1
|
Yıldırım M, Erşatır M, Değirmenci U, Yigin A, Unal MB, Guldur ME, Demirkol O, Giray ES. Potential Protective Effects of Ruta Chalepensis L. Extracts Against Gentamicin-Induced Nephrotoxicity via Reduction on Apoptotic, DNA Damage and Oxidative Stress Markers in Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1533-1545. [PMID: 35917490 DOI: 10.1080/09603123.2022.2105824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
In this study, the protective effects of Ruta chalepensis L. extracts on the extent of tissue damage in gentamicin-induced nephrotoxicity have been investigated. Ruta chalepensis L. extracts were prepared by subcritical water and ultrasound-assisted organic solvent extraction methods. Protective activity of Ruta chalepensis L. extracts on Gentamicin-induced nephrotoxicity is investigated by apoptotic, DNA damage, oxidative stress markers and evaluating histopathological in kidney tissue of mice. Gentamicin significantly increased Caspase-3 and -8 activities, NO levels, serum creatinine and BUN, while 8-OHdG and MDA levels were significantly decreased with Ruta chalepensis L. extract treatment. In addition, Ruta chalepensis L. extracts treatment significantly increased CAT and SOD activities. Histopathological alterations in Gentamicin group were significantly diminished by application of Ruta chalepensis L. extracts. These results suggest that treatment with Ruta chalepensis L. extracts may ameliorate renal dysfunction and structural damage through the reduction of oxidative stress and apoptosis in the kidney.
Collapse
Affiliation(s)
- Metin Yıldırım
- Department of Pharmacy Services, Vocational School of Health Services, Tarsus University, Mersin, Turkey
- Department of Biopharmaceutics and Pharmaceutical Technology, Pharmacy Faculty, Saarland University, Saarbrücken, Germany
| | - Mehmet Erşatır
- Department of Chemistry, Arts and Science Faculty, Cukurova University, Adana, Turkey
| | - Ulas Değirmenci
- Department of Biochemistry, Pharmacy Faculty, Harran University, Sanlıurfa, Turkey
| | - Akın Yigin
- Department of Genetic, Faculty of Veterinary, Harran University, Sanlıurfa, Turkey
| | - Mustafa Boyraz Unal
- Department of Histology, Faculty of Veterinary, Harran University, Sanlıurfa, Turkey
| | - Muhammet Emin Guldur
- Department of Pathology, Faculty of Medicine, Harran University, Sanlıurfa, Turkey
| | - Onur Demirkol
- Department of Chemistry, Arts and Science Faculty, Cukurova University, Adana, Turkey
| | - Elife Sultan Giray
- Department of Chemistry, Arts and Science Faculty, Cukurova University, Adana, Turkey
| |
Collapse
|
2
|
Barlaz Us S, Buyukakilli B, Balli E, Turkseven CH, Bayrak G. Determination using impedance cardiograph of the chronic effects of different doses of radiotherapy on the cardiovascular system of rats. Int J Radiat Biol 2023; 100:353-370. [PMID: 37922447 DOI: 10.1080/09553002.2023.2280020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/11/2023] [Indexed: 11/05/2023]
Abstract
AIM Cardiac damage caused by radiation in the long term varies according to the radiation dose received by the heart. In this study, it was aimed to evaluate the damage caused by different radiation doses in the heart, together with hemodynamic parameters, immunhistochemistry, and histopathological analyzes for long term. METHOD AND MATERIALS The animals were divided into four groups: The rats in control group (Group 1) were not irradiated; the rats in group 2 were irradiated with 5 Gy; the rats in group 3 were irradiated with 10 Gy and the rats in group 4 were irradiated with 20 Gy. Hemodynamic parameters and indices were determined from the impedance cardiography (ICG) recording in the whole groups before they were irradiated with RT and 180 days after RT. And then, interleukin-1β, interleukin-10, TNF-α, apopthosis were determined in all groups. In addition, histological changes of heart and aorta were evaluated. RESULTS Histopathologic, cytokine and hemodynamic findings supported that cardiac damage increased with increasing radiation dose. CONCLUSION it is important in terms of being an alternative and supportive method to other methods to be able to detect heart diseases caused by RT with the ICG method.
Collapse
Affiliation(s)
- Songul Barlaz Us
- Department of Radiation Oncology, Mersin University, Mersin, Türkiye
| | - Belgin Buyukakilli
- Department of Biophysics, Faculty of Medicine, Mersin University, Mersin, Türkiye
| | - Ebru Balli
- Department of Histology-Embryology, Mersin University, Mersin, Türkiye
| | | | - Gülsen Bayrak
- Department of Histology-Embryology, Usak University, Usak, Türkiye
| |
Collapse
|
3
|
Rihackova E, Rihacek M, Vyskocilova M, Valik D, Elbl L. Revisiting treatment-related cardiotoxicity in patients with malignant lymphoma-a review and prospects for the future. Front Cardiovasc Med 2023; 10:1243531. [PMID: 37711551 PMCID: PMC10499183 DOI: 10.3389/fcvm.2023.1243531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Treatment of malignant lymphoma has for years been represented by many cardiotoxic agents especially anthracyclines, cyclophosphamide, and thoracic irradiation. Although they are in clinical practice for decades, the precise mechanism of cardiotoxicity and effective prevention is still part of the research. At this article we discuss most routinely used anti-cancer drugs in chemotherapeutic regiments for malignant lymphoma with the focus on novel insight on molecular mechanisms of cardiotoxicity. Understanding toxicity at molecular levels may unveil possible targets of cardioprotective supportive therapy or optimization of current therapeutic protocols. Additionally, we review novel specific targeted therapy and its challenges in cardio-oncology.
Collapse
Affiliation(s)
- Eva Rihackova
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine of Masaryk University, Brno, Czech Republic
| | - Michal Rihacek
- Department of Laboratory Medicine, University Hospital Brno, Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Maria Vyskocilova
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine of Masaryk University, Brno, Czech Republic
| | - Dalibor Valik
- Department of Laboratory Medicine, University Hospital Brno, Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lubomir Elbl
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine of Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Zhou W, Zhang ZF. Effect of Shenfu injection combined with rosuvastatin on myocardial injury and incidence of adverse events in coronary heart disease patients undergoing surgical resection for gastric cancer. Shijie Huaren Xiaohua Zazhi 2023; 31:688-694. [DOI: 10.11569/wcjd.v31.i16.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/21/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Surgical resection in gastric cancer patients with coronary artery disease is associated with higher postoperative risk and stress due to the dual effects of coronary artery disease and surgery, which may affect surgical recovery and intraoperative safety. As a kind of Chinese medicinal preparation, Shenfu injection has significant effects in improving cardiac function, reducing cardiac surgical stress, protecting the myocardium, etc. It is expected that perioperative administration of the injection will reduce intraoperative stress, improve surgical safety, and promote postoperative recovery.
AIM To investigate the effect of Shenfu injection combined with resulvastatin in coronary artery disease patients undegoing surgical resection for gastric cancer.
METHODS A total of 86 coronary heart disease patients undergoing surgical resection for gastric cancer at our hospital from July 2018 to July 2021 were selected and divided into a study group and a control group using the random number table method, with 43 cases in each group. Both groups underwent general anesthesia. The control group received rosuvastatin, and the study group received Shenfu injection combined with rosuvastatin. The two groups were compared for postoperative recovery, inflammatory indexes [high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6)], stress response indexes [cortisol (Cor), adrenocorticotrophic hormone (ACTH), and epinephrine (E)], myocardial injury indexes [N-terminal pro-brain natriuretic peptide (NT-proBNP), creatine kinase isoenzyme (CK-MB), and cardiac troponin I (cTn I)] before operation and 12 h and 24 h after operation, cardiac function indexes [left ventricular ejection fraction (LVEF), cardiac index (CI), and cardiac output (CO)] before operation and 3 d after operation, and the incidence of adverse cardiac events 3 d postoperatively.
RESULTS The postoperative hospital stay, time to first defecation, time to first anal exhaust, and time to the recovery of bowel sounds in the study group were all shorter than those in the control group (P < 0.05). The levels of hs-CRP, TNF-α, IL-6, Cor, ACTH, E, CK-MB, and cTnⅠ at 12 h and 24 h after operation were all higher than those before operation in both groups, but they were lower in the study group than in the control group (P < 0.05). The levels of LVEF, CI, and CO at 3 d after operation were higher than those before surgery in both groups, and they were higher in the study group than in the control group (P < 0.05). There was no statistical difference in the incidence of adverse cardiac events between the two groups (P < 0.05).
CONCLUSION Shenfu injection combined with rosuvastatin in coronary heart disease patients undergoing surgical resection for gastric cancer can reduce inflammatory stress, reduce myocardial damage, promote patient recovery, and reduce adverse cardiac events.
Collapse
Affiliation(s)
- Wei Zhou
- Pharmacy Department of The First People's Hospital of Huzhou City, Huzhou 313000, Zhejiang Province, China
| | - Zhan-Feng Zhang
- Pharmacy Department of The First People's Hospital of Huzhou City, Huzhou 313000, Zhejiang Province, China
| |
Collapse
|
5
|
Molecular Influence of the ATM Protein in the Treatment of Human Cells with Different Radioprotective Drugs: Comparisons between Antioxidative and Pro-Episkevic Strategies. Biomolecules 2023; 13:biom13030524. [PMID: 36979459 PMCID: PMC10046588 DOI: 10.3390/biom13030524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
The radiation protection strategy with chemical agents has long been based on an antioxidative approach consisting in reducing the number of radical oxygen and nitrogen species responsible for the formation of the radiation-induced (RI) DNA damage, notably the DNA double-strand breaks (DSB), whose subset participates in the RI lethal effect as unrepairable damage. Conversely, a DSB repair-stimulating strategy that may be called the “pro-episkevic” approach (from the ancient Greek episkeve, meaning repair) can be proposed. The pro-episkevic approach directly derives from a mechanistic model based on the RI nucleoshuttling of the ATM protein (RIANS) and contributes to increase the number of DSB managed by NHEJ, the most predominant DSB repair and signaling pathway in mammalians. Here, three radioresistant and three radiosensitive human fibroblast cell lines were pretreated with antioxidative agents (N-acetylcysteine or amifostine) or to two pro-episkevic agents (zoledronate or pravastatin or both (ZOPRA)) before X-ray irradiation. The fate of the RI DSB was analyzed by using γH2AX and pATM immunofluorescence. While amifostine pretreatment appeared to be the most efficient antioxidative process, ZOPRA shows the most powerful radiation protection, suggesting that the pro-episkevic strategy may be an alternative to the antioxidative one. Additional investigations are needed to develop some new drugs that may elicit both antioxidative and pro-episkevic properties and to quantify the radiation protection action of both types of drugs applied concomitantly.
Collapse
|
6
|
The Effect of Elasticity of Gelatin Nanoparticles on the Interaction with Macrophages. Pharmaceutics 2023; 15:pharmaceutics15010199. [PMID: 36678828 PMCID: PMC9861130 DOI: 10.3390/pharmaceutics15010199] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Gelatin is a biocompatible, biodegradable, cheap, and nontoxic material, which is already used for pharmaceutical applications. Nanoparticles from gelatin (GNPs) are considered a promising delivery system for hydrophilic and macromolecular drugs. Mechanical properties of particles are recognized as an important parameter affecting drug carrier interaction with biological systems. GNPs offer the preparation of particles with different stiffness. GNPs were loaded with Fluorescein isothiocyanate-labeled 150 kDa dextran (FITC-dextran) yielding also different elastic properties. GNPs were visualized using atomic force microscopy (AFM), and force-distance curves from the center of the particles were evaluated for Young's modulus calculation. The prepared GNPs have Young's moduli from 4.12 MPa for soft to 9.8 MPa for stiff particles. Furthermore, cytokine release (IL-6 and TNF-α), cell viability, and cell uptake were determined on macrophage cell lines from mouse (RAW 264.7) and human (dTHP-1 cells, differentiated human monocytic THP-1 cells) origin for soft and stiff GNPs. Both particle types showed good cell compatibility and did not induce IL-6 and TNF-α release from RAW 264.7 and dTHP-1 cells. Stiffer GNPs were internalized into cells faster and to a larger extent.
Collapse
|
7
|
Walls GM, O'Kane R, Ghita M, Kuburas R, McGarry CK, Cole AJ, Jain S, Butterworth KT. Murine models of radiation cardiotoxicity: A systematic review and recommendations for future studies. Radiother Oncol 2022; 173:19-31. [PMID: 35533784 DOI: 10.1016/j.radonc.2022.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE The effects of radiation on the heart are dependent on dose, fractionation, overall treatment time, and pre-existing cardiovascular pathology. Murine models have played a central role in improving our understanding of the radiation response of the heart yet a wide range of exposure parameters have been used. We evaluated the study design of published murine cardiac irradiation experiments to assess gaps in the literature and to suggest guidance for the harmonisation of future study reporting. METHODS AND MATERIALS A systematic review of mouse/rat studies published 1981-2021 that examined the effect of radiation on the heart was performed. The protocol was published on PROSPERO (CRD42021238921) and the findings were reported in accordance with the PRISMA guidance. Risk of bias was assessed using the SYRCLE checklist. RESULTS 159 relevant full-text original articles were reviewed. The heart only was the target volume in 67% of the studies and simulation details were unavailable for 44% studies. Dosimetry methods were reported in 31% studies. The pulmonary effects of whole and partial heart irradiation were reported in 13% studies. Seventy-eight unique dose-fractionation schedules were evaluated. Large heterogeneity was observed in the endpoints measured, and the reporting standards were highly variable. CONCLUSIONS Current murine models of radiation cardiotoxicity cover a wide range of irradiation configurations and latency periods. There is a lack of evidence describing clinically relevant dose-fractionations, circulating biomarkers and radioprotectants. Recommendations for the consistent reporting of methods and results of in vivo cardiac irradiation studies are made to increase their suitability for informing the design of clinical studies.
Collapse
Affiliation(s)
- Gerard M Walls
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland.
| | - Reagan O'Kane
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| | - Mihaela Ghita
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| | - Refik Kuburas
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| | - Conor K McGarry
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland
| | - Aidan J Cole
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland
| | - Suneil Jain
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland
| | - Karl T Butterworth
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| |
Collapse
|
8
|
Wang Z, Jia Z, Zhou Z, Zhao X, Wang F, Zhang X, Tse G, Li G, Liu Y, Liu T. Long-Term Cardiac Damage Associated With Abdominal Irradiation in Mice. Front Pharmacol 2022; 13:850735. [PMID: 35273513 PMCID: PMC8902255 DOI: 10.3389/fphar.2022.850735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Aims: Irradiation is an effective treatment for tumors but has been associated with cardiac dysfunction. However, the precise mechanisms remain incompletely elucidated. This study investigated the long-term cardiac damage associated with abdominal irradiation and explored possible mechanisms. Methods and Results: Wild-type C57BL6/J mice were divided into two groups: untreated controls (Con) and treatment group receiving 15 Gy of abdominal gamma irradiation (AIR). Both groups received normal feeding for 12 months. The AIR group showed reductions in left ventricular ejection fraction (LVEF), fractional shortening (FS), left ventricular end-diastolic internal diameter (LVID; d), left ventricular end-diastolic volume (LV Vol. diastolic volume (LV Vol; d) and mitral transtricuspid flow late diastolic filling velocity (MV A). It also showed increased fibrosis, reduced conduction velocity and increased conduction heterogeneity. Non-targeted metabolomics showed the differential metabolites were mainly from amino acid metabolism. Further KEGG pathway annotation and enrichment analysis revealed that abnormalities in arginine and proline metabolism, lysine degradation, d-arginine and d-ornithine metabolism, alanine, aspartate and glutamate metabolism, and arginine biosynthesis. Conclusion: Abdominal irradiation causes long-term damage to the non-irradiated heart, as reflected by electrical and structural remodeling and mechanical dysfunction associated with abnormal amino acid biosynthesis and metabolism.
Collapse
Affiliation(s)
- Zhaojia Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ziheng Jia
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zandong Zhou
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaotong Zhao
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Center for Cardiovascular Diseases, Research Center of Basic Medical Sciences, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.,Kent and Medway Medical School, Canterbury, United Kingdom
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Fu X, Tang J, Wen P, Huang Z, Najafi M. Redox interactions-induced cardiac toxicity in cancer therapy. Arch Biochem Biophys 2021; 708:108952. [PMID: 34097901 DOI: 10.1016/j.abb.2021.108952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Cancer patients undergoing radiotherapy, chemotherapy, or targeted cancer therapy are exposed to the risk of several side effects because of the heavy production of ROS by ionizing radiation or some chemotherapy drugs. Damages to DNA, mitochondria, membrane and other organelles within normal tissue cells such as cardiomyocytes and endothelial cells lead to the release of some toxins which are associated with triggering inflammatory cells to release several types of cytokines, chemokines, ROS, and RNS. The release of some molecules following radiotherapy or chemotherapy stimulates reduction/oxidation (redox) reactions. Redox reactions cause remarkable changes in the level of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Excessive production of ROS and RNS or suppression of antioxidant defense enzymes leads to damage to critical macromolecules, which may continue for long times. Increased levels of some cytokines and oxidative injury are hallmarks of heart injury following cancer therapy. Redox reactions may be involved in several heart disorders such as fibrosis, cardiomyopathy, and endothelium injury. In the current review, we explain the cellular and molecular mechanisms of redox interactions following radiotherapy, chemotherapy, and targeted cancer therapy. Afterward, we explain the evidence of the involvement of redox reactions in heart diseases.
Collapse
Affiliation(s)
- Xiao Fu
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Juan Tang
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Ping Wen
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Zezhi Huang
- Shaoyang Key Laboratory of Molecular Biology Diagnosis, Shaoyang, 422000, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
10
|
Koriem KM, Selim AY, Mazen RA. N-acetylcysteine-amide improves tissue oxidative stress, DNA damage, and proteins disappearance in methamphetamine toxicity more efficiently than N-acetyl-L-cysteine. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2021. [DOI: 10.1016/j.toxac.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Kura B, Kalocayova B, Szeiffova Bacova B, Fulop M, Sagatova A, Sykora M, Andelova K, Abuawad Z, Slezak J. The effect of selected drugs on the mitigation of myocardial injury caused by gamma radiation. Can J Physiol Pharmacol 2021; 99:80-88. [PMID: 33438486 DOI: 10.1139/cjpp-2020-0323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Radiation damage of healthy tissues represents one of the complications of radiotherapy effectiveness. This study is focused on the screening of potentially effective drugs routinely used in medical practice and involved in the mechanism of radiation injury, namely for radiation-induced production of free radicals in the body. Experiments in rats revealed significant reduction of oxidative stress (malondialdehyde) and inflammatory marker (tumor necrosis factor α) in 10 Gy irradiated groups after administration of atorvastatin and a slight decrease after tadalafil administration, which indicates that one of the possible mechanisms for mitigation of radiation-induced cardiac damage could be the modulation of nitric oxide (NO) in endothelium and phosphodiesterase 5. In addition, miRNAs were analyzed as potential markers and therapeutically effective molecules. Expression of miRNA-21 and miRNA-15b showed the most significant changes after irradiation. Atorvastatin and tadalafil normalized changes of miRNA (miRNA-1, miRNA-15b, miRNA-21) expression levels in irradiated hearts. This screening study concludes that administration of specific drugs could mitigate the negative impact of radiation on the heart, but more detailed experiments oriented to other aspects of drug effectiveness and their exact mechanisms are still needed.
Collapse
Affiliation(s)
- Branislav Kura
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovak Republic
| | - Barbora Kalocayova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic
| | - Marko Fulop
- Slovak Medical University, 831 01, Bratislava, Slovak Republic
| | - Andrea Sagatova
- Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Slovak University of Technology in Bratislava, 812 19 Bratislava, Slovak Republic
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic
| | - Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic
| | - Ziad Abuawad
- Faculty of Public Health, Al-Quds University, Jerusalem, Palestine
| | - Jan Slezak
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic
| |
Collapse
|