1
|
Scarmelotto A, Delprat V, Michiels C, Lucas S, Heuskin AC. The oxygen puzzle in FLASH radiotherapy: A comprehensive review and experimental outlook. Clin Transl Radiat Oncol 2024; 49:100860. [PMID: 39381632 PMCID: PMC11458961 DOI: 10.1016/j.ctro.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
FLASH radiotherapy is attracting increasing interest because it maintains tumor control while inflicting less damage to normal tissues compared to conventional radiotherapy. This sparing effect, the so-called FLASH effect, is achieved when radiation is delivered at ultra-high dose rates (≥40 Gy/s). Although the FLASH effect has already been demonstrated in several preclinical models, a complete mechanistic description explaining why tumors and normal tissues respond differently is still missing. None of the current hypotheses fully explains the experimental evidence. A common point between many of these is the role of oxygen, which is described as a major factor, either through transient hypoxia in the form of dissolved molecules, or reactive oxygen species (ROS). Therefore, this review focuses on both forms of this molecule, retracing old and more recent theories, while proposing new mechanisms that could provide a complete description of the FLASH effect based on preclinical and experimental evidence. In addition, this manuscript describes a set of experiments designed to provide the FLASH community with new tools for exploring the post-irradiation fate of ROS and their potential biological implications.
Collapse
Affiliation(s)
- Andrea Scarmelotto
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Victor Delprat
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Stéphane Lucas
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
- Ion Beam Application (IBA), Chemin du Cyclotron, 6, B-1348 Louvain-La-Neuve, Belgium
| | - Anne-Catherine Heuskin
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
2
|
Ma Y, Zhang W, Zhao Z, Lv J, Chen J, Yan X, Lin X, Zhang J, Wang B, Gao S, Xiao J, Yang G. Current views on mechanisms of the FLASH effect in cancer radiotherapy. Natl Sci Rev 2024; 11:nwae350. [PMID: 39479528 PMCID: PMC11523052 DOI: 10.1093/nsr/nwae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
FLASH radiotherapy (FLASH-RT) is a new modality of radiotherapy that delivers doses with ultra-high dose rates. The FLASH effect was defined as the ability of FLASH-RT to suppress tumor growth while sparing normal tissues. Although the FLASH effect has been proven to be valid in various models by different modalities of irradiation and clinical trials of FLASH-RT have achieved promising initial success, the exact underlying mechanism is still unclear. This article summarizes mainstream hypotheses of the FLASH effect at physicochemical and biological levels, including oxygen depletion and free radical reactions, nuclear and mitochondria damage, as well as immune response. These hypotheses contribute reasonable explanations to the FLASH effect and are interconnected according to the chronological order of the organism's response to ionizing radiation. By collating the existing consensus, evidence and hypotheses, this article provides a comprehensive overview of potential mechanisms of the FLASH effect and practical guidance for future investigation in the field of FLASH-RT.
Collapse
Affiliation(s)
- Yuqi Ma
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Wenkang Zhang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Ziming Zhao
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Jianfeng Lv
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Junyi Chen
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Xueqin Yan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - XiaoJi Lin
- Oncology Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Junlong Zhang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingwu Wang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Song Gao
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Xiao
- KIRI Precision Particle Therapy Flash Technologies Research Center, Guangzhou 510700, China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Held KD, McNamara AL, Daartz J, Bhagwat MS, Rothwell B, Schuemann J. Dose Rate Effects from the 1950s through to the Era of FLASH. Radiat Res 2024; 202:161-176. [PMID: 38954556 PMCID: PMC11426361 DOI: 10.1667/rade-24-00024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
Numerous dose rate effects have been described over the past 6-7 decades in the radiation biology and radiation oncology literature depending on the dose rate range being discussed. This review focuses on the impact and understanding of altering dose rates in the context of radiation therapy, but does not discuss dose rate effects as relevant to radiation protection. The review starts with a short historic review of early studies on dose rate effects, considers mechanisms thought to underlie dose rate dependencies, then discusses some current issues in clinical findings with altered dose rates, the importance of dose rate in brachytherapy, and the current timely topic of the use of very high dose rates, so-called FLASH radiotherapy. The discussion includes dose rate effects in vitro in cultured cells, in in vivo experimental systems and in the clinic, including both tumors and normal tissues. Gaps in understanding dose rate effects are identified, as are opportunities for improving clinical use of dose rate modulation.
Collapse
Affiliation(s)
- Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
- National Council on Radiation Protection and Measurements, Bethesda, Maryland 20814
| | - Aimee L McNamara
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Mandar S Bhagwat
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Bethany Rothwell
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
4
|
Hu A, Zhou W, Qiu R, Wei S, Wu Z, Zhang H, Li J. Computational model of radiation oxygen effect with Monte Carlo simulation: effects of antioxidants and peroxyl radicals. Int J Radiat Biol 2024; 100:595-608. [PMID: 38166197 DOI: 10.1080/09553002.2023.2295292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/20/2023] [Indexed: 01/04/2024]
Abstract
PURPOSE Oxygen plays a crucial role in radiation biology. Antioxidants and peroxyl radicals affect the oxygen effect greatly. This study aims to establish a computational model of the oxygen effect and explore the effect attributed to antioxidants and peroxyl radicals. MATERIALS AND METHODS Oxygen-related reactions are added to our track-structure Monte Carlo code NASIC, including oxygen fixation, chemical repair by antioxidants and damage migration from base-derived peroxyl radicals. Then the code is used to simulate the DNA damage under various oxygen, antioxidant and damage migration rate conditions. The oxygen enhancement ratio(OER) is calculated quantifying by the number of double-strand breaks for each condition. The roles of antioxidants and peroxyl radicals are examined by manipulating the relevant parameters. RESULTS AND CONCLUSIONS Our results indicate that antioxidants are capable of rapidly restoring DNA radicals through chemical reactions, which compete with natural and oxygen fixation processes. Additionally, antioxidants can react with peroxyl radicals derived from bases, thereby preventing the damage from migrating to DNA strands. By quantitatively accounting for the impact of peroxyl radicals and antioxidants on the OER curves, our study establishes a more precise and comprehensive model of the radiation oxygen effect.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| | - Wanyi Zhou
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| | - Rui Qiu
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| | - Shuoyang Wei
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| | - Zhen Wu
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Nuctech Company Limited, Beijing, China
| | - Hui Zhang
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| | - Junli Li
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| |
Collapse
|
5
|
Wardman P. Radiation-Chemical Perspective of the Radiobiology of Pulsed (High Dose-Rate) Radiation (FLASH): A Postscript. Radiat Res 2024; 201:87-91. [PMID: 38050858 DOI: 10.1667/rade-23-00212.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
An earlier commentary (Wardman P, Radiat Res. 2020; 194:607-617) discussed possible chemical reaction pathways that might be involved in the differential responses of tissues to high- vs. low-dose-rate irradiation, focusing on reactions between radicals, and radiolytic depletion of a chemical influencing radiosensitivity. This brief postscript updates discussion to consider recent modeling and experimental studies, and presents more detail to support the earlier suggestion that rapid depletion of nitric oxide will certainly occur after a radiation pulse of a few grays, underlining the need to include the consequences of such a change when considering FLASH effects.
Collapse
|
6
|
Swarts SG, Flood AB, Swartz HM. Implications of "flash" radiotherapy for biodosimetry. RADIATION PROTECTION DOSIMETRY 2023; 199:1450-1459. [PMID: 37721059 DOI: 10.1093/rpd/ncad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 09/19/2023]
Abstract
Extremely high dose rate radiation delivery (FLASH) for cancer treatment has been shown to produce less damage to normal tissues while having the same radiotoxic effect on tumor tissue (referred to as the FLASH effect). Research on the FLASH effect has two very pertinent implications for the field of biodosimetry: (1) FLASH is a good model to simulate delivery of prompt radiation from the initial moments after detonating a nuclear weapon and (2) the FLASH effect elucidates how dose rate impacts the biological mechanisms that underlie most types of biological biodosimetry. The impact of dose rate will likely differ for different types of biodosimetry, depending on the specific underlying mechanisms. The greatest impact of FLASH effects is likely to occur for assays based on biological responses to radiation damage, but the consequences of differential effects of dose rates on the accuracy of dose estimates has not been taken into account.
Collapse
Affiliation(s)
- Steven G Swarts
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32610, United States
| | - Ann Barry Flood
- Department of Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, United States
- Clin-EPR, LLC, Lyme, NH 03769, United States
| | - Harold M Swartz
- Department of Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, United States
- Clin-EPR, LLC, Lyme, NH 03769, United States
| |
Collapse
|
7
|
Koch CJ, Kim MM, Wiersma RD. Radiation-Chemical Oxygen Depletion Depends on Chemical Environment and Dose Rate: Implications for the FLASH Effect. Int J Radiat Oncol Biol Phys 2023; 117:214-222. [PMID: 37059234 DOI: 10.1016/j.ijrobp.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE FLASH (dose rates >40 Gy/s) radiation therapy protects normal tissues from radiation damage, compared with conventional radiation therapy (∼Gy/m). Radiation-chemical oxygen depletion (ROD) occurs when oxygen reacts with radiation-induced free radicals, so a possible mechanism for FLASH involves radioprotection by the decreased oxygen as ROD occurs. High ROD rates would favor this mechanism, but prior studies have reported low ROD values (∼0.35 µM/Gy) in chemical environments such as water and protein/nutrient solutions. We proposed that intracellular ROD might be much larger, possibly promoted by its strongly reducing chemical environment. METHODS AND MATERIALS ROD was measured, using precision polarographic sensors, from ∼100 µM to zero in solutions containing intracellular reducing agents ± glycerol (1M), to simulate intracellular reducing and hydroxyl-radical-scavenging capacity. Cs irradiators and a research proton beamline allowed dose rates from 0.0085 to 100 Gy/s. RESULTS Reducing agents significantly altered ROD values. Most greatly increased ROD but some (eg, ascorbate) actually decreased ROD and additionally imposed an oxygen dependence of ROD at low oxygen concentrations. The highest values of ROD were found at low dose rates, but these montonically decreased with increasing dose rate. CONCLUSIONS ROD was greatly augmented by some intracellular reducing agents but others (eg, ascorbate) effectively reversed this effect. Ascorbate had its greatest effect at low oxygen concentrations. ROD decreased with increasing dose rate in most cases.
Collapse
Affiliation(s)
- Cameron J Koch
- Radiation Oncology Department, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Michele M Kim
- Radiation Oncology Department, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rodney D Wiersma
- Radiation Oncology Department, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Tan HS, Teo KBK, Dong L, Friberg A, Koumenis C, Diffenderfer E, Zou JW. Modeling ultra-high dose rate electron and proton FLASH effect with the physicochemical approach. Phys Med Biol 2023; 68:10.1088/1361-6560/ace14d. [PMID: 37352867 PMCID: PMC10472835 DOI: 10.1088/1361-6560/ace14d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/23/2023] [Indexed: 06/25/2023]
Abstract
Objective. A physicochemical model built on the radiochemical kinetic theory was recently proposed in (Labarbeet al2020) to explain the FLASH effect. We performed extensive simulations to scrutinize its applicability for oxygen depletion studies and FLASH-related experiments involving both proton and electron beams.Approach. Using the dose and beam delivery parameters for each FLASH experiment, we numerically solved the radiochemical rate equations comprised of a set of coupled nonlinear ordinary differential equations to obtain the area under the curve (AUC) of radical concentrations.Main results. The modeled differences in AUC induced by ultra-high dose rates appeared to correlate well with the FLASH effect. (i) For the whole brain irradiation of mice performed in (Montay-Gruelet al2017), the threshold dose rate values for memory preservation coincided with those at which AUC started to decrease much less rapidly. (ii) For the proton pencil beam scanning FLASH of (Cunninghamet al2021), we found linear correlations between radicals' AUC and the biological endpoints: TGF-β1, leg contracture and plasma level of cytokine IL-6. (iii) Compatible with the findings of the proton FLASH experiment in (Kimet al2021), we found that radicals' AUC at the entrance and mid-Spread-Out Bragg peak regions were highly similar. In addition, our model also predicted ratios of oxygen depletionG-values between normal and UHDR irradiation similar to those observed in (Caoet al2021) and (El Khatibet al2022).Significance. Collectively, our results suggest that the normal tissue sparing conferred by UHDR irradiation may be due to the lower degree of exposure to peroxyl and superoxide radicals. We also found that the differential effect of dose rate on the radicals' AUC was less pronounced at lower initial oxygen levels, a trait that appears to align with the FLASH differential effect on normal versus tumor tissues.
Collapse
Affiliation(s)
- Hai Siong Tan
- University of Pennsylvania, Perelman School of Medicine, Department of Radiation Oncology, Philadelphia, United States of America
| | - Kevin Boon Keng Teo
- University of Pennsylvania, Perelman School of Medicine, Department of Radiation Oncology, Philadelphia, United States of America
| | - Lei Dong
- University of Pennsylvania, Perelman School of Medicine, Department of Radiation Oncology, Philadelphia, United States of America
| | - Andrew Friberg
- University of Pennsylvania, Perelman School of Medicine, Department of Radiation Oncology, Philadelphia, United States of America
| | - Constantinos Koumenis
- University of Pennsylvania, Perelman School of Medicine, Department of Radiation Oncology, Philadelphia, United States of America
| | - Eric Diffenderfer
- University of Pennsylvania, Perelman School of Medicine, Department of Radiation Oncology, Philadelphia, United States of America
| | - Jennifer Wei Zou
- University of Pennsylvania, Perelman School of Medicine, Department of Radiation Oncology, Philadelphia, United States of America
| |
Collapse
|
9
|
Wardman P. Factors Important in the Use of Fluorescent or Luminescent Probes and Other Chemical Reagents to Measure Oxidative and Radical Stress. Biomolecules 2023; 13:1041. [PMID: 37509077 PMCID: PMC10377120 DOI: 10.3390/biom13071041] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Numerous chemical probes have been used to measure or image oxidative, nitrosative and related stress induced by free radicals in biology and biochemistry. In many instances, the chemical pathways involved are reasonably well understood. However, the rate constants for key reactions involved are often not yet characterized, and thus it is difficult to ensure the measurements reflect the flux of oxidant/radical species and are not influenced by competing factors. Key questions frequently unanswered are whether the reagents are used under 'saturating' conditions, how specific probes are for particular radicals or oxidants and the extent of the involvement of competing reactions (e.g., with thiols, ascorbate and other antioxidants). The commonest-used probe for 'reactive oxygen species' in biology actually generates superoxide radicals in producing the measured product in aerobic systems. This review emphasizes the need to understand reaction pathways and in particular to quantify the kinetic parameters of key reactions, as well as measure the intracellular levels and localization of probes, if such reagents are to be used with confidence.
Collapse
Affiliation(s)
- Peter Wardman
- Formerly of the Gray Cancer Institute, Mount Vernon Hospital/University of Oxford, UK
| |
Collapse
|
10
|
Wardman P. Mechanisms of the 'FLASH' effect: radiation chemistry should not be ignored in developing models. Radiother Oncol 2023; 184:109673. [PMID: 37086975 DOI: 10.1016/j.radonc.2023.109673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/24/2023]
Affiliation(s)
- Peter Wardman
- 20 Highover Park, Amersham, Buckinghamshire HP7 0BN, United Kingdom.
| |
Collapse
|
11
|
Cooper CR, Jones DJL, Jones GDD, Petersson K. Comet Assay Profiling of FLASH-Induced Damage: Mechanistic Insights into the Effects of FLASH Irradiation. Int J Mol Sci 2023; 24:7195. [PMID: 37108360 PMCID: PMC10138874 DOI: 10.3390/ijms24087195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Numerous studies have demonstrated the normal tissue-sparing effects of ultra-high dose rate 'FLASH' irradiation in vivo, with an associated reduction in damage burden being reported in vitro. Towards this, two key radiochemical mechanisms have been proposed: radical-radical recombination (RRR) and transient oxygen depletion (TOD), with both being proposed to lead to reduced levels of induced damage. Previously, we reported that FLASH induces lower levels of DNA strand break damage in whole-blood peripheral blood lymphocytes (WB-PBL) ex vivo, but our study failed to distinguish the mechanism(s) involved. A potential outcome of RRR is the formation of crosslink damage (particularly, if any organic radicals recombine), whilst a possible outcome of TOD is a more anoxic profile of induced damage resulting from FLASH. Therefore, the aim of the current study was to profile FLASH-induced damage via the Comet assay, assessing any DNA crosslink formation as a putative marker of RRR and/or anoxic DNA damage formation as an indicative marker of TOD, to determine the extent to which either mechanism contributes to the "FLASH effect". Following FLASH irradiation, we see no evidence of any crosslink formation; however, FLASH irradiation induces a more anoxic profile of induced damage, supporting the TOD mechanism. Furthermore, treatment of WB-PBLs pre-irradiation with BSO abrogates the reduced strand break damage burden mediated by FLASH exposures. In summary, we do not see any experimental evidence to support the RRR mechanism contributing to the reduced damage burden induced by FLASH. However, the observation of a greater anoxic profile of damage following FLASH irradiation, together with the BSO abrogation of the reduced strand break damage burden mediated by FLASH, lends further support to TOD being a driver of the reduced damage burden plus a change in the damage profile mediated by FLASH.
Collapse
Affiliation(s)
- Christian R. Cooper
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.J.L.J.); (G.D.D.J.)
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Donald J. L. Jones
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.J.L.J.); (G.D.D.J.)
| | - George D. D. Jones
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.J.L.J.); (G.D.D.J.)
| | - Kristoffer Petersson
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
- Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital Lund University, 221 85 Lund, Sweden
| |
Collapse
|
12
|
Robert G, Wagner JR, Cadet J. Oxidatively generated tandem DNA modifications by pyrimidinyl and 2-deoxyribosyl peroxyl radicals. Free Radic Biol Med 2023; 196:22-36. [PMID: 36603668 DOI: 10.1016/j.freeradbiomed.2022.12.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Molecular oxygen sensitizes DNA to damage induced by ionizing radiation, Fenton-like reactions, and other free radical-mediated reactions. It rapidly converts carbon-centered radicals within DNA into peroxyl radicals, giving rise to a plethora of oxidized products consisting of nucleobase and 2-deoxyribose modifications, strand breaks and abasic sites. The mechanism of formation of single oxidation products has been extensively studied and reviewed. However, much evidence shows that reactive peroxyl radicals can propagate damage to vicinal components in DNA strands. These intramolecular reactions lead to the dual alteration of two adjacent nucleotides, designated as tandem or double lesions. Herein, current knowledge about the formation and biological implications of oxidatively generated DNA tandem lesions is reviewed. Thus far, most reported tandem lesions have been shown to arise from peroxyl radicals initially generated at pyrimidine bases, notably thymine, followed by reaction with 5'-flanking bases, especially guanine, although contiguous thymine lesions have also been characterized. Proper biomolecular processing is impaired by several tandem lesions making them refractory to base excision repair and potentially more mutagenic.
Collapse
Affiliation(s)
- Gabriel Robert
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - J Richard Wagner
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| | - Jean Cadet
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| |
Collapse
|
13
|
Wancura J, Egan J, Sajo E, Sudhyadhom A. MRI of radiation chemistry: First images and investigation of potential mechanisms. Med Phys 2023; 50:495-505. [PMID: 36201151 PMCID: PMC9930196 DOI: 10.1002/mp.16011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/25/2022] [Accepted: 09/17/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Paramagnetic species such as O2 and free radicals can enhance T1 and T2 relaxation times. If the change in relaxation time is sufficiently large, the contrast will be generated in magnetic resonance images. Since radiation is known to be capable of altering the concentration of O2 and free radicals during water radiolysis, it may be possible for radiation to induce MR signal change. PURPOSE We present the first reported instance of x-ray-induced MR signal changes in water phantoms and investigate potential paramagnetic relaxation enhancement mechanisms associated with radiation chemistry changes in oxygen and free radical concentrations. METHODS Images of water and 10 mM coumarin phantoms were acquired on a 0.35 T MR-linac before, during, and after a dose delivery of 80 Gy using an inversion-recovery dual-echo sequence with water nullified. Radiation chemistry simulations of these conditions were performed to calculate changes in oxygen and free radical concentrations. Published relaxivity values were then applied to calculate the resulting T1 change, and analytical MR signal equations were used to calculate the associated signal change. RESULTS Compared to pre-irradiation reference images, water phantom images taken during and after irradiation showed little to no change, while coumarin phantom images showed a small signal loss in the irradiated region with a contrast-to-noise ratio (CNR) of 1.0-2.5. Radiation chemistry simulations found oxygen depletion of -11 µM in water and -31 µM in coumarin, resulting in a T1 lengthening of 24 ms and 68 ms respectively, and a simulated CNR of 1.0 and 2.8 respectively. This change was consistent with observations in both direction and magnitude. Steady-state superoxide, hydroxyl, hydroperoxyl, and hydrogen radical concentrations were found to contribute less than 1 ms of T1 change. CONCLUSION Observed radiation-induced MR signal changes were dominated by an oxygen depletion mechanism. Free radicals were concluded to play a minor secondary role under steady-state conditions. Future applications may include in vivo FLASH treatment verification but would require an MR sequence with a better signal-to-noise ratio and higher temporal resolution than the one used in this study.
Collapse
Affiliation(s)
- Joshua Wancura
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - James Egan
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Erno Sajo
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Atchar Sudhyadhom
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Hu A, Qiu R, Li WB, Zhou W, Wu Z, Zhang H, Li J. Radical recombination and antioxidants: a hypothesis on the FLASH effect mechanism. Int J Radiat Biol 2023; 99:620-628. [PMID: 35938944 DOI: 10.1080/09553002.2022.2110307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
PURPOSE FLASH (ultra-high dose rate) radiotherapy spares normal tissue while keeping tumor control. However, the mechanism of the FLASH effect remains unclear and may have consequences beyond the irradiated area. MATERIALS AND METHODS We reanalyze the available results of ultra-high-dose-rate-related experiments to find out the key points of the mechanism of the FLASH effect. Then, we present a hypothesis on the mechanism of the FLASH effect: FLASH beams generate a high transient concentration of peroxyl radicals leading to a high fraction of radical recombination, which results in less oxidation damage to normal tissue. For the cells containing higher concentrations of antioxidants, the fractions of radical recombination are smaller because the antioxidants compete to react with peroxyl radicals. Therefore the damages by different dose rate beams differ slightly in this condition. Since some tumors contain a higher level of antioxidants, this may be the reason for the loss of the protective effect in tumors irradiated by FLASH beams. The high concentration of antioxidants in tumors results in slight radiolytic oxygen consumption, and consequently the protective effect observed in in vitro experiment cannot be observed in in vivo experiment. To quantitatively elaborate our hypothesis, a kinetic model is implemented to simulate the reactions induced by irradiation. Two parameters are defined to abstractly study the factors affecting the reaction, such as dose rate, antioxidants, total dose and reaction rate constants. RESULTS AND CONCLUSIONS We find that the explanation of the difference between in vivo and in vitro experiments is crucial to understanding the mechanism of the FLASH effect. Our hypothesis agrees with the results of related experiments. Based on the kinetic model, the effects of these factors on the FLASH effect are quantitatively investigated.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| | - Rui Qiu
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| | - Wei Bo Li
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Wanyi Zhou
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| | - Zhen Wu
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Nuctech Company Limited, Beijing, China
| | - Hui Zhang
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| | - Junli Li
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| |
Collapse
|