: 36158537 PMCID: PMC9490219 DOI: 10.3389/fnagi.2022.970263] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose Alzheimer’s disease (AD) is a multifaceted neurodegenerative disorder with many complex pathways feeding into its pathogenesis and progression. Vitamin C, an essential dietary antioxidant, is vital for proper neurological development and maintenance. This meta-analysis and systematic review attempted to define the relationship between vitamin C plasma levels and AD while highlighting the importance and involvement of vitamin C in the pathogenesis of AD. Materials and methods PRISMA guidelines were used to obtain studies quantifying the plasma levels of vitamin C in AD and control subjects. The literature was searched in the online databases PubMed, Google Scholar, and Web of Science. A total of 12 studies were included (n = 1,100) and analyzed using Comprehensive Meta-Analysis 3.0. Results The results show that there is a significant decrease in the plasma vitamin C levels of AD patients as compared to healthy controls (pooled SMD with random-effect model: −1.164, with 95%CI: −1.720 to −0.608, Z = −4.102, p = 0.00) with significant heterogeneity (I2 = 93.218). The sensitivity analysis showed directionally similar results. Egger’s regression test (p = 0.11) and visual inspection of the funnel plot showed no publication bias. Conclusion Based on these studies, it can be deduced that the deficiency of vitamin C is involved in disease progression and supplementation is a plausible preventive and treatment strategy. However, clinical studies are warranted to elucidate its exact mechanistic role in AD pathophysiology and prevention.
Collapse
|
6
|
Chen P, Liu Y, Liu W, Wang Y, Liu Z, Rong M. Impact of High-Altitude Hypoxia on Bone Defect Repair: A Review of Molecular Mechanisms and Therapeutic Implications. Front Med (Lausanne) 2022; 9:842800. [PMID: 35620712 PMCID: PMC9127390 DOI: 10.3389/fmed.2022.842800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
Reaching areas at altitudes over 2,500–3,000 m above sea level has become increasingly common due to commerce, military deployment, tourism, and entertainment. The high-altitude environment exerts systemic effects on humans that represent a series of compensatory reactions and affects the activity of bone cells. Cellular structures closely related to oxygen-sensing produce corresponding functional changes, resulting in decreased tissue vascularization, declined repair ability of bone defects, and longer healing time. This review focuses on the impact of high-altitude hypoxia on bone defect repair and discusses the possible mechanisms related to ion channels, reactive oxygen species production, mitochondrial function, autophagy, and epigenetics. Based on the key pathogenic mechanisms, potential therapeutic strategies have also been suggested. This review contributes novel insights into the mechanisms of abnormal bone defect repair in hypoxic environments, along with therapeutic applications. We aim to provide a foundation for future targeted, personalized, and precise bone regeneration therapies according to the adaptation of patients to high altitudes.
Collapse
Affiliation(s)
- Pei Chen
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yushan Liu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Liu
- Department of Prosthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yarong Wang
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ziyi Liu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingdeng Rong
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Non-thermal plasma inactivation of Salmonella Typhimurium on different matrices and the effect of selected food components on its bactericidal efficacy. Food Res Int 2022; 151:110866. [PMID: 34980403 DOI: 10.1016/j.foodres.2021.110866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022]
Abstract
Non-thermal plasma (NTP) is known as an effective source of a variety of reactive species generated in the gas phase. Nowadays, NTP is gaining increasing interest from the food industry as a microbial inactivation technique. In the present study the effect of inoculation method and matrix on inactivation of Salmonella Typhimurium was examined by treating spread plated agar (2.2 log CFU/sample inactivation by NTP), spot inoculated agar (1.9 log CFU inactivation), glass beads (1.3 log CFU inactivation) and peppercorn (0.2 log CFU inactivation). Furthermore, multiple agar matrices supplemented with low and high concentrations of a certain food component (casein, starch, sunflower oil, vitamin C, sodium pyruvate or grinded peppercorns) were inoculated and treated to determine the effect of those components on NTP efficiency. Although starch, vitamin C and sodium pyruvate had no significant influence on the inactivation degree, the presence of 10% casein (2.1 log CFU/sample less inactivation compared to tryptone soy agar (TSA)), 10% pepper (2.1 log CFU less inactivation) or 1% and 10% sunflower oil (1.6 and 2.1 log CFU less inactivation, respectively) in TSA demonstrated the protective effect of these substances for NTP treatment. These experiments led to the conclusion that low inactivation on produce seemed not to arise from the inoculation method nor from the shape of the produce, but is the result of the food matrix.
Collapse
|
8
|
Potential Effects of Melatonin and Micronutrients on Mitochondrial Dysfunction during a Cytokine Storm Typical of Oxidative/Inflammatory Diseases. Diseases 2021; 9:diseases9020030. [PMID: 33919780 PMCID: PMC8167770 DOI: 10.3390/diseases9020030] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Exaggerated oxidative stress and hyper-inflammation are essential features of oxidative/inflammatory diseases. Simultaneously, both processes may be the cause or consequence of mitochondrial dysfunction, thus establishing a vicious cycle among these three factors. However, several natural substances, including melatonin and micronutrients, may prevent or attenuate mitochondrial damage and may preserve an optimal state of health by managing the general oxidative and inflammatory status. This review aims to describe the crucial role of mitochondria in the development and progression of multiple diseases as well as the close relationship among mitochondrial dysfunction, oxidative stress, and cytokine storm. Likewise, it attempts to summarize the main findings related to the powerful effects of melatonin and some micronutrients (vitamins and minerals), which may be useful (alone or in combination) as therapeutic agents in the treatment of several examples of oxidative/inflammatory pathologies, including sepsis, as well as cardiovascular, renal, neurodegenerative, and metabolic disorders.
Collapse
|
9
|
Fiorani M, Scotti M, Guidarelli A, Burattini S, Falcieri E, Cantoni O. SVCT2-Dependent plasma and mitochondrial membrane transport of ascorbic acid in differentiating myoblasts. Pharmacol Res 2020; 159:105042. [PMID: 32580031 DOI: 10.1016/j.phrs.2020.105042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
The Na+-dependent Vitamin C transporter 2 (SVCT2) is expressed in the plasma and mitochondrial membranes of various cell types. This notion was also established in proliferating C2C12 myoblasts (Mb), in which the transporter was characterised by a high and low affinity in the plasma and mitochondrial membranes, respectively. In addition, the mitochondrial expression of SVCT2 appeared particularly elevated and, consistently, a brief pre-exposure to low concentrations of Ascorbic Acid (AA) abolished mitochondrial superoxide formation selectively induced by the cocktail arsenite/ATP. Early myotubes (Mt) derived from these cells after 4 days of differentiation presented evidence of slightly increased SVCT2 expression, and were characterised by kinetic parameters for plasma membrane transport of AA in line with those detected in Mb. Confocal microscopy studies indicated that the mitochondrial expression of SVCT2 is well preserved in Mt with one or two nuclei, but progressively reduced in Mt with three or more nuclei. Cellular and mitochondrial expression of SVCT2 was found reduced in day 7 Mt. While the uptake studies were compromised by the poor purity of the mitochondrial preparations obtained from day 4 Mt, we nevertheless obtained evidence of poor transport of the vitamin using the same functional studies successfully employed with Mb. Indeed, even greater concentrations of/longer pre-exposure to AA failed to induce scavenging of mitochondrial superoxide in Mt. These results are therefore indicative of a severely reduced mitochondrial uptake of the vitamin in early Mt, attributable to decreased expression as well as impaired activity of mitochondrial SVCT2.
Collapse
Affiliation(s)
- Mara Fiorani
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Maddalena Scotti
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Andrea Guidarelli
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Sabrina Burattini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Elisabetta Falcieri
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Orazio Cantoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy.
| |
Collapse
|