1
|
Cardador MJ, Reyes-Palomo C, Díaz-Gaona C, Arce L, Rodríguez-Estévez V. Review of the Methodologies for Measurement of Greenhouse Gas Emissions in Livestock Farming: Pig Farms as a Case of Study. Crit Rev Anal Chem 2020; 52:1029-1047. [PMID: 33369510 DOI: 10.1080/10408347.2020.1855410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The global emission and accumulation of gases due to livestock farming is estimated to contribute to about 14.5% of the global warming effect due to greenhouse gases (GHG). Pig farming represents 9% of global livestock GHG emissions, without considering other activities of pork production process, such as feed production. Most of information about pig farms GHG emissions is based on theoretical calculations with not too much accuracy. Hence, there is a critical need to study the best sampling and analytical techniques (portable or not) that can be used to map their contribution to GHG emissions. The selection of the best analytical detection method becomes important for public policies on climate change, and in order to evaluate animal and manure handling practices to reduce GHG and to combat global warming. In this article, different techniques, which could be used to measure the emissions of GHG from livestock, are reviewed, showing the advantages and disadvantages of each technique, with special emphasis on those already used in studies about GHG from pig farms and those that allow the simultaneous determination of several species of gases. Open chambers equipped with photoacoustic multi-gas monitor have been the techniques most employed in intensive pig farms studies. Gas Chromatography coupled to different detectors has been only widely used in pig farms to monitor simultaneously several GHG species using previous sampling devices. However, there are no studies in the literature based on extensive pig farms. In these systems, micrometeorological techniques could be a promising strategy.
Collapse
Affiliation(s)
- María José Cardador
- Dept. Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Annex Building, University of Córdoba, Córdoba, Spain
| | | | | | - Lourdes Arce
- Dept. Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Annex Building, University of Córdoba, Córdoba, Spain
| | | |
Collapse
|
2
|
Sarker NC, Borhan M, Fortuna AM, Rahman S. Understanding gaseous reduction in swine manure resulting from nanoparticle treatments under anaerobic storage conditions. J Environ Sci (China) 2019; 82:179-191. [PMID: 31133263 DOI: 10.1016/j.jes.2019.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Manure is an impending source of carbon (C), sulfur (S) and water (H2O). Consequently, microbial populations utilize these constituents to produce methane (CH4), carbon dioxide (CO2), greenhouse gases (GHGs), and hydrogen sulfide (H2S). Application of nanoparticles (NPs) to stored manure is an emerging GHG mitigation technique. In this study, two NPs: nano zinc oxide (nZnO) and nano silver (nAg) were tested in swine manure stored under anaerobic conditions to determine their effectiveness in mitigating gaseous emissions and total gas production. The biological sources of gas production, i.e., microbial populations were characterized via Quantitative Polymerase Chain Reaction (qPCR) analysis. Additionally, pH, redox, and VFAs were determined using standard methods. Each treatment of the experiment was replicated three times and NPs were applied at a dose of 3 g/L of manure. Also, headspace gas from all treatment replicates were analyzed for CH4 and CO2 gas concentrations using an SRI-8610 Gas Chromatograph and H2S concentrations were measured using a Jerome 631X meter. Nanoparticles tested in this study reduced the cumulative gas volume by 16%-79% compared to the control. Among the NPs tested, only nZnO consistently reduced GHG concentrations by 37%-97%. Reductions in H2S concentrations ranged from 87% to 97%. Gaseous reductions were likely due to decreases in the activity and numbers of specific gas producing methanogenic archaea and sulfate reducing bacterial (SRB) species.
Collapse
Affiliation(s)
- Niloy Chandra Sarker
- Agricultural and Biosystems Engineering Department, North Dakota State University, Fargo, ND 58108, USA
| | - Md Borhan
- Agricultural and Biosystems Engineering Department, North Dakota State University, Fargo, ND 58108, USA
| | - Ann-Marie Fortuna
- USDA-ARS, Grazinglands Research Laboratory, 7207 West, Sheyenne Street, El Reno, OK 73036, USA
| | - Shafiqur Rahman
- Agricultural and Biosystems Engineering Department, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
3
|
Sarker NC, Rahman S, Borhan MS, Rajasekaran P, Santra S, Ozcan A. Nanoparticles in mitigating gaseous emissions from liquid dairy manure stored under anaerobic condition. J Environ Sci (China) 2019; 76:26-36. [PMID: 30528017 DOI: 10.1016/j.jes.2018.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/02/2018] [Accepted: 03/16/2018] [Indexed: 06/09/2023]
Abstract
A number of mitigation techniques exist to reduce the emissions of pollutant gases and greenhouse gases (GHGs) from anaerobic storage of livestock manure. Nanoparticle (NP) application is a promising mitigating treatment option for pollutant gases, but limited research is available on the mode of NP application and their effectiveness in gaseous emission reduction. In this study, zinc silica nanogel (ZnSNL), copper silica nanogel (CuSNL), and N-acetyl cysteine (NACL) coated zinc oxide quantum dot (Qdot) NPs were compared to a control lacking NPs. All three NPs tested significantly reduced gas production and concentrations compared to non-treated manure. Overall, cumulative gas volumes were reduced by 92.73%-95.83%, and concentrations reduced by 48.98%-99.75% for H2S, and 20.24%-99.82% for GHGs. Thus, application of NPs is a potential treatment option for mitigating pollutant and GHG emissions from anaerobically stored manure.
Collapse
Affiliation(s)
- Niloy Chandra Sarker
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58108, USA
| | - Shafiqur Rahman
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58108, USA.
| | - Md Saidul Borhan
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58108, USA
| | - Parthiban Rajasekaran
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA; Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA; Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA; Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA
| | - Ali Ozcan
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA; Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
4
|
Capelari M, Johnson KA, Latack B, Roth J, Powers W. The effect of encapsulated nitrate and monensin on ruminal fermentation using a semi-continuous culture system. J Anim Sci 2018; 96:3446-3459. [PMID: 29800454 DOI: 10.1093/jas/sky211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/24/2018] [Indexed: 01/18/2023] Open
Abstract
Because enteric methane (CH4) production from ruminants represents a source of greenhouse gas emissions and an energy loss for the host animal alternatives to minimize emissions is a current research priority. Seven 37-d trials tested the effect of encapsulated nitrate (EN) and sodium monensin (MON) in diets commonly fed to dairy (DAIRY; 50:50 forage to concentrate; four trials) and beef cattle (BEEF; 15:85 forage to concentrate; three trials) on rumen fermentation and CH4 production using a semi-continuous fermentation system. A 3 × 2 factorial arrangement was used and additives (0, 1.25, and 2.5% of EN; 0 and 4 mg/L of MON) were tested alone and combined (EN + MON) totaling six treatments. Rumen fluid was pooled from five nonadapted lactating cows fed 50:50 forage to concentrate diet 3 h after morning feeding, and 1 L of processed inoculum was transferred to 2.2-L vessels. Treatment diets were added to nylon bags which remained in the anaerobic fermentation of mixed rumen microorganisms for 48 h. Nitrate decreased CH4 production in DAIRY (24.7 vs. 32.1 mM/d; P < 0.01) and BEEF trials (33.5 vs. 43.5 mM/d; P < 0.01). Methane production was decreased by MON in DAIRY (26.3 vs. 32.1; P < 0.01) and BEEF (26.6 vs. 43.5 mM/d; P < 0.01). The combination of EN + MON further decreased CH4 in DAIRY (21.3 vs. 32.1 mM/d; P = 0.03) and BEEF (19.3 vs. 43.5 mM/d; P = 0.01). Nitrate did not affect major VFA production in DAIRY and BEEF trials, but significantly decreased digestion of protein (96.8 vs. 97.6%; P < 0.01) and starch (79.0 vs. 80.4%; P < 0.01) in DAIRY and NDF (29.3 vs. 32.5%; P < 0.01) and starch (88.5 vs. 90.3%; P < 0.01) in BEEF. Monensin significantly affected VFA pattern with an increase in propionate (P < 0.01) and a decrease on acetate (P < 0.01) production with consequent decrease on acetate-to-propionate ratio in DAIRY (1.6 vs. 2.0; P < 0.01) and BEEF (1.6 vs. 1.9; P < 0.01). Monensin decreased NDF digestion in BEEF only (29.3 vs. 32.5 %; P < 0.01). Significant concentrations of nitrate and nitrite were detected only for EN and EN + MON (P < 0.01). Nitrate and MON effectively decreased CH4 production when fed separately and the combination of additives additively decreased CH4 production.
Collapse
Affiliation(s)
- Matheus Capelari
- Department of Animal Science, Michigan State University, East Lansing, MI
| | - Kristen A Johnson
- Department of Animal Science, Washington State University, Pullman, WA
| | - Brooke Latack
- Department of Animal Science, Michigan State University, East Lansing, MI
| | - Jolene Roth
- Department of Animal Science, Michigan State University, East Lansing, MI
| | - Wendy Powers
- Division of Agriculture and Natural Resources, University of California, Oakland, CA
| |
Collapse
|
5
|
Arndt C, Leytem A, Hristov A, Zavala-Araiza D, Cativiela J, Conley S, Daube C, Faloona I, Herndon S. Short-term methane emissions from 2 dairy farms in California estimated by different measurement techniques and US Environmental Protection Agency inventory methodology: A case study. J Dairy Sci 2018; 101:11461-11479. [DOI: 10.3168/jds.2017-13881] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 08/11/2018] [Indexed: 11/19/2022]
|
6
|
Wang Y, Li X, Yang J, Tian Z, Sun Q, Xue W, Dong H. Mitigating Greenhouse Gas and Ammonia Emissions from Beef Cattle Feedlot Production: A System Meta-Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11232-11242. [PMID: 30119602 DOI: 10.1021/acs.est.8b02475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Beef cattle production systems are the largest contributors of greenhouse gas (GHG) and ammonia (NH3) emissions in the livestock industry. Here, we present the first meta-analysis and integrated assessment of gaseous emissions and mitigation potentials for a typical beef cattle feedlot system, including methane (CH4), nitrous oxide (N2O), and NH3 losses from enteric fermentation and manure management based on data from 104 studies. A total of 14 integrated emission factors (EF) and the mitigation efficiencies (ME) of 17 available options were provided. The estimated GHG and NH3 emissions from the baseline feedlot system were 2786 ± 108 kg carbon dioxide equivalents (CO2-eq) per animal unit (AU) per year and 49.1 ± 1.5 kg NH3 AU-1 year-1, respectively. Enteric CH4 fermentation and manure on the feedlot contributed 67.5% and 80.8% of the total system GHG and NH3 emissions, respectively. The highest ME values were found for lipid additives for enteric CH4 fermentation and urease inhibitor additives (UI) for NH3 emissions from manure on the feedlot, being -14.9% ( p < 0.05) and -59.5% ( p < 0.001), respectively. The recommended mitigation combinations of a low-crude-protein (CP) diet and a UI additive for manure on the feedlot could reduce the GHG of the system by 4.9% and NH3 by 50.9%. The results of this study have important implications for developing sustainable beef cattle feedlot systems from the viewpoint of GHG and NH3 mitigation.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences , Beijing 100097 , China
| | - Xinrong Li
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences , Beijing 100097 , China
| | - Jinfeng Yang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences , Beijing 100097 , China
| | - Zhuang Tian
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences , Beijing 100097 , China
| | - Qinping Sun
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences , Beijing 100097 , China
| | - Wentao Xue
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences , Beijing 100097 , China
| | - Hongmin Dong
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture , Beijing 100081 , China
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| |
Collapse
|
7
|
Waldrip HM, Todd RW, Parker DB, Cole NA, Rotz CA, Casey KD. Nitrous Oxide Emissions from Open-Lot Cattle Feedyards: A Review. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:1797-1811. [PMID: 27898789 DOI: 10.2134/jeq2016.04.0140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nitrous oxide (NO) emissions from concentrated animal feeding operations, including cattle feedyards, have become an important research topic. However, there are limitations to current measurement techniques, uncertainty in the magnitude of feedyard NO fluxes, and a lack of effective mitigation methods. The objective of this review was to assess NO emission from cattle feedyards, including comparison of measured and modeled emission rates, discussion of measurement methods, and evaluation of mitigation options. Published annual per capita flux rates for beef cattle feedyards and open-lot dairies were highly variable and ranged from 0.002 to 4.3 kg NO animal yr. On an area basis, published emission rates ranged from 0 to 41 mg NO m h. From these studies and Intergovernmental Panel on Climate Change emission factors, calculated daily per capita NO fluxes averaged 18 ± 10 g NO animal d (range, 0.04-67 g NO animal d). This variation was due to inconsistency in measurement techniques as well as irregularity in NO production and emission attributable to management, animal diet, and environmental conditions. Based on this review, it is clear that the magnitude and dynamics of NO emissions from open-lot cattle systems are not well understood. Further research is required to quantify feedyard NO fluxes and develop cost-effective mitigation methods.
Collapse
|
8
|
Gautam DP, Rahman S, Borhan MS, Engel C. The effect of feeding high fat diet to beef cattle on manure composition and gaseous emission from a feedlot pen surface. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2016; 58:22. [PMID: 27293803 PMCID: PMC4901494 DOI: 10.1186/s40781-016-0104-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/27/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Dietary manipulation is a common practice to mitigate gaseous emission from livestock production facilities, and the variation of fat level in the diet has shown great influence on ruminal volatile fatty acids (VFA) and enteric methane generation. The changes in dietary fat levels influence rumen chemistry that could modify manure nutrient composition along with odor and gaseous emissions from manure management facilities. METHODS A field experiment was carried out on beef cattle feedlots to investigate the effect of four levels of dietary fat concentrations (3 to 5.5 %) on the manure composition and gaseous emissions (methane-CH4, nitrous oxide-N2O, carbon dioxide-CO2 and hydrogen sulfide-H2S) from the feedlot pen surface. The experiment was carried out over a 5-month period from June to October during North Dakota's summer-fall climatic condition. Air and manure sampling was conducted five times at a 20-30 day intervals. RESULTS Overall, this research indicated that fat levels in diet have no or little effect on the nutrient composition of manure and gaseous emission from the pens with cattle fed with different diet. Though significant variation of gaseous emission and manure composition were observed between different sampling periods, no effect of high fat diet was observed on manure composition and gaseous emission. CONCLUSIONS It can be concluded that addition of fat to animal diet may not have any impact on gaseous emission and manure compositions.
Collapse
Affiliation(s)
- Dhan Prasad Gautam
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58102 USA
| | - Shafiqur Rahman
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58102 USA
| | - Md Saidul Borhan
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58102 USA
| | - Chanda Engel
- NDSU Carrington Research Extension Center, Carrington, ND 58421 USA
| |
Collapse
|
9
|
Bai M, Flesch TK, McGinn SM, Chen D. A Snapshot of Greenhouse Gas Emissions from a Cattle Feedlot. JOURNAL OF ENVIRONMENTAL QUALITY 2015; 44:1974-1978. [PMID: 26641350 DOI: 10.2134/jeq2015.06.0278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Beef cattle feedlots emit large amounts of the greenhouse gases (GHG) methane (CH) and nitrous oxide (NO), as well as ammonia (NH), which contributes to NO emission when NH is deposited to land. However, there is a lack of simultaneous, in situ, and nondisturbed measurements of the major GHG gas components from beef cattle feedlots, or measurements from different feedlot sources. A short-term campaign at a beef cattle feedlot in Victoria, Australia, quantified CH, NO, and NH emissions from the feedlot pens, manure stockpiles, and surface run-off pond. Open-path Fourier transform infrared (OP-FTIR) spectrometers and open-path lasers (OP-Laser) were used with an inverse-dispersion technique to estimate emissions. Daily average emissions of CH, NO, and NH were 132 (± 2.3 SE), 0, and 117 (± 4.5 SE) g animal d from the pens and 22 (± 0.7 SE), 2 (± 0.2 SE), and 9 (± 0.6 SE) g animal d from the manure stockpiles. Emissions of CH and NH from the run-off pond were less than 0.5 g animal d. Extrapolating these results to the feedlot population of cattle across Australia would mean that feedlots contribute approximately 2% of the agricultural GHG emissions and 2.7% of livestock sector emissions, lower than a previous estimate of 3.5%.
Collapse
|
10
|
Redding MR, Devereux J, Phillips F, Lewis R, Naylor T, Kearton T, Hill CJ, Weidemann S. Field measurement of beef pen manure methane and nitrous oxide reveals a surprise for inventory calculations. JOURNAL OF ENVIRONMENTAL QUALITY 2015; 44:720-728. [PMID: 26024253 DOI: 10.2134/jeq2014.04.0159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Few data exist on direct greenhouse gas emissions from pen manure at beef feedlots. However, emission inventories attempt to account for these emissions. This study used a large chamber to isolate NO and CH emissions from pen manure at two Australian commercial beef feedlots (stocking densities, 13-27 m head) and related these emissions to a range of potential emission control factors, including masses and concentrations of volatile solids, NO, total N, NH, and organic C (OC), and additional factors such as total manure mass, cattle numbers, manure pack depth and density, temperature, and moisture content. Mean measured pen NO emissions were 0.428 kg ha d (95% confidence interval [CI], 0.252-0.691) and 0.00405 kg ha d (95% CI, 0.00114-0.0110) for the northern and southern feedlots, respectively. Mean measured CH emission was 0.236 kg ha d (95% CI, 0.163-0.332) for the northern feedlot and 3.93 kg ha d (95% CI, 2.58-5.81) for the southern feedlot. Nitrous oxide emission increased with density, pH, temperature, and manure mass, whereas negative relationships were evident with moisture and OC. Strong relationships were not evident between NO emission and masses or concentrations of NO or total N in the manure. This is significant because many standard inventory calculation protocols predict NO emissions using the mass of N excreted by the animal.
Collapse
|
11
|
Pratt C, Redding M, Hill J, Shilton A, Chung M, Guieysse B. Good science for improving policy: greenhouse gas emissions from agricultural manures. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an13504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Australia’s and New Zealand’s major agricultural manure management emission sources are reported to be, in descending order of magnitude: (1) methane (CH4) from dairy farms in both countries; (2) CH4 from pig farms in Australia; and nitrous oxide (N2O) from (3) beef feedlots and (4) poultry sheds in Australia. We used literature to critically review these inventory estimates. Alarmingly for dairy farm CH4 (1), our review revealed assumptions and omissions that when addressed could dramatically increase this emission estimate. The estimate of CH4 from Australian pig farms (2) appears to be accurate, according to industry data and field measurements. The N2O emission estimates for beef feedlots (3) and poultry sheds (4) are based on northern hemisphere default factors whose appropriateness for Australia is questionable and unverified. Therefore, most of Australasia’s key livestock manure management greenhouse gas (GHG) emission profiles are either questionable or are unsubstantiated by region-specific research. Encouragingly, GHG from dairy shed manure are relatively easy to mitigate because they are a point source which can be managed by several ‘close-to-market’ abatement solutions. Reducing these manure emissions therefore constitutes an opportunity for meaningful action sooner compared with the more difficult-to-implement and long-term strategies that currently dominate agricultural GHG mitigation research. At an international level, our review highlights the critical need to carefully reassess GHG emission profiles, particularly if such assessments have not been made since the compilation of original inventories. Failure to act in this regard presents the very real risk of missing the ‘low hanging fruit’ in the rush towards a meaningful response to climate change.
Collapse
|
12
|
Borhan MDS, Rahman S, Hammer C. Water Absorption Capacity of Flax and Pine Horse Beddings and Gaseous Concentrations in Bedded Stalls. J Equine Vet Sci 2014. [DOI: 10.1016/j.jevs.2013.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Montes F, Meinen R, Dell C, Rotz A, Hristov AN, Oh J, Waghorn G, Gerber PJ, Henderson B, Makkar HPS, Dijkstra J. SPECIAL TOPICS — Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options1. J Anim Sci 2013; 91:5070-94. [DOI: 10.2527/jas.2013-6584] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- F. Montes
- Plant Science Department, Pennsylvania State University, University Park 16802
| | - R. Meinen
- Animal Science Department, Pennsylvania State University, University Park 16802
| | - C. Dell
- USDA-Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA 16802
| | - A. Rotz
- USDA-Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA 16802
| | - A. N. Hristov
- Department of Animal Science, Pennsylvania State University, University Park 16802
| | - J. Oh
- Department of Animal Science, Pennsylvania State University, University Park 16802
| | | | - P. J. Gerber
- Agriculture and Consumer protection Department, Food and Agriculture Organization of the United Nations, 00153 Rome, Italy
| | - B. Henderson
- Agriculture and Consumer protection Department, Food and Agriculture Organization of the United Nations, 00153 Rome, Italy
| | - H. P. S. Makkar
- Agriculture and Consumer protection Department, Food and Agriculture Organization of the United Nations, 00153 Rome, Italy
| | - J. Dijkstra
- Wageningen University, 6700 AH Wageningen, The Netherlands
| |
Collapse
|