Li X, Seymour CB, Mothersill C, Rollo CD. Investigation of presence and impact of radiation-induced bystander effect in
Acheta domesticus.
Int J Radiat Biol 2023;
99:1619-1630. [PMID:
36892482 DOI:
10.1080/09553002.2023.2188977]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/22/2023] [Indexed: 03/10/2023]
Abstract
PURPOSE
Radiation-induced bystander effect (RIBE), a non-targeted effect of ionizing radiation in which non-irradiated individuals behave as if they have been irradiated after interactions with irradiated individuals, has been well documented in vertebrates. However, little research has been done investigating RIBE in terrestrial insects, this paucity of invertebrate RIBE leads to lack of knowledge on invertebrates living in fallout and exclusion zones. This paper aims to better understand the impacts of RIBE on terrestrial insects.Methods and materials: House crickets who have interacted with irradiated crickets were examined to investigate population effects of ionizing radiation exposure to better understand RIBE in insects.
RESULTS
The results demonstrated RIBE in crickets and found that cohabitated males had higher growth rate (mg/day) when compared to non-cohabitated males. Further, cohabitated males and females matured significantly faster with no significant difference in maturation weight than non-cohabitated populations. Experiment with adult irradiated crickets found saturability of bystander signals and similar shifts in maturation parameters. These results highlight that bystander signals can impacted development and maturation in crickets.
CONCLUSION
Given long-term impacts of RIBE in insects, these results may have significant implications for interactions between insects inhabiting fringe nuclear exclusion zones and those outside of it.
Collapse