1
|
Gao Z, Bai Y, Su J, Ali A, Huang T, Zhai Z, Wang Y. Deciphering microbial syntrophic mechanisms for simultaneous removal of nitrate and Cr(VI) by Mn@Corn cob immobilized bioreactor: Performance, enhancement mechanisms and community assembly. BIORESOURCE TECHNOLOGY 2022; 364:128017. [PMID: 36174388 DOI: 10.1016/j.biortech.2022.128017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
When bioremediation is applied to Cr(VI) and NO3--N contaminated groundwater, the lack of carbon sources and weak physiological activity dramatically affect the treatment efficacy. Hence, a bioreactor consisting of cellulose degradation-manganese (Mn) cycling bilayer carrier and two core strains was established. After 270 operating days, the experimental group (EG) achieved 96.34 and 95.37% of NO3--N and Cr(VI) removal efficiency, respectively. When the C/N ratio was reduced to 1.0, cellulose-degrading strain CDZ9 produced significantly hydrolyzed cellulose from the corn cob substrate. Meanwhile, the balance between microbial metabolic activity and carbon supply was manipulated by the dissimilatory Mn-reducing strain MFG10. Dissolved organic matter response in EG provided evidence for enhanced carbon utilization and electron transfer processes. The syntrophic relationship between EG core strains significantly enhanced bioreactor metabolism and bioactivity. It drove the coupling of different elemental cycles with contaminant removal including carbon metabolism, nitrogen metabolism, Mn cycle and Cr(VI) reduction.
Collapse
Affiliation(s)
- Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhenyu Zhai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
2
|
Jain L, Kurmi AK, Kumar A, Narani A, Bhaskar T, Agrawal D. Exploring the flexibility of cellulase cocktail obtained from mutant UV-8 of Talaromyces verruculosus IIPC 324 in depolymerising multiple agro-industrial lignocellulosic feedstocks. Int J Biol Macromol 2020; 154:538-544. [PMID: 32194122 DOI: 10.1016/j.ijbiomac.2020.03.133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/27/2020] [Accepted: 03/14/2020] [Indexed: 11/17/2022]
Abstract
Effective management and the valorization of agro-industrial lignocellulosic feedstocks can only be realized if a versatile cellulase cocktail is developed that can release glucose at affordable cost irrespective of biomass type. In the present study the flexibility of using cellulase cocktail obtained from mutant UV-8 of Talaromyces verruculosus IIPC 324 in depolymerizing multiple agro-industrial lignocellulosic feedstocks was explored. Five different dilute acid pretreated biomasses were evaluated and cellulase loading was done at 25 mg protein/g cellulose content. After 72 h of hydrolysis at 55 °C and pH 4.5, corn cob and rice straw emerged as the easiest and toughest substrates with saccharification yield of 83.9 ± 1.17 and 35.5 ± 1.16% respectively from their cellulose fraction. Addition of PEG 6000 could retain >65% of all mono-component enzymes present in cellulase cocktail. Structural elucidation of biomasses gave an insight about key features responsible for variable recalcitrance in the different agro-industrial feedstock. Cellulose hydrolysis showed a significant negative correlation in the order of Cr I > S/G ratio > ash content. The chemical composition of lignin had a major impact on enzyme-lignin interactions. Higher H lignin content and lower S/G ratio promoted enzyme desorption, thereby increasing the likelihood of their recycling and reuse.
Collapse
Affiliation(s)
- Lavika Jain
- Materials Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Akhilesh Kumar Kurmi
- Materials Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India
| | - Avnish Kumar
- Materials Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Anand Narani
- Materials Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Thallada Bhaskar
- Materials Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Deepti Agrawal
- Materials Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India.
| |
Collapse
|
3
|
Dieme MM, Villot A, Gerente C, Andres Y, Diop SN, Diawara CK. Sustainable conversion of agriculture wastes into activated carbons: energy balance and arsenic removal from water. ENVIRONMENTAL TECHNOLOGY 2017; 38:353-360. [PMID: 27248980 DOI: 10.1080/09593330.2016.1193225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/19/2016] [Indexed: 06/05/2023]
Abstract
The aims of this study are to investigate the production of activated carbons (AC) from Senegal agricultural wastes such as cashew shells, millet stalks and rice husks and to implement them in adsorption processes devoted to arsenic (V) removal. AC were produced by a direct physical activation with water steam without other chemicals. This production of AC has also led to co-products (gas and bio-oil) which have been characterized in terms of physical, chemical and thermodynamical properties for energy recovery. Considering the arsenic adsorption results and the energy balance for the three studied biomasses, the first results have shown that the millet stalks seem to be more interesting for arsenate removal from natural water and an energy recovery with a GEEelec of 18.9%. Cashew shells, which have shown the best energy recovery (34.3%), are not suitable for arsenate removal. This global approach is original and contributes to a recycling of biowastes with a joint recovery of energy and material.
Collapse
Affiliation(s)
- M M Dieme
- a Laboratoire de Chimie et Physique des Matériaux , Université Assane Seck , Ziguinchor , Sénégal
| | - A Villot
- b LUNAM, Ecole des Mines de Nantes, GEPEA, CNRS, UMR , Nantes , France
| | - C Gerente
- b LUNAM, Ecole des Mines de Nantes, GEPEA, CNRS, UMR , Nantes , France
| | - Y Andres
- b LUNAM, Ecole des Mines de Nantes, GEPEA, CNRS, UMR , Nantes , France
| | - S N Diop
- a Laboratoire de Chimie et Physique des Matériaux , Université Assane Seck , Ziguinchor , Sénégal
| | - C K Diawara
- a Laboratoire de Chimie et Physique des Matériaux , Université Assane Seck , Ziguinchor , Sénégal
| |
Collapse
|
4
|
Hydrochar preparation from black liquor by CO2 assisted hydrothermal treatment: Optimization of its performance for Pb2+ removal. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0152-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Sun Y, Zhang JP, Guo F, Zhang L. Optimization of the preparation of activated carbon from steam activated cornstraw black liquor for phenol removal. ASIA-PAC J CHEM ENG 2016. [DOI: 10.1002/apj.1983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yong Sun
- Edith Cowan University School of Engineering; 270 Joondalup Drive Joondalup WA 6027 Australia
- Commonwealth Science and Industrial Research Organization (CSIRO); Earth Science and Resources Engineering; 26 Dick Perry Avenue Kensington WA 6151 Australia
| | - Jing ping. Zhang
- National Engineering Laboratory of Cleaner Production Technology; Institute of Process Engineering, Chinese Academy of Sciences; Beijing 100190 China
| | - Fei Guo
- Department of Sports Science and Technology; Shanxi Normal University; Xi'an 710068 China
| | - Lian Zhang
- Monash University; Department of Chemical Engineering; VIC 3800 Australia
| |
Collapse
|
6
|
Torres-Pérez J, Soria-Serna L, Solache-Ríos M, McKay G. One Step Carbonization/Activation Process for Carbonaceous Material Preparation from Pecan Shells for Tartrazine Removal and Regeneration after Saturation. ADSORPT SCI TECHNOL 2015. [DOI: 10.1260/0263-6174.33.10.895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
| | - L.A. Soria-Serna
- instituto de ciencias Biomédicas, Departamento de Ciencias Químico Biológicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo sin, Zona Pronaf, Ciudad Juárez, Chihuahua, C.P. 32310, México
| | - M. Solache-Ríos
- Departamento de Química, Instituto Nacional de Investigaciones Nucleares, A.P.18-1027, Col. Escandón, Delegación Miguel Hidalgo, C. P. 11801 México, D. F., México
| | - G. McKay
- Division of Sustainability, Faculty of Engineering, Science and Technology, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|